carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life...

13
Effective synthetic strategy of Zn 0.76 Co 0.24 S encapsulated in stabilized N-doped carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang, a Shuo li, a Wei Huang, b Huihui Shangguan, a Christian Engelbrekt, b, c Shuwei Duan, a Lijie Ci, a Pengchao Si* a a SDU & Rice Joint Center for Carbon Nanomaterials, MOE Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China. b Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark. c Department of Chemistry, University of California Irvine, Irvine, California, 92697, United States. Corresponding authors: *Pengchao Si: [email protected] Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 12-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

Effective synthetic strategy of Zn0.76Co0.24S encapsulated in stabilized N-doped

carbon nanoarchitecture toward ultra-long-life hybrid supercapacitorsYuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian Engelbrekt,b, c Shuwei Duan,a

Lijie Ci,a Pengchao Si*a

a SDU & Rice Joint Center for Carbon Nanomaterials, MOE Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China. b Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.c Department of Chemistry, University of California Irvine, Irvine, California, 92697, United States.

Corresponding authors:*Pengchao Si: [email protected]

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2019

Page 2: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

Fig. S1 (a-c) SEM images of the ZIF@PDA particles at different magnifications.

Fig. S2 TEM images of (a, e) ZIF@PDA-6h, (b, f) ZIF@PDA-12h, (c, g) ZIF@PDA-18h, and (d, h) ZIF@PDA-24h.

Fig. S3 TGA curve of ZIF@PDA particles.

Page 3: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

Fig. S4 (a) SEM and (b) TEM images of DZCS. (c) SEM and (d) TEM images of ZCS.

Fig. S5 XRD patterns of the ZIF-67/8@PDA compared with ZIF-67/8.

Page 4: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

Fig. S6 XRD pattern of ZCS.

Fig. S7 SEM image of HZCS@NC particle.

Page 5: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

Fig. S8 (a) Nitrogen adsorption/desorption isotherms and the (b) pore-size distribution of ZIF-67/8. (c) Nitrogen

adsorption/desorption isotherms and the (d) pore-size distribution of ZCS.

Fig. S9 Raman spectra of the HZCS@NC, ZCS, and CCZC@NC.

Page 6: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

Fig. S10 XPS survey spectra of HZCS@NC electrode.

Fig. S11 EDS spectrum of HZCS@NC.

Fig. S12 Elemental spectra of N 1s of the ZCS electrode.

Page 7: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

Fig. S13 CV curves of the (a) CCZC@NC and (b) ZCS electrodes at various scan rates.

Fig. S14 GCD curves of the (a) CCZC@NC and (b) ZCS electrodes at various current densities.

Fig. S15 SEM image of the HZCS@NC after cycling.

Page 8: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

Fig. S16 Cycling stability of pure Ni foam for (a) the first 100 cycles and (b) the total 3000 cycles.

Fig. S17 Photo of the hybrid supercapacitor.

Fig. S18 (a) CV curves of RGO electrode at various scan rates. (b) GCD curves of RGO electrode at various current

densities.

Page 9: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

Fig. S19 Specific capacitance of the RGO at various current density.

Fig. S20 Practical applications of various devices driven by two hybrid supercapacitors in series, (a) a calculator, (b)

a digital watch.

Page 10: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

Table S1. The elements contents from XPS measurement of HZCS@NC.

Element C N O Zn Co S

Atomic% 72.48 12.28 10.02 2.01 0.56 2.66

Table S2. The equations based on CV curves of the electrode materials.

Cathodic log(i)=b log(v)+log a bCCZC@NC log(i)=0.7152 log(v)-2.475 0.7152

ZCS log(i)=0.7221 log(v)-2.379 0.7221HZCS@NC log(i)=0.5973 log(v)-2.041 0.5973

Page 11: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

Table S3.Comparison of electrochemical performances of the other electrode materials with this work

in a three-electrode system.

Electrode materials specific capacitance

electrolyte Cyclic stability references

Hollow Zn0.76Co0.24S@C 2082.22 F g-1

at 1 A g-16 M KOH 40 0000

[112%]This work

Co3O4/ZnCo2O4/CuO 890.2 F g-1

at 1 A g-12 M KOH 1000

[89.7%]1

C-NiCo2O4 1722 F g-1

at 1 A g-16 M KOH 10000

[98.8%]2

MoS2-Co3O4 1369 F g-1

at 1 A g-13 M KOH 10000

[83 %]3

Co3S4/MWCNT 850.3 F g-1

at 2 A g-12 M KOH 5000

[78.98 %]4

Pd-Co3O4 1353 F g-1

at 7 mA cm-23 M KOH 5000

[95 %]5

Co-Co LDH 1205 F g-1

at 1 A g-13 M KOH 5000

[95 %]6

ZnCo2O4@Ni(OH)2 1021 F g-1

at 1 mA cm-23 M KOH 5000

[50.1 %]7

Co3O4 1216.4 F g-1

at 1 A g-12 M KOH 8000

[86.4 %]8

NiCo2O4@RGO 1427 F g-1

at 8 A g-12 M KOH 10000

[83.8 %]9

MgCo2O4@PPy 1079.6 F g-1

at 1 A g-12 M KOH 1000

[97.4 %]10

NiCo2S4/Co9S8 749 F g-1

at 4 A g-16 M KOH 5000

[78 %]11

Co9S8/α-MnS@N-C@MoS2

1938 F g-1

at 1 A g-12 M KOH 10000

[86.9 %]12

CuCo2O4 hollow spheres 1700 F g-1

at 2 A g-13 M KOH 5000

[93.7 %]13

FeCo2S4-NiCo2S4

composite1519 F g-1

at 5 mA cm-23 M KOH 5000

[95.1 %]14

Page 12: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

Table S4. Comparison of other supercapacitors and this work.

Device Device window

Energy density

Power density

Cyclic stability

References

Hollow Zn0.76Co0.24S@C//RGO

1.6 V 55.47Wh kg-1

795.54W kg-1

100000[108%]

This work

Co3O4/ZnCo2O4/CuO//AC

1.6 V 35.82Wh kg-1

799.95W kg-1

3000[94.07%]

1

C-NiCo2O4

//AC1.6 V 38.3

Wh kg-1800

W kg-15 000

[95.6%]2

CoS1.097/GF//GF

1.5 V 33.2Wh kg-1

374.7W kg-1

10000[95.6%]

15

NiCo2O4@RGO//RGO

1.5 V 14.7Wh kg-1

175W kg-1

10000[81.1%]

9

MgCo2O4@PPy//AC

1.6 V 33.4Wh kg-1

320W kg-1

10000[91%]

10

NiCo2S4/Co9S8

//AC1.5 V 33.5

Wh kg-1150

W kg-15000[91%]

11

CuCo2O4 hollow spheres//AC

1.5 V 48.75Wh kg-1

500W kg-1

10000[91.2%]

13

Co3S4/CoMo2S4

//AC1.7 V 33.1

Wh kg-1850

W kg-15000

[93.8%]16

rGo-CNT-Co3S4

//NGN1.6 V 43.5

Wh kg-1400

W kg-13000[90%]

17

CoMo2S4/CuO//RGO/Fe2O3

1.6 V 33Wh kg-1

200W kg-1

5000[83%]

18

Page 13: carbon nanoarchitecture toward ultra-long-life …carbon nanoarchitecture toward ultra-long-life hybrid supercapacitors Yuan Yang,a Shuo li,a Wei Huang,b Huihui Shangguan,a Christian

References

1. S. Zhou, Z. Ye, S. Hu, C. Hao, X. Wang, C. Huang and F. Wu, Nanoscale, 2018, 10, 15771-15781.

2. S. G. Mohamed, I. Hussain and J.-J. Shim, Nanoscale, 2018, 10, 6620-6628.3. X. Lei, K. Yu, R. Qi and Z. Zhu, Chem. Eng. J., 2018, 347, 607-617.4. R. Tian, Y. Zhou, H. Duan, Y. Guo, H. Li, K. Chen, D. Xue and H. Liu, ACS Appl. Energy

Mater., 2018, 1, 402-410.5. J. Hao, S. Peng, H. Li, S. Dang, T. Qin, Y. Wen, J. Huang, F. Ma, D. Gao, F. Li and G. Cao, J.

Mater. Chem. A, 2018, 6, 16094-16100.6. X. Bai, J. Liu, Q. Liu, R. Chen, X. Jing, B. Li and J. Wang, Chem.-Eur. J., 2017, 23, 14839-

14847.7. X. Han, Y. Yang, J.-J. Zhou, Q. Ma, K. Tao and L. Han, Chem.-Eur. J., 2018, 68, 18106-18114.8. G. Wei, Z. Zhou, X. Zhao, W. Zhang and C. An, ACS Appl. Mater. Interfaces, 2018, 10, 23721-

23730.9. K. H. Oh, G. S. Gund and H. S. Park, J. Mater. Chem. A, 2018, 6, 22106-22114.10. H. Gao, X. Wang, G. Wang, C. Hao, S. Zhou and C. Huang, Nanoscale, 2018, 10, 10190-10202.11. L. Hou, Y. Shi, S. Zhu, M. Rehan, G. Pang, X. Zhang and C. Yuan, J. Mater. Chem. A, 2017, 5,

133-144.12. S. Kandula, K. R. Shrestha, N. H. Kim and J. H. Lee, Small, 2018, 14, 1800291.13. A. A. Ensafi, S. E. Moosavifard, B. Rezaei and S. K. Kaverlavani, J. Mater. Chem. A, 2018, 6,

10497-10506.14. J. Zhu, S. Tang, J. Wu, X. Shi, B. Zhu and X. Meng, Adv. Energy Mater. 2017, 7, 1601234.15. D. Jiang, H. Liang, Y. Liu, Y. Zheng, C. Li, W. Yang, C. J. Barrow and J. Liu, J. Mater. Chem.

A, 2018, 6, 11966-11977.16. X. Yang, H. Sun, P. Zan, L. Zhao and J. Lian, J. Mater. Chem. A, 2016, 4, 18857-18867.17. A. Mohammadi, N. Arsalani, A. G. Tabrizi, S. E. Moosavifard, Z. Naqshbandi and L. S.

Ghadimi, Chem. Eng. J., 2018, 334, 66-80.18. Y. Wang, C. Shen, L. Niu, R. Li, H. Guo, Y. Shi, C. Li, X. Liu and Y. Gong, J. Mater. Chem. A,

2016, 4, 9977-9985.