catalysts for sorption enhanced dme synthesis …

12
CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS (SEDMES) MADRID-SPAIN & THE NETHERLANDS Cristina Peinado; Dalia Liuzzi; Sergio Rojas; Jasper van Kampen; Jurriaan Boon

Upload: others

Post on 29-Apr-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS …

CATALYSTS FOR SORPTION ENHANCEDDME SYNTHESIS (SEDMES)

MADRID-SPAIN

& THE NETHERLANDS

Cristina Peinado; Dalia Liuzzi; Sergio Rojas; Jasper van Kampen; Jurriaan Boon

Page 2: CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS …

Contents

Introduction

Methodology

Results

Conclusions

The SEDMES process. The catalysts

Catalysts preparation. MeS, DDMES and SEDMES catalytic tests

CO and CO2 conversion. Products distribution

Highlights of this study

Page 3: CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS …

Sorbents for in situ water removal

Biomass gasification produces a CO2 rich syngas with highCO2 /CO ratio

Introduction

Catalysts to adjust the CO2/CO ratioSorbents for in situ water removal

Page 4: CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS …

Cu-ZnO-Al2O3 (CZA)

Methanol catalysts

Cu/ZnO/Al2O360/30/10

Zr and Ga doped CZA

• Benchmark catalysts syngas methanol

• syngas with 2-5% CO2

• Higher CO2 content lower methanol productivity

• Higher production of H2O (lower DME productivity)

• Water removal strategies

WGS

Methanol synthesis from

CO2 or CO2-rich syngas

Benchmark catalytsfor low temperatureWGS reaction

Introduction

Page 5: CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS …

Acid solidsγ-Al2O3

HeterpolyacidsSoA catalyst for the

industial process, active above 250 ⁰C

Zeolites

Very active and selectiveat low temperatures

DME catalysts

Very active at hightemperatures

Introduction

Page 6: CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS …

Introduction Methodology

Methanol catalysts

ZnO content

Page 7: CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS …

MeS Methanol Synthesis

Introduction Methodology Results

270 ºC; 25 bar; 7500 h-1;CO2/CO=1.9; CO/CO2/H2: 9/18/73

CZA_comm CZA CZAZ CZAZGa-60

-30

0

30

60

90

CO CO2

CO

X C

onve

rsio

n (%

)

0.0

0.6

1.2

1.8

2.4

3.0

CH3OH/CO

CH

3OH

/CO

XCO2eq.

XCOeq.

Page 8: CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS …

0 20 40 60 80 100 120 140 1600

5

10

15

20

25

30

GC

Sig

nal (

%)

Time (min)

DME CO CO2 CH3OH Ar

DDMESDirect DME Synthesis

Introduction Methodology Results

SEDMESSorption Enhanced DME Synthesis

Pre-breakthroughFresh sorbent 3A

After complete saturation 3A

Page 9: CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS …

CZA_comm CZA CZAZ CZAZGa-60

-30

0

30

60

90

CO CO2

CO

X C

onve

rsio

n (%

)

0.0

0.6

1.2

1.8

2.4

3.0

DME/CO

DM

E/C

O

0%

20%

40%

60%

80%

100%

CZA_comm CZA CZAZ CZAZGa% CO 21.9 23.8 24.7 36.0% CO2 65.7 64.9 64.6 57.6% CH3OH 3.8 4.1 3.8 5.7% DME 8.7 7.2 6.8 0.8

DDMES Direct DME Synthesis

Introduction Methodology Results

1 𝐶𝐶𝐶𝐶 + 2𝐻𝐻2 ↔ 𝑪𝑪𝑪𝑪𝟑𝟑𝑶𝑶𝑪𝑪2 𝐶𝐶𝐶𝐶2 + 3𝐻𝐻2 ↔ 𝑪𝑪𝑪𝑪𝟑𝟑𝑶𝑶𝑪𝑪 + 𝑪𝑪𝟐𝟐𝑶𝑶3 𝐶𝐶𝐶𝐶 + 𝐻𝐻2𝐶𝐶 ↔ 𝐶𝐶𝐶𝐶2 + 𝐻𝐻24 𝟐𝟐𝑪𝑪𝑪𝑪𝟑𝟑𝑶𝑶𝑪𝑪 ↔ 𝑪𝑪𝑪𝑪𝟑𝟑𝑶𝑶𝑪𝑪𝑪𝑪𝟑𝟑 + 𝑪𝑪𝟐𝟐𝑶𝑶

275 ºC; 25 bar; 1080 h-1; CO2/CO=1.9; CO/CO2/H2= 9/18/73 (v/v)

XCO2eq. XCO

eq.

Higher DME production

CH3OH dehydration to DME shift of (eq. 2) equilibrium towards more CH3OH and H2O

High CO production

Page 10: CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS …

SEDMES Sorption Enhanced DME Synthesis

0%

20%

40%

60%

80%

100%

CZA_comm CZA CZAZ CZAZGa% CO 26.8 29.5 44.2 72.4% CO2 2.7 3.6 1.4 1.6% CH3OH 1.0 1.2 0.9 3.3% DME 69.5 65.7 53.5 22.8

XCO2eq. XCO

eq.

CZA_comm CZA CZAZ CZAZGa-60

-40

-20

0

20

40

60

80

100 CO CO2

CO

X C

onve

rsio

n (%

)

0,0

0,4

0,8

1,2

1,6

2,0

2,4

2,8

3,2 DME/CO

DM

E/C

O

Introduction Methodology Results

275 ºC; 25 bar; 1080 h-1; CO2/CO=1.9; CO/CO2/H2= 9/18/73 (v/v)

Very high DME productionLow CO2 in products

Easier separation DME/CO2 downstream

R-wGS

Highest CO productionHighest non converted CH3OH

Lowest DME production

Page 11: CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS …

Introduction Methodology Results Conclusions

• SEDMES approach, based in the in situ removal of H2O during

the direct synthesis of DME from CO2 rich syngas by using a

water sorbent, lead to higher carbon conversions and higher

DME productions

• In situ increasing r-WGS activity by using of promoters increases

CO content (lower CO2/CO ratio) but due to H2O production

affects negatively catalyst performance for methanol production

Page 12: CATALYSTS FOR SORPTION ENHANCED DME SYNTHESIS …

Thanks for your attention

Dalia [email protected]

Sergio Rojas [email protected]

Jurriaan Boon [email protected]

Cristina [email protected]

Jasper van [email protected]