carbon story carbon impact of smart distribution networks · 2019. 5. 20. · cost of electricity...

15
Carbon Story carbon impact of smart distribution networks Session 4b Marko Aunedi & Martin Wilcox Imperial College London & UK Power Networks In Partnership with:

Upload: others

Post on 22-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • © PA Knowledge Limited 2014 1 PA CONFIDENTIAL - Internal use only 1

    Carbon Story – carbon impact of

    smart distribution networks

    Session 4b Marko Aunedi & Martin Wilcox

    Imperial College London & UK Power Networks

    In Partnership with:

  • 2

    Introduction

    • Decarbonisation agenda in the UK based on large-scale deployment of intermittent RES and inflexible nuclear generation

    • Challenges and costs associated with wind intermittency could offset a part of emission benefits of low-carbon generation

    Objectives: • Analyse and quantify the implications of LCTs trialled in LCL (EVs,

    HPs, I&C DSR, dToU) for the carbon emissions of the broader UK electricity system

    • Evaluate carbon benefits of smart operation of LCTs • Assess system integration benefits of DSR through reducing the

    overall system cost of intermittent RES

  • 3

    Wind, 56.9

    PV, 15.8

    Nuclear, 11

    CCGT, 32.7

    Coal, 3.3

    Coal CCS, 3.5 OCGT, 15.4

    Inflexible , 1.8Storage, 2.6 Interconnecto

    r, 4

    DSR case studies

    No. Case

    1 Non-smart

    2 Smart EV

    3 Smart EV / FR

    4 Smart HP

    5 Smart HP / FR

    6 dToU

    7 I&C DSR

    8 Fully smart: balancing

    9 Fully smart: balancing & FR

    Wind, 82.4

    PV, 14.1

    Nuclear, 15

    Gas CCS, 4.4

    Coal CCS, 8.8

    OCGT, 24.4

    Inflexible , 1.8 Storage, 2.6Interconnecto

    r, 4

    2030 GW 2050 HR

    Scenarios:

    0

    0.2

    0.4

    0.6

    0.8

    00:00 06:00 12:00 18:00 00:00

    EV c

    har

    gin

    g d

    em

    and

    (kW

    )

    Time

    Peak Average

    0

    1

    2

    3

    00:00 06:00 12:00 18:00 00:00

    HP

    de

    man

    d p

    er

    ho

    use

    ho

    ld (

    kW)

    Time

    HP demand

    EVs HPs

  • 4

    ASUC model

    • Stochastic generation system scheduling taking into account RES uncertainty and impact on inertia • Based on rolling planning window • Optimises allocation of reserve between different technologies • Frequency response requirement driven by inertia of conventional generation • DSR models developed in LCL and included in ASUC model, using data from LCL trials

    0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    1

    11

    21

    31

    41

    51

    61

    71

    81

    91

    10

    1

    11

    1

    12

    1

    13

    1

    14

    1

    15

    1

    16

    1

    Ge

    ne

    rati

    on

    (M

    W)

    Time (hr)

    Wind

    Storage

    coal

    CCGT

    Nuclear

    online capacity

    Demand

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    00

    :00

    01

    :00

    02

    :00

    03

    :00

    04

    :00

    05

    :00

    06

    :00

    07

    :00

    08

    :00

    09

    :00

    10

    :00

    11

    :00

    12

    :00

    13

    :00

    14

    :00

    15

    :00

    16

    :00

    Ag

    gre

    ga

    te w

    ind

    po

    we

    r (p

    .u.)

    Time (hrs)

    Wind uncertainty model

    Unavail-

    able

    λ Δt

    μ Δt

    Online

    Outage model

    Available

    Storage Capacity: 18GWhRating: +/- 4GWRound-trip efficiency: 72%

    -20000

    -10000

    0

    10000

    20000

    30000

    40000

    50000

    0 4 8 12 16 20 24

    De

    ma

    nd

    + o

    uta

    ge

    s n

    et

    win

    d

    (MW

    )

    Time horizon (hr)-20000

    -10000

    0

    10000

    20000

    30000

    40000

    50000

    0 4 8 12 16 20 24

    De

    ma

    nd

    + o

    uta

    ge

    s n

    et

    win

    d

    (MW

    )

    Time horizon (hr)

    50th percentile

    Reserve

    Deterministic UC Stochastic UC

    30,000 €/ MWh

    VOLL

    Scheduling model

    0

    10000

    20000

    30000

    40000

    50000

    60000

    1 9

    17

    25

    33

    41

    49

    57

    65

    73

    81

    89

    97

    10

    5

    11

    3

    12

    1

    12

    9

    13

    7

    14

    5

    15

    3

    16

    1

    De

    ma

    nd

    ne

    t w

    ind

    (M

    W)

    Time (hr)

    wind, demand, outage realisation

    Demand risk25000

    30000

    35000

    40000

    45000

    50000

    08

    :00

    09

    :00

    10

    :00

    11

    :00

    12

    :00

    13

    :00

    14

    :00

    15

    :00

    16

    :00

    17

    :00

    18

    :00

    19

    :00

    20

    :00

    21

    :00

    22

    :00

    23

    :00

    00

    :00

    Ag

    gre

    ga

    te d

    em

    an

    d (

    MW

    )

    Time (hrs)

    Demand uncertainty model Dispatch,

    operating costs, CO2 emissions...

    Outage risk

    Wind risk

    startup

    wind forecast

    Deterministic security targetsResponseReserve

    Stochastic security target

    demand forecast

    Wind statistics

  • 5

    Average system emissions and carbon benefits of smart demand

    80

    90

    100

    110

    120

    Smar

    t

    Smar

    t/FR

    Smar

    t

    Smar

    t/FR

    25

    %

    50

    %

    75

    %

    25

    %

    50

    %

    10

    0%

    Bal

    anci

    ng

    Bal

    . + F

    req

    .

    Non-smart

    EVs HPs dToU I&C DSR Fully smart

    Syst

    em

    ave

    rage

    CO

    2e

    mis

    sio

    ns

    (g/k

    Wh

    )

    0

    10

    20

    30

    40

    50

    60

    Smar

    t

    Smar

    t/FR

    Smar

    t

    Smar

    t/FR

    25

    %

    50

    %

    75

    %

    25

    %

    50

    %

    10

    0%

    Bal

    anci

    ng

    Bal

    . + F

    req

    .

    Non-smart

    EVs HPs dToU I&C DSR Fully smart

    Syst

    em

    ave

    rage

    CO

    2e

    mis

    sio

    ns

    (g/k

    Wh

    )

    20

    30

    GW

    0

    50

    100

    150

    200

    Smar

    t

    Smar

    t/FR

    Smar

    t

    Smar

    t/FR

    25

    %

    50

    %

    75

    %

    25

    %

    50

    %

    10

    0%

    Bal

    anci

    ng

    Bal

    . + F

    req

    .

    EV HP dToU I&C DSR Fullysmart

    Avo

    ide

    d e

    mis

    sio

    ns

    thro

    ugh

    DSR

    (g

    /kW

    h)

    0

    50

    100

    150

    200

    Smar

    t

    Smar

    t/FR

    Smar

    t

    Smar

    t/FR

    25

    %

    50

    %

    75

    %

    25

    %

    50

    %

    10

    0%

    Bal

    anci

    ng

    Bal

    . + F

    req

    .

    EV HP dToU I&C DSR Fullysmart

    Avo

    ide

    d e

    mis

    sio

    ns

    thro

    ugh

    DSR

    (g

    /kW

    h)

    20

    50

    HR

  • 6

    System integration cost of intermittent RES

    • Whole-System Cost (WSC) of intermittent RES consists of their Levelised Cost of Electricity (LCOE) and System Integration Cost (SIC)

    • SIC is defined as additional infrastructure and/or operating costs as a result of integrating renewable power generation

    • Benefits of LCT resources trialled in LCL are quantified in terms of reduced SIC of RES in 3 categories:

    1. Reduced backup capacity cost (due to reduced peak net demand) 2. Reduced balancing operating cost (lower cost of system operation

    including more efficient provision of reserve and response and reduced RES curtailment)

    3. Reduced investment cost associated with balancing (reduced RES curtailment requires that less additional zero- or low-carbon generation capacity is built to meet the carbon target)

  • 7

    Reduced RES integration cost from deployment of smart LCTs

    2030 GW 2050 HR

    0

    5

    10

    15

    Smar

    t

    Smar

    t/FR

    Smar

    t

    Smar

    t/FR

    25

    %

    50

    %

    75

    %

    25

    %

    50

    %

    10

    0%

    Bal

    anci

    ng

    Bal

    . + F

    req

    .

    EVs HPs dToU I&C DSR Fully smart

    Savi

    ngs

    in R

    ES in

    tegr

    atio

    n c

    ost

    /MW

    h)

    Backup Balancing (OPEX) Balancing (CAPEX)

    0

    5

    10

    15

    Smar

    t

    Smar

    t/FR

    Smar

    t

    Smar

    t/FR

    25

    %

    50

    %

    75

    %

    25

    %

    50

    %

    10

    0%

    Bal

    anci

    ng

    Bal

    . + F

    req

    .

    EVs HPs dToU I&C DSR Fully smart

    Savi

    ngs

    in R

    ES in

    tegr

    atio

    n c

    ost

    /MW

    h)

    Backup Balancing (OPEX) Balancing (CAPEX)

    0

    5

    10

    15

    20

    25

    30

    35

    Smart bal. Smart bal. +freq.

    Smart bal. Smart bal. +freq.

    2030 GW 2050 HR

    Ave

    rage

    RES

    inte

    grat

    ion

    be

    ne

    fits

    of

    smar

    t LC

    Ts (

    £/M

    Wh

    )

    Backup Balancing (OPEX) Balancing (CAPEX)

    0

    5

    10

    15

    20

    25

    30

    35

    Smart bal. Smart bal. +freq.

    Smart bal. Smart bal. +freq.

    2030 GW 2050 HR

    Mar

    gin

    al R

    ES in

    tegr

    atio

    n b

    en

    efi

    ts o

    f sm

    art

    LCTs

    /MW

    h)

    Backup Balancing (OPEX) Balancing (CAPEX)

    Average Marginal

  • 8

    Key findings

    • Carbon benefits of DSR primarily driven by the ability to: 1) support more efficient scheduling, and 2) provide frequency regulation

    • Carbon savings per unit of smart demand are in the order of ~100 g/kWh, but vary depending on DSR flexibility

    • Integration of electrified transport and heating demand is significantly less carbon intensive with smart operation

    • DSR are capable to support cost-efficient decarbonisation of future electricity system by reducing RES integration cost

    • Average RES integration benefits when all smart LCTs coexist in the system are £8-11/MWh of RES output; marginal benefit is 2-3 times higher than average

  • 9

    Report D6 Carbon impact of smart distribution networks

    http://innovation.ukpowernetworks.co.uk/innovation/en/Projects/tier-2-

    projects/Low-Carbon-London-(LCL)/Project-Documents/LCL Learning Report - D6 - Carbon impact of smart distribution networks.pdf

    Marko Aunedi Fei Teng

    Goran Strbac Imperial College London

    UKPN LCL Industry Day, 9 February 2015

  • 2011. UK Power Networks. All rights reserved

    DToU Constraint Management

  • 2011. UK Power Networks. All rights reserved

    Grid Carbon Intensity Today

  • 2011. UK Power Networks. All rights reserved

    800kW Turndown Event

  • 2011. UK Power Networks. All rights reserved

    Electric Vehicle Charging Management

    0.0000.0500.1000.1500.2000.2500.3000.3500.400

    29

    /12

    /20

    13

    30

    /12

    /20

    13

    31

    /12

    /20

    13

    01

    /01

    /20

    14

    02

    /01

    /20

    14

    03

    /01

    /20

    14

    04

    /01

    /20

    14

    05

    /01

    /20

    14

    06

    /01

    /20

    14

    07

    /01

    /20

    14

    08

    /01

    /20

    14

    09

    /01

    /20

    14

    10

    /01

    /20

    14

    11

    /01

    /20

    14

    12

    /01

    /20

    14

    13

    /01

    /20

    14

    14

    /01

    /20

    14

    15

    /01

    /20

    14

    16

    /01

    /20

    14

    17

    /01

    /20

    14

    18

    /01

    /20

    14

    19

    /01

    /20

    14

    20

    /01

    /20

    14

    21

    /01

    /20

    14

    22

    /01

    /20

    14

    23

    /01

    /20

    14

    24

    /01

    /20

    14

    25

    /01

    /20

    14

    26

    /01

    /20

    14

    27

    /01

    /20

    14

    28

    /01

    /20

    14

    29

    /01

    /20

    14

    30

    /01

    /20

    14

    31

    /01

    /20

    14

    01

    /02

    /20

    14

    02

    /02

    /20

    14

    03

    /02

    /20

    14

    04

    /02

    /20

    14

    05

    /02

    /20

    14

    06

    /02

    /20

    14

    07

    /02

    /20

    14

    08

    /02

    /20

    14C

    arb

    on

    Fo

    otp

    rin

    t C

    O2 (

    kg)

    Time

    EV Trial - Carbon Footprint

    Turndown Carbon Average Carbon

  • 2011. UK Power Networks. All rights reserved 14

    Cross check against ICL carbon report

  • 15