case c3.6 dns and les of the flow over a 2d periodic hil · case c3.6 dns and les of the flow over...

15
PROD-F-015-01 Corentin Carton de Wiart Research Engineer, PhD Student (UCL) Contact: [email protected] Case C3.6 DNS and LES of the flow over a 2D periodic hill 2 nd International Workshop on High-Order CFD Methods Doc. ref.: PPPPPP-NS-000-00

Upload: others

Post on 02-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1 Corentin Carton de Wiart Research Engineer, PhD Student (UCL)

Contact: [email protected]

Case C3.6 DNS and LES of the flow over a 2D periodic hill

2nd International Workshop on High-Order CFD Methods

Doc. ref.: PPPPPP-NS-000-00

Page 2: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Motivation

•  Benchmark for wall-bounded turbulent flows, with smooth separation, recirculation and natural reattachment

•  Simple setup: periodic domain, 2D geometry •  Numerical and experimental

results available at wide range of Reynolds number

•  Possibility to assess solvers for

DNS, LES, WMLES, RANS-LES,… •  Detailed description, data, references,… on the

Ercoftac QNET-CFD wiki forum / 2D periodic hill

© 2013 Cenaero – All rights reserved HO Workshop C3.6

Page 3: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Body force to provide the correct mass flow rate:

© 2013 Cenaero – All rights reserved

Geometry and flow conditions

HO Workshop C3.6

Testcase XXDNS and LES of the flow over a 2D periodic hill

K. Hillewaert†, C. Carton de Wiart

†and L. Bricteux

†Cenaero, Argo group

‡Universite de Mons, Departement fluides et machines.

contact: koen.hillewaert at cenaero.be

1 Overview

This testcase has been taken up as a standard benchmark in ercoftac. See

• testcase 9.2 of the ERCOFTAC SIG 15 http://www.ercoftac.org/fileadmin/user_upload/bigfiles/sig15/database/9.2/index.html

• Underlying flow regime case 3-30 of the ERCOFTACQNET-CFD database.

http://uriah.dedi.melbourne.co.uk/w/index.php/UFR_3-30

for a thorough description.

2 Governing Equations

The incompressible or compressible Navier-Stokes equations should be used,

complemented by a subgrid scale model. The compressible fluid should have

the same behaviour as air, i.e. it should satisfy

γ =Cp

Cv= 1.4

Pr =µCp

κ= 0.71

(1)

with Cp and Cv the specific heats at constant pressure and volume respectively,

µ the dynamic viscosity and κ the heat conductivity.

3 Flow Conditions

The flow conditions are determined by the Reynolds number based upon the

bulk velocity above the crest

Reb =ubh

ν(2)

with

ub =1

2.035h

� 3.035h

hu(y)dy (3)

1

Testcase XXDNS and LES of the flow over a 2D periodic hill

K. Hillewaert†, C. Carton de Wiart

†and L. Bricteux

†Cenaero, Argo group

‡Universite de Mons, Departement fluides et machines.

contact: koen.hillewaert at cenaero.be

1 Overview

This testcase has been taken up as a standard benchmark in ercoftac. See

• testcase 9.2 of the ERCOFTAC SIG 15 http://www.ercoftac.org/fileadmin/user_upload/bigfiles/sig15/database/9.2/index.html

• Underlying flow regime case 3-30 of the ERCOFTACQNET-CFD database.

http://uriah.dedi.melbourne.co.uk/w/index.php/UFR_3-30

for a thorough description.

2 Governing Equations

The incompressible or compressible Navier-Stokes equations should be used,

complemented by a subgrid scale model. The compressible fluid should have

the same behaviour as air, i.e. it should satisfy

γ =Cp

Cv= 1.4

Pr =µCp

κ= 0.71

(1)

with Cp and Cv the specific heats at constant pressure and volume respectively,

µ the dynamic viscosity and κ the heat conductivity.

3 Flow Conditions

The flow conditions are determined by the Reynolds number based upon the

bulk velocity above the crest

Reb =ubh

ν(2)

with

ub =1

2.035h

� 3.035h

hu(y)dy (3)

1

Testcase XXDNS and LES of the flow over a 2D periodic hill

K. Hillewaert†, C. Carton de Wiart

†and L. Bricteux

†Cenaero, Argo group

‡Universite de Mons, Departement fluides et machines.

contact: koen.hillewaert at cenaero.be

1 Overview

This testcase has been taken up as a standard benchmark in ercoftac. See

• testcase 9.2 of the ERCOFTAC SIG 15 http://www.ercoftac.org/fileadmin/user_upload/bigfiles/sig15/database/9.2/index.html

• Underlying flow regime case 3-30 of the ERCOFTACQNET-CFD database.

http://uriah.dedi.melbourne.co.uk/w/index.php/UFR_3-30

for a thorough description.

2 Governing Equations

The incompressible or compressible Navier-Stokes equations should be used,

complemented by a subgrid scale model. The compressible fluid should have

the same behaviour as air, i.e. it should satisfy

γ =Cp

Cv= 1.4

Pr =µCp

κ= 0.71

(1)

with Cp and Cv the specific heats at constant pressure and volume respectively,

µ the dynamic viscosity and κ the heat conductivity.

3 Flow Conditions

The flow conditions are determined by the Reynolds number based upon the

bulk velocity above the crest

Reb =ubh

ν(2)

with

ub =1

2.035h

� 3.035h

hu(y)dy (3)

1

Testcase XXDNS and LES of the flow over a 2D periodic hill

K. Hillewaert†, C. Carton de Wiart

†and L. Bricteux

†Cenaero, Argo group

‡Universite de Mons, Departement fluides et machines.

contact: koen.hillewaert at cenaero.be

1 Overview

This testcase has been taken up as a standard benchmark in ercoftac. See

• testcase 9.2 of the ERCOFTAC SIG 15 http://www.ercoftac.org/fileadmin/user_upload/bigfiles/sig15/database/9.2/index.html

• Underlying flow regime case 3-30 of the ERCOFTACQNET-CFD database.

http://uriah.dedi.melbourne.co.uk/w/index.php/UFR_3-30

for a thorough description.

2 Governing Equations

The incompressible or compressible Navier-Stokes equations should be used,

complemented by a subgrid scale model. The compressible fluid should have

the same behaviour as air, i.e. it should satisfy

γ =Cp

Cv= 1.4

Pr =µCp

κ= 0.71

(1)

with Cp and Cv the specific heats at constant pressure and volume respectively,

µ the dynamic viscosity and κ the heat conductivity.

3 Flow Conditions

The flow conditions are determined by the Reynolds number based upon the

bulk velocity above the crest

Reb =ubh

ν(2)

with

ub =1

2.035h

� 3.035h

hu(y)dy (3)

1

h

9h 4.5h

Page 4: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Mesh generated with IGG, curved with Gmsh

© 2013 Cenaero – All rights reserved HO Workshop C3.6

CGNS   Gmsh  (2nd  order)  128  x  64  x  64   64  x  32  x  32  256  x  128  x  64   128  x  64  x  64  512  x  256  x  256   256  x  128  x  128  

Page 5: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Experimental/numerical results available

•  Experiments: •  Rapp (2009), Munich •  Re = [5.6, 10.6, 19, 37] x 103

•  Incompressible flow •  PIV and LDA agreement •  Periodicity achieved by using 10

successive hills and 18h in span

•  CFD: •  Breuer et al. (2009) •  MGLET and LESOCC:

•  Finite Volume methods (central) •  Incompressible solvers •  Explicit time-stepping

•  DNS and LES up to Re=37k © 2013 Cenaero – All rights reserved HO Workshop C3.6

Breuer et al. (2009)

Page 6: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Summary of the reference CFD

© 2013 Cenaero – All rights reserved HO Workshop C3.6

Re     Sim.     Ntot/106     Nspan     Δt/10-­‐3     Tavg     Code    

1400     DNS     13.1     200     1.1     1249     LESOCC    

1400     DNS     20.0     132     1.5     540     MGLET    

2800     DNS     13.1     200     2.0     1249     LESOCC    

2800     DNS     48.0     304     1.0     562     MGLET    

5600     DNS     13.1     200     2.0     1214     LESOCC    

5600     DNS     231.0     404     1.0     343     MGLET    

10,595     LES     13.1     200     1.8     1277     LESOCC    

10,595     LES     4.1     104     1.0     241     MGLET    

37,000     LES     4.1     104     1.0     439     MGLET    

DNS

LES

Page 7: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Participants

•  Heinrich Luedeke, DLR •  DNS at Re = 2800, M=0.1 •  Compressible 4th order compact FD with 8th order Pade filter •  128 x 64 x 64 and 256 x 128 x 128 dof

•  David Moxey, Imperial College London •  DNS at Re = 2800 •  Incompressible 6th order SEM/Fourier pseudospectral method •  518 x 108 x 160 dof

•  Corentin Carton de Wiart, Cenaero •  DNS at Re = 2800, M=0.1 •  Compressible 4th order DGM/SIP •  512 x 256 x 256 dof (128 x 64 x 64 elem with p=3)

© 2013 Cenaero – All rights reserved HO Workshop C3.6

Page 8: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Summary of contributors

© 2013 Cenaero – All rights reserved HO Workshop C3.6

ParBcipant   Method   Grid  size   DOF’s   Time  step     Averaging  period  (tc)  

CPU  Bme  (WU)/tc  

 

Breuer  et  al.  (2009)  MGLET  

FVM,    Explicit  RK3,  Incomp.  

 …x…x304  

 48M  

 1.0  x  10-­‐3  

 562  

 -­‐  

C.  Carton  de  Wiart  (Cenaero)  

DG3,  Implicit  3BDF,  Comp.  

 512x256x256  

 33.5M  

 1.0  x10-­‐2  

 180  

 193955  

H.  Luedeke  (DLR)  

4th  order  FD,  Explicit  RK4,  Comp.  

128x64x64   524.3k   1.0  x  10-­‐4   723   4406  

256x128x128   4.1M   5.0  x  10-­‐5   270   102346  

D.  Moxey  (Imperial  College)    

6th  order  SEM/PS,  Explicit  RK4,  Incomp.  

 518x308x160  

 25.5M  

 1.0  x  10-­‐3  

 70  

 31917  

Page 9: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Mean Velocity U

© 2013 Cenaero – All rights reserved HO Workshop C3.6

Page 10: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Mean Velocity U - Zoom

© 2013 Cenaero – All rights reserved HO Workshop C3.6

Page 11: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Mean Velocity V

© 2013 Cenaero – All rights reserved HO Workshop C3.6

Page 12: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Correlations u’u’

© 2013 Cenaero – All rights reserved HO Workshop C3.6

Page 13: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Correlations v’v’

© 2013 Cenaero – All rights reserved HO Workshop C3.6

Page 14: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Correlations u’v’

© 2013 Cenaero – All rights reserved HO Workshop C3.6

Page 15: Case C3.6 DNS and LES of the flow over a 2D periodic hil · Case C3.6 DNS and LES of the flow over a 2D periodic hil 2nd International Workshop on High-Order CFD Methods Doc. ref.:

PR

OD

-F-0

15-0

1

Conclusion

•  Overall agreement between the DNS results on the mean velocity profiles

•  To capture the averaged fluctuations, need very fine resolution (>10M dof), especially in the wake of the shearlayer

•  Still small discrepancies: •  Coarse mesh for DLR •  Average period should contain 200 tc of sampling (80 tc ICL, 180

for Cenaero) •  Influence of the time step on the forcing term and impact on the

statistics need to be investigated (Cenaero)

•  Need true reference for DNS… •  Expensive test case… Decrease Reynolds number? •  We need candidates to compute the LES at Re=10950!

© 2013 Cenaero – All rights reserved HO Workshop C3.6