case study ii: extremes - university corporation for ...€¦ · international graduate summer...

17
International Graduate Summer School on Statistics and Climate Modeling, Boulder, CO, 8/12/08 Case Study II: Extremes Markov Random Fields and Regional Climate Models Stephan R. Sain Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO Supported by NSF ATM/DMS. Thanks also to Dan Cooley.

Upload: vuongdang

Post on 18-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

International Graduate Summer School on Statistics and Climate Modeling, Boulder, CO, 8/12/08

Case Study II: Extremes

Markov Random Fields and Regional Climate Models

Stephan R. SainGeophysical Statistics Project

Institute for Mathematics Applied to Geosciences

National Center for Atmospheric Research

Boulder, CO

Supported by NSF ATM/DMS. Thanks also to Dan Cooley.

Goals

2

• How to model spatial extremes?

• Can we model GEV parameters spatially? In particular the

shape parameter?

• What kinds of changes are projected for extreme precipita-

tion?

Extreme Value Distributions

3

• Let Z denote a block maxima (e.g. annual). Under certain

conditions, it can be assumed that Z follows a generalized

extreme value distribution given by

G(z) = exp

[−

(1 + ξ

z − µ

σ

)−1/ξ]

,

for values of z such that 1 + ξ(z − µ)/σ > 0.

– µ and σ are location and scale parameters.

– If the shape parameter ξ < 0, then the distribution has a

bounded upper tail. If ξ = 0 (taken as the limit), then

the distribution has an exponentially decreasing tail, and,

if ξ > 0, the distribution’s tail decays as a power function.

Extreme Value Distributions

4

• The block maxima approach is limited by using only one data

point per block; alternative approaches include models for all

points over a threshold.

– Generalized Pareto Distribution (GPD)

– Point processes

• From the GEV or GPD, extreme behavior of the distribution

can be summarized through return levels or, more simply, val-

ues of extreme quantiles implied from the distribution.

A Hierarchical Model for Extremes

5

• For each grid box, let Zr,i,t denote the precipitation amount

recorded for the rth simulation (control or future), the ith

grid cell, and the tth day.

• Assume that all Zr,i,t the exceed the threshold ur,i follow the

point process model with parameters µr,i, σr,i, and ξr,i and are

conditionally independent of other grid boxes.

• Note: the likelihood for the point process model augmented

by the regularization/prior suggested by Martins and Stedinger

(2000).

A Hierarchical Model for Extremes

6

• In the process model, the parameters are modeling via

µr,i ∼ N(X ′iβr,µ + Ur,i,µ,1/τ2

µ)

log(σr,i) ∼ N(X ′iβr,σ + Ur,i,σ,1/τ2

σ )

ξr,i ∼ N(X ′iβr,ξ + Ur,i,ξ,1/τ2

ξ )

– Regression includes elevation, longitude, latitude, ocean,

but spatial patterns assumed to be the same across control

and future (different intercepts).

– U = (U1,µ,U1,σ,U1,ξ,U2, µ,U2,σ,U2,ξ)′ represents a spatial

random effect modeled through an intrinsic autoregressive

process (IAR) with precision matrix Q = T⊗W.

Intrinsic Autogressive Process

7

• The IAR is an improper version of the CAR model.

• T is a 6× 6 covariance matrix.

• W has:

– non-diagonal elements wi,j = −1 if grid boxes i and j are

neighbors and zero otherwise.

– wi,i = −∑

j 6=i wi,j

• All row sums of W are zero, imposing the conditions∑i Ur,i,θ = 0 for r = 1,2 and all θ = µ, σ, ξ.

A Hierarchical Model for Extremes

8

• Conjugate priors for βs (Gaussian) and T (Whishart) with

ranges of variation reflective of exploratory analysis (i.e. MLE).

• Gibbs sampler used to sample from the posterior, with special

care taken for the spatial random effect, U.

A Comparison of ξ

9

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

−0.

2−

0.1

0.0

0.1

0.2

0.3

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

−0.

2−

0.1

0.0

0.1

0.2

0.3

Winter Model Parameters

10

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

020

4060

80

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitudela

titud

e

1020

3040

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

020

4060

80

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

1020

3040

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitudela

titud

e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Winter Model Parameters

11

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

−4

−2

02

4

−130 −125 −120 −115 −110 −10530

3540

4550

55

longitude

latit

ude

−6

−4

−2

02

46

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

−0.

050.

000.

05

Winter Return Levels

12

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

5010

015

020

025

0

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

5010

015

020

025

0

Winter Return Levels

13

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

−30

−20

−10

010

2030

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

0.0

0.2

0.4

0.6

0.8

1.0

Winter Spatial Effect

14

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

−20

020

4060

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitudela

titud

e

−1.

0−

0.5

0.0

0.5

1.0

1.5

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

−0.

06−

0.04

−0.

020.

000.

020.

040.

06

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

−20

020

4060

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

−1.

0−

0.5

0.0

0.5

1.0

1.5

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitudela

titud

e

−0.

06−

0.04

−0.

020.

000.

020.

04

Summer Return Levels

15

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

020

4060

8010

012

014

0

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

020

4060

8010

012

014

0

Summer Return Levels

16

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

−50

050

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude

0.0

0.2

0.4

0.6

0.8

1.0

A Big Issue

17

−130 −125 −120 −115 −110 −105

3035

4045

5055

longitude

latit

ude