cave microclimate data retrieval ... -...

9
Cave Microclimate Data Retrieval and Volumetric Mapping, 2009 Atacama Desert Expedition, Chile, Earth-Mars Cave Detection Project: Explorers Club Flag Report (Flag # 52) Submitted 27 October 2009 J. Judson Wynne 1,2 , Timothy N. Titus 3 , Guillermo Chong Diaz 4 , Christina Colpitts 5 , W. Lynn Hicks 6 , Denise Hill 7 , Daniel W. Ruby 8 , and Cristian Tambley 9 1 SETI Institute, Carl Sagan Center, Mountain View, CA; 2 Colorado Plateau Research Station (U.S. Geological Survey affiliate), Northern Arizona University, Flagstaff; 3 U.S. Geological Survey, Astrogeology Science Center, Flagstaff, AZ; 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile; 5 Research Support Group, Inc., Torrington, CT; 6 Glynn Immediate Care, Southeast Georgia Health System, Brunswick, GA; 7 Mutual Aid Response Service, San Francisco, CA; 8 Fleischmann Planetarium and Science Center, University of Nevada‐Reno, NV; 9 Campo Alto, Santiago, Chile. Corresponding author: [email protected] 1.0 Introduction Caves on Earth are characterized by microclimates that often support extremophillic organisms and evidence of extinct life forms. On Mars, because caves are features that may offer protection from harsh surface conditions, these features are important in the search for life. Additionally, caves may serve as locations for the establishment of habitation pods for astronaut crews. Before Martian caves can be targeted for exploration, we must (1) develop an understanding of terrestrial cave thermal behavior and (2) determine how thermal properties influence the thermal signature associated with the entrance. Ultimately, this may enable us to differentiate caves from non‐cave anomalies, as well large from small subterranean features. This is a critical step in the targeting process. Identifying actual caves with significant volume will be the highest priority targets for NASA. Researchers are actively developing techniques to understand how to detect caves on Earth and Mars, and have identified compelling evidence for cave‐like features on Mars. Rinker (1975) and Wynne et al. (2007, 2008a, 2008b, 2009) have improved our understanding of thermal cave detection on Earth. Cushing et al. (2007, 2008) have analyzed thermal and visible imagery to examine cave‐like features on Arsia Mons, Mars. On Mars, Keszthelyi et al. (2007) identified lava tube remnants, Wyrick et al. (2004) described the occurrence of pit crater chains, their geology and genesis, Cushing et al. (2007, 2008) identified deep pit craters and isolated deep pits called “anomalous pit craters,” and Cabrol et al. (2009) identified at least 677 features likely associated with speleogenesis including possible lava tubes, deep cavities associated with pit chains morphology, cracks associated with faulting, sink holes, and volcanic vents. 2.0 Background Terrestrial Cave Detection: Rinker (1975) provided a baseline for detecting caves in the thermal infrared, and suggested caves could be detected by identifying the thermal signal associated with the mass of air at the entrance contrasted against the surrounding ground surface. While air temperatures in cave entrances are expected to be different from ambient temperatures, Wynne et al. (2008a, 2008b) suggest the basis for cave detection will be the temperature contrast between the rock walls within the cave entrance and external surface rock. Since Rinker’s (1975) seminal work, some advances have been made in terrestrial cave detection. Wynne et al. (2009) have shown it is possible to differentiate caves from cave‐like anomalies by analyzing their thermal signatures (Figure 1). While these findings are encouraging, these results are preliminary, and a larger sample size will be required to demonstrate the feasibility of this technique.

Upload: others

Post on 06-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cave Microclimate Data Retrieval ... - backup.explorers.orgbackup.explorers.org/expeditions/reports/Flag... · 2009 Atacama Desert Expedition, Chile, EarthMars Cave Detection Project:

CaveMicroclimateDataRetrievalandVolumetricMapping,

2009AtacamaDesertExpedition,Chile,Earth­MarsCaveDetectionProject:

ExplorersClubFlagReport(Flag#52)

Submitted27October2009J.JudsonWynne1,2,TimothyN.Titus3,GuillermoChongDiaz4,ChristinaColpitts5,W.LynnHicks6,DeniseHill7,

DanielW.Ruby8,andCristianTambley9

1SETIInstitute,CarlSaganCenter,MountainView,CA;2ColoradoPlateauResearchStation(U.S.GeologicalSurveyaffiliate),NorthernArizonaUniversity,Flagstaff;3U.S.GeologicalSurvey,AstrogeologyScienceCenter,Flagstaff,AZ;4DepartamentodeCienciasGeológicas,UniversidadCatólicadelNorte,Antofagasta,Chile;5ResearchSupportGroup,Inc.,Torrington,CT;6GlynnImmediate Care, Southeast Georgia Health System, Brunswick, GA; 7Mutual Aid Response Service, San Francisco, CA;8FleischmannPlanetariumandScienceCenter,UniversityofNevada‐Reno,NV;9CampoAlto,Santiago,Chile.Correspondingauthor:[email protected]

Caves on Earth are characterized bymicroclimates that often support extremophillic organismsandevidenceofextinctlifeforms.OnMars,becausecavesarefeaturesthatmayofferprotectionfromharshsurfaceconditions, thesefeaturesare important inthesearchfor life. Additionally,cavesmayserveaslocationsfortheestablishmentofhabitationpodsforastronautcrews.BeforeMartiancavescan be targeted for exploration, wemust (1) develop an understanding of terrestrial cave thermalbehaviorand(2)determinehowthermalproperties influence the thermalsignatureassociatedwiththe entrance.Ultimately, thismayenableus todifferentiate caves fromnon‐cave anomalies, aswelllarge from small subterranean features. This is a critical step in the targeting process. IdentifyingactualcaveswithsignificantvolumewillbethehighestprioritytargetsforNASA.

Researchersareactivelydeveloping techniques tounderstandhow todetect cavesonEarthandMars, and have identified compelling evidence for cave‐like features on Mars. Rinker (1975) andWynneetal.(2007,2008a,2008b,2009)haveimprovedourunderstandingofthermalcavedetectiononEarth.Cushingetal.(2007,2008)haveanalyzedthermalandvisibleimagerytoexaminecave‐likefeaturesonArsiaMons,Mars.OnMars,Keszthelyietal.(2007)identifiedlavatuberemnants,Wyricket al. (2004) described the occurrence of pit crater chains, their geology and genesis, Cushing et al.(2007, 2008) identified deep pit craters and isolated deep pits called “anomalous pit craters,” andCabrol et al. (2009) identified at least 677 features likely associated with speleogenesis includingpossible lava tubes, deep cavities associated with pit chains morphology, cracks associated withfaulting,sinkholes,andvolcanicvents.2.0BackgroundTerrestrial Cave Detection: Rinker (1975) provided a baseline for detecting caves in the thermalinfrared,andsuggestedcavescouldbedetectedbyidentifyingthethermalsignalassociatedwiththemassofairattheentrancecontrastedagainstthesurroundinggroundsurface.Whileairtemperaturesin cave entrances are expected to be different from ambient temperatures, Wynne et al. (2008a,2008b)suggestthebasis forcavedetectionwillbethetemperaturecontrastbetweentherockwallswithinthecaveentranceandexternalsurfacerock.

SinceRinker’s(1975)seminalwork,someadvanceshavebeenmadeinterrestrialcavedetection.Wynne et al. (2009) have shown it is possible to differentiate caves from cave‐like anomalies byanalyzingtheirthermalsignatures(Figure1).Whilethesefindingsareencouraging,theseresultsarepreliminary,andalargersamplesizewillberequiredtodemonstratethefeasibilityofthistechnique.

Page 2: Cave Microclimate Data Retrieval ... - backup.explorers.orgbackup.explorers.org/expeditions/reports/Flag... · 2009 Atacama Desert Expedition, Chile, EarthMars Cave Detection Project:

2009 Atacama Desert Expedition (05-20 June 2009) – Explorers Club Flag Report

2

ImportanceofMartianCaves:(A)Cavesmaybeimportantinthesearchforevidenceofextraterrestriallife(Mazur1978;Bostonetal.,1992,1999;Grinetal.1998;Klein1998;Boston2000,2003;LéveilléandDatta2009)because cavesofferprotection from inhospitable surface conditions (Mazur1978;Klein1998;Cabroletal.2009). (B)Amannedmission toMarswill requireaccess tosignificantH2Odepositsfordrinkingwater,oxygenandhydrogenfuel.Ifsubterraneanwaterdepositsexist,cavesmayprovide the best access to these resources (Baker et al. 2003). (C) Future human exploration andpossible establishment of a permanent settlement onMarswill require construction of living areasshelteredfromharshsurfaceconditions.Caveswithaprotectiverockceilingwouldprovidean idealenvironmentwherethesesheltersmaybebuilt(Bostonetal.2003).

Figure 1.Pisgah lava beds,Mojave Desert, CA. [A] Color visible image containing cave entrance (red circle) and anomaly (bluecircle).[B] IR imageacquiredat0510hroverlaidonthevisible image.Caveentranceappearsasawarmerfeature.[C]ResultsofPrincipleComponentsAnalysisshowoutputcanbeusedtodifferentiatebetweenthecave(red),non‐caveanomaly(blue),andhighthermalinertiabasalt(green).Scatterplotofthe2ndand3rdprinciplecomponents.[D]Visibleimagewith3rdprinciplecomponentoutputoverlaid;colorsmatchthoseusedinC.FromWynneetal.(2009).CaveDetectiononMars:AtmosphericandsurfaceconditionsonMars fluctuatemoredramaticallyascompared to Earth. On Mars, large diurnal (Kieffer et al. 1976; Ye et al. 1990) and seasonaltemperature variations (Larsen et al. 2002) have been documented. Additionally, Martian air haslowerpressure,density,andheatcapacitythanEarth'satmosphere.Thus,muchlargeramplitudesofdiurnal and seasonal temperature shifts are expected on Mars. Because these shifts would occurwidelyandinternalcavetemperatureisexpectedtoberelativelyconstant,Martiancavedetectionis

Page 3: Cave Microclimate Data Retrieval ... - backup.explorers.orgbackup.explorers.org/expeditions/reports/Flag... · 2009 Atacama Desert Expedition, Chile, EarthMars Cave Detection Project:

2009 Atacama Desert Expedition (05-20 June 2009) – Explorers Club Flag Report

3

feasibleusingimageryattheappropriatewavelengthandspatialresolution(Wynneetal.2008a).WeanticipatethiswillinfluencesignalstrengthofMartiancaveentrancesresultinginastrongerthermalsignalthantheirterrestrialcounterparts.3.0Goals,AccomplishmentsandObjectivesGoals: The overall goal of this project is to define mission and instrumentation requirements fordetectingcavesonMarsusingthermalinfraredimagery.Specifically,wewilldeveloptechniquesto(1)understand the thermal behavior and optimal detection times of day and year for terrestrial andMartian caves. (2) This knowledgewill help us to differentiate caves fromnon‐cave anomalies, andpotentiallyinfercavevolumefromthethermalsignalofthecaveentrance.

Figure 2: HiRISE [A,B,C] and THEMIS IR [D,E] imagery of a pair of pitcratersnorthofArsiaMons,Mars.BasedoninterpretationsoffeaturesinpanelsBandC,bothappeartohaveanoverhangingrockrim.FromCushingetal.2008.Accomplishments (2008 Expedition): We (1) deployedtemperature and barometric pressure data loggers ateightcaves,fourcave‐likeanomaliesandonthesurfaceadjacent to all study sites in the Atacama Desert,northernChile; (2)developedcartographic techniquesforderivingcavevolume;and,(3)mappedthreecavesand one cave‐like anomaly using traditionalcartographic (refer to Dasher 1994) and newlydevelopedvolumetricmappingtechniques.Objectives (2009 Expedition): Our objectives were to:(a) retrieve data from all deployed temperature andbarometric pressure data loggers; (b) relaunch andredeploydataloggers(whichincludedbatteryremovaland replacement, as well as relaunching andredeploying all instruments at their original samplingstation); (c) conduct near real‐time analysis (i.e., each

afternoon and/ or evening) to determine if data logger placement was adequate for characterizingcavethermalbehaviorandmodelingtemperaturetrends;and(d)draftsketchmapsandderivecavevolumeforallcavesandcave‐likeanomalies.4.0MethodsStudyArea:WeselectedcavesintheAtacamaDesertofnorthernChileduetotheregion'shyperaridity,whichmakesthisareaanidealanalogfortheMars.Recentstudiessuggesttheclimatemayhavebeenaridfor90Ma(e.g.,HartleyandChong2002;Hartleyetal.2005)andspecificregionshavebeenhyper‐aridfor10‐15Ma(Ericksen1983;BergerandCooke1997;HoustonandHartley2003).RainfallintheAtacama’s hyper‐arid core is virtually indistinguishable from zero.However, theAtacamamayhavebeen amuchwetter place ‐much likeMars (e.g., Chong 1984, 1988; Navarro‐Gonzalez et al. 2003;Quinnetal.2005).

Vegetation cover in our study area is low to non‐existent. This was important for study areaconsiderationbecausevegetationcoverwillconfoundourability toeffectivelymeasuretemperaturedifferencesbetweencaveentranceandsurface.

Surface material near the cave entrances were moderate‐to‐loosely consolidated alluvium,comprisedof silty loamand clayswith infrequently interspersed gravel toboulder sized sandstone,shale,andvolcanicclasts.Duetothelooselyconsolidatednatureofthesurface,weexpectthesurface

Page 4: Cave Microclimate Data Retrieval ... - backup.explorers.orgbackup.explorers.org/expeditions/reports/Flag... · 2009 Atacama Desert Expedition, Chile, EarthMars Cave Detection Project:

2009 Atacama Desert Expedition (05-20 June 2009) – Explorers Club Flag Report

4

thermal inertia to be low; resulting in rapid warming during the day and rapid cooling followingsunset.Microclimate Data:We collected temperature and barometric pressure usingOnset Computer Corp.Hobo‐Pro v2 U23 temperature loggers and H21 Micro‐stations. We collected hourly data forapproximately10months(August2008–June2009).

TemperaturedataisrequiredtobestmodelcavethermalbehaviorandtobestunderstandwhencavesaremostdetectableinthethermalIR.Barometricpressuredataprovidesuswithanadditionalmetrictobetterunderstandwhycavesaredetectableatcertaintimesandnotothers.Forexample,ascave air temperature and surface temperatures equilibrate due to barometric pressure shifts, airmovementmayinfluencethewallsofthecaveentranceandthusdetectability.Data Logger Deployment: In July‐August 2008, we deployed temperature and barometric pressuresensorsineightcavesandfourcave‐likeanomalies.Cave–Wedeployedtwotothreedataloggersperentrance and at all skylights within each cave; one data logger was placed at cave midpoints (i.e,midwaybetweenentranceandterminusofcave),ateachbifurcationpoint(i.e.,wherepassagedividesintotwoormorepassageways),andattheterminusofthecave(e.g.,thedeepestpartofthecave).Forcaveswithmultiplepassages,adataloggerwasplacedattheterminusofeachpassageway.Surface–Wedeployedatleasttwotemperatureandbarometricpressuredataloggersonthesurfacewithin20meters of each entrance/ skylight. For entrances/ skylights locatedwithin canyons, onedata loggerwasplacedwithinthecanyonandasecondonthecanyonrim.CaveMapping and Deriving Volume: Field Techniques (Mapping):When available, we used existingcavemapsprovidedbyFryer (2005)and JoelDespain (NPS).Thesemapswereaccuracychecked inthefieldusinglineplotandvolumetricslicedata.Forcavesandnon‐caveanomaliesforwhichmapsdid not exist,we used standard cavemapping techniques (refer to Dasher 1994). Field Techniques(Volume):Forallstudysites,weuseda25mpulltape,laserdistancefinders(distos),compassesandinclinometers.Wecollectedcavevolumedataeveryfivemeters(akamappingstations)ateightpointsaround aprotractorwheel for the total lengthof each feature.DataProcessing: Lineplot andothermeasurementswereenteredintothecavemappingprogramCompass(Version5.08.11.6.157).

WhileCompasshasacavevolumecalculator,thisfunctiongeneratesacavevolumeestimateusingfourpointsaroundtheprotractorwheel(up,down,leftandrightpereachmappingstation).Becausewe required higher accuracy volume estimates, we developed a Microsoft Excel spreadsheetapplicationtocalculatevolumeusingeightdatapointsaroundtheprotractorwheelratherthanfourdatapoints.

Afulldescriptionofthesetechniquesandtheirapplicabilitytoderivingcavevolumeestimatesarebeingpreparedinapapertobesubmittedforpublication(refertoRubyetal.Inprep.).5.0ResultsFigure 3. 3‐D Map ofCueva Chulacao, AtacamaDesert, Chile (draftedusing Compass). Usingour spreadsheetapplication,Chulacao isapproximately 20,005 m3(Rubyetal.InPrep).

Field operationswere conductedfrom 05 – 20 June2009. During thisperiod, we (1)

Page 5: Cave Microclimate Data Retrieval ... - backup.explorers.orgbackup.explorers.org/expeditions/reports/Flag... · 2009 Atacama Desert Expedition, Chile, EarthMars Cave Detection Project:

2009 Atacama Desert Expedition (05-20 June 2009) – Explorers Club Flag Report

5

retrieved data from data loggers located at all study sites; (2) relaunched and redeployed all dataloggersthatwererecovered;(3)analyzeddataanddeterminedwhethersensorplacementwascorrectfor all study sites and sufficient to model temperature trends; we also (4) mapped and collectedvolumetricdataatsixcavesandtwonon‐caveanomalies(refertoTable1).

Duringfieldoperations,oneofourdatashuttlescrashed.Thisresultedinthelossof10monthsofdata from two caves and one non‐cave anomaly in the Chulacao complex. These data could not berecovered.

Table1.Caveandnon‐cavestudysites,Atacama Desert, Chile. Total cavelength was derived using standardcave cartographic techniques (refer toDasher 1994). Volume was estimatedusing new volumetric mappingtechniques (Rubyetal. InPrep.).Datacollectedduring[1]2008and[2]2009expeditions.

Additionally, three of ourdata loggers were notrecovered.

6.0Discussion

Thisexpeditionwaslargelysuccessful.Wecollectedvolumetricdataandcompletedmapsofallofourstudysites‐‐intotal12studysites(eightcavesandfourcave‐likeanomalies)forboththe2008and2009expeditions.Wewereabletoretrievedatafromonlysixcavesandthreenon‐caveanomalies.Welost10monthsofdata fromtwocavesandonenon‐caveanomaly.Oneofourdatashuttlescrashedandthedatacouldnotberecovered–despitetheeffortsoftheengineersatOnsetComputerCorp.

Also,wewereunable to relocate threeof ourdata loggers.Webelieve two loggerswere stolen;these instrumentswere deployed in the entrances of two caves frequented by tourists. Despite ourbest efforts to conceal our instruments, they were found and removed. The third data logger wasdeployedintheentranceofaremotecave.Whilewehadbothcopiousnotesandphotographsonthelocationofthisinstrument,wewereunabletorelocateit.

Data collected during the 2009 expeditionwill be used to: (a)model temperature trends of theentrance, internalcave,andsurface forall cavesandnon‐caveanomalies; (b)examineandelucidatetemperaturedifferencesbetweencavesandnon‐caveanomalies;and(c) identify thebestandworstdetectiontimestoconductmissionstocollectaircraft‐bornethermalimagery.

Whileoverflighttimesforallstudysiteshavenotbeendetermined,wepresentanexampleofhowthis isestimated (refer toFigure4).ForShredderCave, twooptimaloverflight timesexist–winter(June – August) between 0600 and 0800hr and summer (November – January) between 1200 and1400hr.Theworstoverflighttime(i.e.,thetimewhenthereisminimalcontrastbetweenentranceandsurface)are thermal cross‐overperiodsandoccurduringmostof theyear (August –May)between1800and2200hr.

WeconductedpreliminaryanalysisontheAtacamadatatoinvestigatetemperaturetrendsofcavesandcave‐likeanomalies,andexaminedifferencesbetweencavesandnon‐caveanomalies.Tentatively,our results largely concurwith the results presented byWynne et al. (2009). These resultswill bepublishedinapeer‐reviewedjournal.

Names Type Length(m) Volume(m3)1Chulacao Cave 859 20,0051Telocote Cave 612 5,7452Salon Cave 285 3,1211Guia Cave 40 4002LunayMedia Cave 200 3502Quitor Cave 106 3482LosGatos Cave 71 2752Shredder Cave 185 2142Huesos Cave‐likeanomaly 25 382CascadaPequeña Cave‐likeanomaly 24 172Cartape Cave‐likeanomaly 21 141MinaPequeña Cave‐likeanomaly 4 3

Page 6: Cave Microclimate Data Retrieval ... - backup.explorers.orgbackup.explorers.org/expeditions/reports/Flag... · 2009 Atacama Desert Expedition, Chile, EarthMars Cave Detection Project:

2009 Atacama Desert Expedition (05-20 June 2009) – Explorers Club Flag Report

6

Figure4:Comparisonofsurface and entrancetemperature data forthe upper entrance ofShredderCave.Thisisascreen shot of asoftware packagedeveloped during thisproject and used toanalyze cavetemperature. The leftpanel shows thesurface (white) andentrance (blue)temperatures observedover 10 months. Theright panel shows thetime‐of‐day andseasonalcomparisonwherewarmcolors(green‐yellow‐red)showthegreatestthermalcontrastandthecoolcolors(purple‐blue)showtheleastthermalcontrast.

Oncebestandworstoverflightstimesforthecavesandcave‐likeanomaliesarederived(forthosesitesthatwehavedata),wewillusethesedatatoscheduleouroverflights.Theseresults,alongwiththe thermal imagery analysis and interpretation, will be incorporated into a paper and will bepublishedinapeer‐reviewedjournal.Ifbestandworstoverflighttimesforothercavesandnon‐cavefeaturesaresimilartotimesforShredderCave,wemaybeabletoconductbothmissionsduringthesameexpedition.

Table2:2009AtacamaDesertCaveExpeditionTeamTeamMember Affiliation RoleJutWynne,FN’06 SETI‐CSC,NAU Expeditionlead;DataretrievalleadTimTitus USGS Deputyexpeditionlead;Sensordata

analystDanRuby,MN’09 Fleischmann Planetarium, Univ.

Nevada,RenoNumber3;Mappingteamlead;Leadcartographer

GuillermoChong UCN Geologist;LogisticsChristinaColpitts ResearchSupportGroup Safety officer; Cartography

technicianLynn Hicks, MD,MN’09

Glynn Immediate Care, SoutheastGeorgiaHealthSystem

Expedition Doctor; Sensorplacement;Cartographytechnician

DeniseHill MARS EMT;CartographytechnicianCristianTambley CampoAlto LogisticschiefExpected Results (upon project completion): Through our efforts, we will: (1) identify times whendifferences between cave entrances and surface control stations are optimal and schedule thermaldata collection overflights accordingly; (2) compare the thermal behavior of caves to non‐caveanomalies;and,(3)populatesimulationmodelsofthethermaldynamicsofMartiancavesandsurface.Additionally,thisprojectwillresultinthe:(i)developmentofasystematicapproachforterrestrialandextraterrestrialcavedetection;(ii)establishmentofathermalsignaturelibraryofterrestrialcavesofvarious structure types; (iii) designation of optimal times for detection of caves on a per structurebasis for Earth and Mars; and (iv) identification of instrumentation and mission requirements fordetectingMartiancaves. 7.0AcknowledgementsWe extend our gratitude and thanks to Mr. Edward Rodréguez and Mr. Tomas Gerö Mertens with

Page 7: Cave Microclimate Data Retrieval ... - backup.explorers.orgbackup.explorers.org/expeditions/reports/Flag... · 2009 Atacama Desert Expedition, Chile, EarthMars Cave Detection Project:

2009 Atacama Desert Expedition (05-20 June 2009) – Explorers Club Flag Report

7

CONAF‐Antofagasta, and Mr. Roberto Cruz Cruz with CONAF‐Calama and Mr. Manuel Cortes MoraAsociaciónIndígenaValledelaLunaforfacilitatingandissuingourresearchpermits,andprovidinguswithcontinuedsupportinthefield.WethankMr.JoseLuisJara,CONAF‐SanPedroforassistancewithfieldwork and his continued support,Mr.Don Felix Colque,Mrs.DonaMaria Colque andMr. CarlosColquewithColqueTours‐SanPedroforcontinueduseofourfieldstation(“RanchoTonka”),Mr.MarcTiritilliandtheIllinoiscavesearchandrescueteamfortheirwillingnesstoremainonstand‐byduringthisexpedition,Dr.RandyBertholdandtheNASA‐ARCEERRBSafetyReviewPanelfortheirdirectionleadingtotheimprovementoftheexpeditionsafetyplan,Mr.MattArcovioandGlobalRescuefortheirstand‐byextricationsupport,Mr.ScottElliswithONSETComputerCorp.fordonatingthedatashuttlesandforhiscontinuedsupport,andMr. JoelDeSpainandMr.ShaneFryerwiththeU.S.NationalParkServiceforaccesstoanduseofAtacamaDesertcavemaps.SpecialthankstoTheExplorersClub(Ms.Constance Difede and The Flag and Honors Council) for recognizing this expedition as a FlagExpedition.WealsoacknowledgeDrs.NathalieCabrol(ProjectPI),EdmondGrin,MurzyJhabvala,JeffMoerschandPeterShufortheircontinuouseffortsandcontributionstotheoverallobjectivesofthisproject. Dr. Nathalie Cabrol and Mr. John Dedecker (MN’09) provided comments and suggestionsleading to the improvement of this report. This project is supported by the NASA Astrobiology:ExobiologyandEvolutionaryBiologyprogramundergrant#EXOB07‐0040.8.0LiteratureCitedBaker,V.R.,Gulick,V.C.,Kargel,J.S.(1993),WaterresourcesandhydrogeologyofMars.In:Lewis,J.S.(Ed.),ResourcesofNear‐

EarthSpace.UniversityofArizonaPress,Tucson,pp.765–798.Berger,I.A.andR.U.Cooke(1997),TheoriginanddistributionofsaltsonalluvialfansintheAtacamaDesert,northernChile,

EarthSurf.Process.Landforms22:581‐600.Boston,P.J.(2000),Lifebelowandlife'outthere'.Geotimes45:14‐17.Boston,P.J.(2003),ExtraterrestrialCaves.EncyclopediaofCaveandKarstScience,Fitzroy‐DearbornPublishers,Ltd.,London,

UK.BostonP.J.,M.V. Ivanov,andC.P.McKay(1992),Onthepossibilityofchemosyntheticecosystems insubsurfacehabitatson

Mars,Icarus95:300‐308.Boston, P.J.,M.N. Spilde, andD. E.Northup, (1999), It's alive!Models ofMartian biomarkers derived from terrestrial cave

microbiota.GeologicalSocietyofAmericaAbstractswithPrograms,31,A303.Boston,P.J.,Frederick,R.D.,Welch,S.M.,Werker,J.,Meyer,T.R.,Sprungman,B.,Hildreth‐Werker,V.,Thompson,S.L.,Murphy,

D.L.(2003),Humanutilizationofsubsurfaceextraterrestrialenvironments,Grav.&SpaceBiol.Bull.16:121‐131.Cabrol,N.A.,E.A.Grin,andJ.J.Wynne(2009),DetectionofCavesandCave‐bearingGeologyonMars,Abstract#1040,LPSCXL,

Houston,TX.Chong,G.(1984),DiesalareinNordchile.Geologie,StrukturundGeochemie,Geotekt.Forsch.67,146pps.Chong,G.(1988),TheCenozoicsalinedepositsoftheChileanAndesbetween18oand27oSouthlatitude.In:Bahlburg,H.,C.,

Breitkreuz,andP.Giese(Eds.):TheSouthernCentralAndes.Lect.NotesEarthSci.17,137‐151.Cushing,G.E.,Titus,T.N.,Wynne,J.J.,Christensen,P.R.(2007),THEMISobservespossiblecaveskylightsonMars.Geophys.Res.

Lett.34:L17201.Cushing, G.E., T.N. Titus, W.L. Jaeger, L.P. Keszthelyi, A.S. McEwen and P.R. Christensen (2008), Continuing Study of

Anomalous Pit Craters in the Tharsis Region of Mars: New Observations from HiRISE and THEMIS, 39th Lunar andPlanetaryScienceConference(LPSC),Abstract#2447,Houston,TX.

Dasher, G.R. (1994), On Station: A Complete Handbook for Surveying andMapping Caves, National Speleological Society,Huntsville,AL,p242.

Ericksen,G.E.(1983),TheChileannitratedeposits,Am.Sci.,71,366‐375.Fryer,S.(2005),HalitecavesoftheAtacama.Natl.Speleol.Soc.News63:4–19.Grin,E.A., Cabrol,N.A.,McKay,C.P. (1998),Caves in theMartian regolith and their significance for exobiologyexploration.

Abstract#:1012,29thLPSC,LeagueCity,TX.HartleyA.J, andG.Chong (2002),LatePlioceneage for theAtacamaDesert: Implications for thedesertificationofwestern

SouthAmerica,Geology30:43‐46.Hartley,A.J.,G.Chong, J.Houston,andA.Mather(2005),150millionyearsofclimaticstability:EvidencefromtheAtacama

Desert,northernChile,J.Geol.Soc.,162:421‐424.Houston,J.,andA.J.Hartley(2003),ThecentralAndeanwest‐sloperainshadowanditspotentialcontributiontotheoriginof

hyper‐aridityintheAtacamaDesert,Intl.J.Climatology23:1453‐1464.

Page 8: Cave Microclimate Data Retrieval ... - backup.explorers.orgbackup.explorers.org/expeditions/reports/Flag... · 2009 Atacama Desert Expedition, Chile, EarthMars Cave Detection Project:

2009 Atacama Desert Expedition (05-20 June 2009) – Explorers Club Flag Report

8

Kieffer,H.H.Christensen,P.R.Martin,T.Z.Miner,E.D. andPalluconi, F.D. (1976),Temperaturesof theMartian surface andatmosphere:Vikingobservationofdiurnalandgeometricvariations,Science194:1346–1351.

Klein,H.P.(1998),ThesearchforlifeonMars:whatwelearnedfromViking.J.Geophys.Res.103,28463–28466.Larsen, S.E., Jorgensen, H.E., Landberg, L. and Tillman, E., (2002), Aspects of the atmospheric surface layers onMars and

Earth,Bound­Lay.Meteorol.105:451–470.Léveillé,R.J.andS.Datta(2009),LavatubesandbasalticcavesasastrobiologicaltargetsonEarthandMars:Areview,

PlanetaryandSpaceScience,doi:10.1016/j.pss.2009.06.004Mazur,P.,Barghoorn,E.S.,Halvorson,H.O., Jukes,T.H.,Kaplin,I.R.,Margulis,L.(1978),Biological implicationsoftheViking

missiontoMars.SpaceSci.Rev.22:3–34.Navarro‐Gonzalez,R.,F.A.Rainey,P.Molina,D.R.Bagaley,B.J.Hollen,J.delaRosa,A.M.Small,R.C.Quinn,F.J.Grunthaner,L.

Ceceres,B.Gomez‐Silva,andC.P.McKay(2003),Mars‐likesoilsintheAtacamaDesert,Chileandthedrylimitofmicrobiallife,Science302:1018‐1021.

Quinn,R.C.,Zent,A.P.,Grunthaner,F.J.,Ehrenfreund,P.,Taylor,C.L.,andJ.R.C.Garry(2005),DetectionandcharacterizationofoxidizingacidsintheAtacamaDesertusingtheMarsOxidationInstrument,PlanetaryandSpaceSciences53:1376‐1388.

Rinker, J.N. (1975), Airborne infrared thermal detection of caves and crevasses,Photogrammetric engineering and remotesensing41:1391‐1400.

Ruby, D.W., J.J. Wynne, T. Titus, J. DeDecker, and N.A. Cabrol (In Prep), 3‐D Cave Mapping and Volumetric Data CaptureThroughRadialSlicesatIntervals,InternationalJournalofSpeleology.

Wynne, J.J., T.N. Titus, M.D. Jhabvala, G.E. Cushing, N.A. Cabrol and E.A. Grin (2009), Distinguishing Caves from Non‐caveAnomalies:LessonsfortheMoonandMars,Abstract#2451,LPSCXL,Houston,TX.

Wynne,J.J.,T.N.Titus,andG.ChongDiaz(2008a),OntheDetectionofCavesintheThermalInfraredonEarth,theMoonandMars,EarthPlanet.Sci.Let.272:240–250.

Wynne,J.J.,Titus,T.N.,Drost,C.A.,ToomeyIII,R.S.,Peterson,K.(2008b),AnnualthermalamplitudesandthermaldetectionofSouthwesternU.S.caves:additionalinsightsforremotesensingofcavesonEarthandMars.Abstract#2459,39thLPSC,LeagueCity,TX.

Wynne,J.J.T.N.Titus,M.G.Chapman,G.Chong,C.A.Drost,J.S.Kargel,andR.S.ToomeyIII(2007),ThermalBehaviorofEarthCaves:AProxyforGainingInferenceintoMartianCaveDetection.Abstract#:2378,38thLPSC,Houston,TX.

Wyrick,D.etal.(2004),Distribution,morphology,andoriginsofMartianpitcraterchains,J.Geophys.Res.109:E6.Ye,Z.J.,SegalM.,andR.A.Pielke(1990),AcomparativestudyofdaytimethermallyinducedupslopeflowonMarsandEarth,J.

Atmos.Sci.47:612–628.

Page 9: Cave Microclimate Data Retrieval ... - backup.explorers.orgbackup.explorers.org/expeditions/reports/Flag... · 2009 Atacama Desert Expedition, Chile, EarthMars Cave Detection Project:

2009 Atacama Desert Expedition (05-20 June 2009) – Explorers Club Flag Report

9

AppendixI(ExampleofDataLoggerDeployment)

Cueva Salon, Atacama Desert, Chile. Boxes (red) represent the locations of where data loggers are deployed.Numbers(blue)representthenumberofeachdatalogger.MapmodifiedfromFryer(2005).