canal+trough+design

24
AQUEDUCT TROUGH DESIGN NAME OF WORK:- PKN CANAL DATA FOR AQUEDUCT (Vertical section) 1 Discharge 0.6805 cumec 0.6805 cumec 270 TBL 758.58 5000 2 Bed width 3.00 m 5.00 m F.B. 500 3 water Side slope 1 :1 vertical :1 10 180 F.S.L. 258.58 4 F.S.D. 2.00 m 2.00 m 8 mm 2 ledge stirrups 300 5 Free Board 0.50 m 0.50 m 8 140 6 Bed slope 1 in 3000 1 in 3000 10 90 FSD 2000 7 C.B.L. 256.58 m 256.58 m 16 220 200 16 110 8 F.S.L. 258.58 m 258.58 Hench 8 130 10 300 9 M.W.D. 2.50 m 2.50 m 6 20 10 Span 8.00 m 8000 mm CBL 256.58 1.00 11 Concrete M- 20 wt. of concrete 25000 720 7 m 13 300 12 Steel Inside Out side 150 190 200 200 13 Water wt 9800 14 Reinforcement (in wall) Main Vertical 10 90 mm c/c Disty. 8 140 mm c/c 15 Reinforcement (in Slab) Main 16 110 mm c/c Disty. 8 130 mm c/c 16 Reinforcement (in wall Beam) Main bottom 20 6 Nos. 16 2 Nos. 17 Distribution (in wall Beam) two lgd. Strrirps 8 300 mm c/c 18 Trough Wall thickness 270 mm or 0.27 mtr 19 Trough Slab thickness 300 mm or 0.30 mtr 2x 16 mm F top anchor bar mm F bars@ mm F bars@ mm F bars@ mm F bars@ mm F bars@ mm F bars@ mm F bars@ x Bars F kg/m 3 scbc sst sst kg/m 3 mm F @ mm F @ mm F @ mm F @ mm f Top anchor mm Nos. mm F @

Upload: venkatarathnam-pulipati

Post on 08-Nov-2014

139 views

Category:

Documents


32 download

TRANSCRIPT

Page 1: Canal+Trough+Design

AQUEDUCT TROUGH DESIGN

NAME OF WORK:- PKN

CANAL DATA FOR AQUEDUCT (Vertical section)1 Discharge 0.6805 cumec 0.6805 cumec 270 TBL 758.58 270

50002 Bed width 3.00 m 5.00 m

F.B. 5003 water Side slope 1 :1 vertical :1 10 180

F.S.L. 258.58

4 F.S.D. 2.00 m 2.00 m 8 mm 2 ledge stirrups@ 300

5 Free Board 0.50 m 0.50 m 8 140

6 Bed slope 1 in 3000 1 in 3000 10 90FSD 2000

7 C.B.L. 256.58 m 256.58 m 16 220

20016 110

8 F.S.L. 258.58 m 258.58 Hench 8 13010 300

9 M.W.D. 2.50 m 2.50 m6 20

10 Span 8.00 m 8000 mm CBL 256.58 1.00

11 Concrete M- 20 wt. of concrete 25000 720

7 m 13 30012 Steel Inside Out side

150 190 200 200

13 Water wt 9800

14 Reinforcement (in wall) Main Vertical 10 90 mm c/c Disty. 8 140 mm c/c

15 Reinforcement (in Slab) Main 16 110 mm c/c Disty. 8 130 mm c/c

16 Reinforcement (in wall Beam) Main bottom 20 6 Nos. 16 2 Nos.

17 Distribution (in wall Beam) two lgd. Strrirps 8 300 mm c/c

18 Trough Wall thickness 270 mm or 0.27 mtr

19 Trough Slab thickness 300 mm or 0.30 mtr

2x 16 mm F top anchor bar

mm F bars@

mm F bars@

mm F bars@

mm F bars@

mm F bars@

mm F bars@

mm F bars@

x Bars F

kg/m3

scbc

sst sst

kg/m3

mm F @ mm F @

mm F @ mm F @

mm f Top anchor mm Nos.

mm F @

Page 2: Canal+Trough+Design

pk_nandwana@yahoo,co,in

Page 3: Canal+Trough+Design

AQUEDUCT TROUGH DESIGN

NAME OF WORK:- PKN

CANAL DATADischarge 0.6805 cumec 0.6805 cumecBed width 3.00 m 5.00 mwater Side slope 1 :1 verticalF.S.D. 2.00 m 2.00 mFree Board 0.50 m 0.50 mBed slope 3000 3000C.B.L. 256.58 m 256.58 mF.S.L. 258.58 m 258.58 mM.W.D. 2.50 m 2.50 m

8.00 mNominal Cover 50 mmEffective cover 40 mm

1 Design Constants:- For HYSD Bars Concrete M- 20for water side force = 150 wt. of concrete = ###= 7 wt of water = 9800

m = 13 for water side force m*c

=13 x 7

= 0.378 K = 0.37813 x 7 + 150

= 1 - 0.378 / 3 = 0.874 J = 0.874= 0.5 x 7 x 0.87 x 0.378 = 1.155 R = 1.155for out side force = 190 wt. of concrete = ###= 7 wt of water = 9800

m = 13 for out side force m*c

=13 x 7

= 0.324 K = 0.32413 x 7 + 190

= 1 - 0.324 / 3 = 0.892 J = 0.892= 0.5 x 7 x 0.892 x 0.324 = 1.011 R = 1.011

2 DESIGN OF VERTICAL WALL:-The trough wall is to be designed as a beam having a span of of = 8.00 mbetween supports Hence thickness should be equal to span/30

span=

8.00 x 1000= 270 mm say 270 mm

30 30Max.depth of water = 2.50 m span = 8.00 m

B.M. = =9800 x 2.50 3

= 25521 N-m25520833

6 6 n-mm

Effective depth required =BM

=### x 1000

= 149 mmRxb 1.16 x 1000

Providing thickness "D"= 270 mm cover = 50 mm, Effective depth = 220 mm

Steel required

Ast =BMx1000

=25521 x 1000

= 867150 x 0.892 x 220

using 10 mm bars = A = =3.14 x 10 x 10

= 78.54 x 100 4

spacing =A/Ast = 78.50 x 1000 / 866.94 = 91 mmHence Provided 10 mm bars @ 90 mm c/c half the bars will be curtailed at 1.45 m from base

= 0.3 -0.1 ( 27 - 10 )

= 0.25 %

FOR QUEDUCT

Span (Proposed)

sst = N/mm2 N/m3

scbc = N/mm2 N/mm2

k=m*c+sst

j=1-k/3R=1/2xc x j x k

sst = N/mm2 N/m3

scbc = N/mm2 N/mm2

k=m*c+sst

j=1-k/3R=1/2xc x j x k

wh3

mm2

sst x j x D

3.14xdia2

mm2

minimum steel to be provided for distribution

Page 4: Canal+Trough+Design

= 0.3 -### - 10

= 0.25 %

= 0.25 % of x section area =0.25 x 270 x 1000

= 679100

Steel of Each face =679

= 3392

using 8 mm bars A = = 3.14 x 8 x 8= 50.2

4 x100 4spacing =A/Ast = 50.24 x 1000 / 339.43 = 148 mm

Hence Provided 8 mm bars @ 140 mm c/c Each face

3 Design of Horizontal slabe :-The trough slab having a span of of = 5.00 m

between walls Hence thickness should be equal to span/20span

=5.00 x 1000

= 250 mm say 250 mm30 20

Adopt effective thickness of slab "T" = 250 mmcover = 50 mm Total thickness = 300 mmEffective span of slab = BW+ depth = 5 + 0.27 = 5.27 m

LoadingLoad of water column = mwd x 9800 = 2.50 x 9800 = 24500 NWt of slab = wt of concrete x area of slab = ### x 1.00 x 0.25 = 6250 N

per meter length 30750 N

Total water pressure on vertical wall= =9800 x 2.50 x 2.50

= 306252 2

\ Fixing moment at end of slab = 30625 x2.5

+0.3

= 30115 N-m3 2

Max. possible segging moment = =### x 5.27 x 5.27

= 106752 N-m8 8

Net B.M. at center of span of slab= = 106752 - ### = 76638 kg-m The slab is design for this B.M.

Since tension face is out side = 190 J = 0.892 , R = 1.011

Effective depth required =BM

=### x 1000

= 275 mmRxb 1.011 x 1000

Provided Effective depth 250 mm cover = 50 mm providing thickness = 300 mm

Steel required

Ast =### x 1000

= 1809190 x 0.89 x 250

using 16mm bars = A = =3.14 x 16 x 16

= 2014 x 100 4

spacing =A/Ast = 201 x 1000 / 1809 = 111 mmHence Provided 16 mm bars @ 110 mm c/c

Area of steel required at end (Near support) =30115 x 1000

= 919150 x 0.874 x 250

This is < than half the steel provided at the center of span,However, half the bars from the center of the span may be bent up at L/2 meter from supports.

Let us check whether this bending of half bars satisfies the enchorage and devlopments envisaged in

1x

1000 x 201x 190 x 0.892 x 250

2 110= 38.71 x N-mm

=30750 x 5.27

= 81026 N2

= - x' - + = - x' +2 2

= Length of support = 270 mm and x' = side cover = 50 mm

minimum steel to be provided for distribution

[email protected]

Area of distribution steel required

mm2

mm2

3.14xdia2

mm2

wH2

WL2

s st

BMx100/sstxjxD= mm2

3.14xdia2

mm2

mm2

equation M1/V + Lo > Ld

Where M1= Ast x sst x j x d=

10'6

V = shear force at the ends

Lols 3 F 16 F

ls 13 F

Where Ls

Page 5: Canal+Trough+Design

M1=

38.71 x+

270- 50 + 13 x 16 = 771 mm

V 81026 2

= =F x 150

= 46.88 F See table Concrete 4 x 0.8 3.4 M 20

= 46.88 x 16 = 750 mm

or 771 > 750 Thus the requirement is satisfied

= 0.3 -0.1 ( 300 - 100 )

= 0.24 %450 - 100

= 0.24 % of x section area =0.24 x 300 x 1000

= 729100

Steel of Each face =729

= 3642

using 8 mm bars A = = 3.14 x 8 x 8= 50.2

4 4spacing =A/Ast = 50.24 x 1000 / 364.29 = 138 cm

Hence Provided 8 mm bars @ 130 cm c/c Each face

4 Design of side wall as Beam :- live load from slab = total load on slab x bw / 2 = 30750 x 5 / 2 = 76875 kg-m

Self load = mwd x thick. x wt = 2.50 x 0.27 x ### = 16875 kg-mTotal Load = 93750 kg-m

Max. possible segging moment= =### x 8.00 x 8.00

= 750000 Kg-m8 8

= 190 k = 0.324 J = 0.892 R = 1.011

Effective depth required =BM

=750000 x 1000

= 1657 mmRxb 1.011 x 270

Actual depth '= 2.50 + 0.25 = 2.75 or 2750 mmBut providing thickness = 2750 mm - (2 x cover = 80 )= 2670 mm

Steel required

Ast =### x 1000

= 1657190 x 0.892 x 2670

using 20 mm bars A = = 3.14 x 20 x 20= 314

4 x100 4Nomber of Bars = Ast/A = 1657 / 314 = 5.28 say = 6 No.

Hence Provided 6 bars of 20

% of steel provided =6 x 314

x 100 = 0.26 %270 x 2670

Shear force =total load x span

=93750 x 8.0

= 375000 kg.2 2

Shear stress =

shea force=

375000.0= 0.52

Beam Ht. x Beam Dt. 270 x 2670Permissible shear stress for 0.26 % = 0.21 (See Table 3.1)

Shear reinforcenment required if > Hence shear reinforcement required= 0.21 x 2670 x 270 = 151389 N

= = 375000 - 151389 = 223611 N

= =190 x 2670

= 2.27223611

<2.175 x fy x Asy

<2.175 x 415 x Asv

< 3.34 AsvB 270

Hence = 3.34Hence using 8 mm dia 2 Legged stirrups A = 100.5

= 3.34 x 100.5 = 336 mm subject to a max. = 300 mmHence provideed 8 mm Dia 2 legged shear stirrus @ 300 mm c/c

Provide

+ Lo10'6

[email protected]

LdF sst4 t bd

minimum steel to be provided for distribution

Area of distribution steel required

mm2

mm2

3.14xdia2

mm2

WL2

using sst N/mm2

BMx100/sstxjxD= mm2

3.14xdia2

mm2

mm F at Bottom

N/mm2

steel provided tc N/mm2

TV Tc

Vc = shear resistance of concrete = tc.b.dVs V - Vc

Spacing of strirrups is given by

Svsst .d.Asv

Asv AsvVs

While maximum permissible spacing of shear stirip is

Sv Asv

mm2 Sv

2 x 12 mm F hoilding bars at the top.

Page 7: Canal+Trough+Design

NAME OF WORK:- PKN

270 TBL 758.58 270

5000

F.B. 50010 180

F.S.L. 258.58

8 mm 2 ledge stirrups@ 300

8 140

10 90

FSD 200016 220

16 110

8 130

20010 300

6 20

CBL 256.58 1.00

300720

200 200

2x 16 mm F top anchor bar

mm F bars@

mm F bars@

mm F bars@

mm F bars@

mm F bars@

mm F bars@

mm F bars@

x Bars F

Page 9: Canal+Trough+Design
Page 10: Canal+Trough+Design

Grade of concrete M-10 M-15 M-20 M-25 M-30 M-35 M-40

1.2 2.0 2.8 3.2 3.6 4.0 4.4

Grade of concrete

(N/mm2) (N/mm2) (N/mm2)M 10 3.0 300 2.5 250 -- --M 15 5.0 500 4.0 400 0.6 60M 20 7.0 700 5.0 500 0.8 80M 25 8.5 850 6.0 600 0.9 90M 30 10.0 1000 8.0 800 1.0 100M 35 11.5 1150 9.0 900 1.1 110M 40 13.0 1300 10.0 1000 1.2 120M 45 14.5 1450 11.0 1100 1.3 130M 50 16.0 1600 12.0 1200 1.4 140

Grade of concrete M-10 M-15 M-20 M-25 M-30 M-35 M-40Modular ratio m

Grade of concrete M-15 M-20 M-25 M-30 M-35 M-40

Modular Ratio 18.67 13.33 10.98 9.33 8.11 7.18

5 7 8.5 10 11.5 13

93.33 93.33 93.33 93.33 93.33 93.33

0.4 0.4 0.4 0.4 0.4 0.4

0.867 0.867 0.867 0.867 0.867 0.867

0.867 1.214 1.474 1.734 1.994 2.254

0.714 1 1.214 1.429 1.643 1.857

0.329 0.329 0.329 0.329 0.329 0.329

0.89 0.89 0.89 0.89 0.89 0.89

0.732 1.025 1.244 1.464 1.684 1.903

0.433 0.606 0.736 0.866 0.997 1.127

0.289 0.289 0.289 0.289 0.289 0.289

0.904 0.904 0.904 0.904 0.904 0.904

0.653 0.914 1.11 1.306 1.502 1.698

0.314 0.44 0.534 0.628 0.722 0.816

Table 1.15. PERMISSIBLE DIRECT TENSILE STRESS

Tensile stress N/mm2

Table 1.16.. Permissible stress in concrete (IS : 456-2000)Permission stress in compression (N/mm2) Permissible stress in bond (Average) for

plain bars in tention (N/mm2)Bending acbc Direct (acc)

Kg/m2 Kg/m2 in kg/m2

Table 1.18. MODULAR RATIO

31 (31.11)

19 (18.67)

13 (13.33)

11 (10.98)

9 (9.33)

8 (8.11)

7 (7.18)

Table 2.1. VALUES OF DESIGN CONSTANTS

scbc N/mm2

m scbc

(a) sst = 140 N/mm2 (Fe 250)

kc

jc

Rc

Pc (%)

(b) sst = 190 N/mm2

kc

jc

Rc

Pc (%)

(c ) sst = 230 N/mm2 (Fe 415)

kc

jc

Rc

Pc (%)

Page 11: Canal+Trough+Design

Reiforcement %

M-20 M-20bd bd

0.15 0.18 0.18 0.150.16 0.18 0.19 0.180.17 0.18 0.2 0.210.18 0.19 0.21 0.240.19 0.19 0.22 0.270.2 0.19 0.23 0.3

0.21 0.2 0.24 0.320.22 0.2 0.25 0.350.23 0.2 0.26 0.380.24 0.21 0.27 0.410.25 0.21 0.28 0.440.26 0.21 0.29 0.470.27 0.22 0.30 0.50.28 0.22 0.31 0.550.29 0.22 0.32 0.60.3 0.23 0.33 0.65

0.31 0.23 0.34 0.70.32 0.24 0.35 0.750.33 0.24 0.36 0.820.34 0.24 0.37 0.880.35 0.25 0.38 0.940.36 0.25 0.39 1.000.37 0.25 0.4 1.080.38 0.26 0.41 1.160.39 0.26 0.42 1.250.4 0.26 0.43 1.33

0.41 0.27 0.44 1.410.42 0.27 0.45 1.500.43 0.27 0.46 1.630.44 0.28 0.46 1.640.45 0.28 0.47 1.750.46 0.28 0.48 1.880.47 0.29 0.49 2.000.48 0.29 0.50 2.130.49 0.29 0.51 2.250.5 0.30

0.51 0.300.52 0.300.53 0.300.54 0.300.55 0.310.56 0.310.57 0.310.58 0.310.59 0.310.6 0.32

0.61 0.320.62 0.320.63 0.32

Shear stress tc

100A s 100A s

Page 12: Canal+Trough+Design

0.64 0.320.65 0.330.66 0.330.67 0.330.68 0.330.69 0.330.7 0.34

0.71 0.340.72 0.340.73 0.340.74 0.340.75 0.350.76 0.350.77 0.350.78 0.350.79 0.350.8 0.35

0.81 0.350.82 0.360.83 0.360.84 0.360.85 0.360.86 0.360.87 0.360.88 0.370.89 0.370.9 0.37

0.91 0.370.92 0.370.93 0.370.94 0.380.95 0.380.96 0.380.97 0.380.98 0.380.99 0.381.00 0.391.01 0.391.02 0.39

1.0300000000001 0.391.04 0.39

1.0500000000001 0.391.06 0.39

1.0700000000001 0.391.08 0.4

1.0900000000001 0.41.10 0.4

1.1100000000001 0.41.12 0.4

1.1300000000002 0.41.14 0.4

1.1500000000002 0.41.16 0.41

1.1700000000002 0.41

Page 13: Canal+Trough+Design

1.18 0.411.1900000000002 0.41

1.20 0.411.2100000000002 0.41

1.22 0.411.2300000000003 0.41

1.24 0.411.25 0.421.26 0.421.27 0.421.28 0.421.29 0.421.30 0.421.31 0.421.32 0.421.33 0.431.34 0.431.35 0.431.36 0.431.37 0.431.38 0.431.39 0.431.40 0.431.41 0.441.42 0.441.43 0.441.44 0.441.45 0.441.46 0.441.47 0.441.48 0.441.49 0.441.50 0.451.51 0.451.52 0.451.53 0.451.54 0.451.55 0.451.56 0.451.57 0.451.58 0.451.59 0.451.60 0.451.61 0.451.62 0.451.63 0.461.64 0.461.65 0.461.66 0.461.67 0.461.68 0.461.69 0.461.70 0.461.71 0.46

Page 14: Canal+Trough+Design

1.72 0.461.73 0.461.74 0.461.75 0.471.76 0.471.77 0.471.78 0.471.79 0.471.80 0.471.81 0.471.82 0.471.83 0.471.84 0.471.85 0.471.86 0.471.87 0.471.88 0.481.89 0.481.90 0.481.91 0.481.92 0.481.93 0.481.94 0.481.95 0.481.96 0.481.97 0.481.98 0.481.99 0.482.00 0.492.01 0.492.02 0.492.03 0.492.04 0.492.05 0.492.06 0.492.07 0.492.08 0.492.09 0.492.10 0.492.11 0.492.12 0.492.13 0.502.14 0.502.15 0.502.16 0.502.17 0.502.18 0.502.19 0.502.20 0.502.21 0.502.22 0.502.23 0.502.24 0.502.25 0.51

Page 15: Canal+Trough+Design

2.26 0.512.27 0.512.28 0.512.29 0.512.30 0.512.31 0.512.32 0.512.33 0.512.34 0.512.35 0.512.36 0.512.37 0.512.38 0.512.39 0.512.40 0.512.41 0.512.42 0.512.43 0.512.44 0.512.45 0.512.46 0.512.47 0.512.48 0.512.49 0.512.50 0.512.51 0.512.52 0.512.53 0.512.54 0.512.55 0.512.56 0.512.57 0.512.58 0.512.59 0.512.60 0.512.61 0.512.62 0.512.63 0.512.64 0.512.65 0.512.66 0.512.67 0.512.68 0.512.69 0.512.70 0.512.71 0.512.72 0.512.73 0.512.74 0.512.75 0.512.76 0.512.77 0.512.78 0.512.79 0.51

Page 16: Canal+Trough+Design

2.80 0.512.81 0.512.82 0.512.83 0.512.84 0.512.85 0.512.86 0.512.87 0.512.88 0.512.89 0.512.90 0.512.91 0.512.92 0.512.93 0.512.94 0.512.95 0.512.96 0.512.97 0.512.98 0.512.99 0.513.00 0.513.01 0.513.02 0.513.03 0.513.04 0.513.05 0.513.06 0.513.07 0.513.08 0.513.09 0.513.10 0.513.11 0.513.12 0.513.13 0.513.14 0.513.15 0.51

Page 17: Canal+Trough+Design

bd M-15 M-20 M-25 M-30 M-35 M-400.18 0.18 0.19 0.2 0.2 0.2

0.25 0.22 0.22 0.23 0.23 0.23 0.230.50 0.29 0.30 0.31 0.31 0.31 0.32

0.75 0.34 0.35 0.36 0.37 0.37 0.38

1.00 0.37 0.39 0.40 0.41 0.42 0.42

1.25 0.40 0.42 0.44 0.45 0.45 0.46

1.50 0.42 0.45 0.46 0.48 0.49 0.491.75 0.44 0.47 0.49 0.50 0.52 0.522.00 0.44 0.49 0.51 0.53 0.54 0.552.25 0.44 0.51 0.53 0.55 0.56 0.572.50 0.44 0.51 0.55 0.57 0.58 0.602.75 0.44 0.51 0.56 0.58 0.60 0.62

3.00 and above 0.44 0.51 0.57 0.6 0.62 0.63

Over all depth of slab 300 or more 275 250 225 200 175k 1.00 1.05 1.10 1.15 1.20 1.25

Grade of concrete M-15 M-20 M-25 M-30 M-35 M-40

1.6 1.8 1.9 2.2 2.3 2.5

Grade of concrete M10 15 20 25 30 35 40

-- 0.6 0.8 0.9 1 1.1 1.2

Plain M.S. Bars H.Y.S.D. Bars

M 15 0.6 58 0.96 60

M 20 0.8 44 1.28 45

M 25 0.9 39 1.44 40

M 30 1 35 1.6 36

M 35 1.1 32 1.76 33

M 40 1.2 29 1.92 30

M 45 1.3 27 2.08 28

M 50 1.4 25 2.24 26

Table 3.1. Permissible shear stress Table tc in concrete (IS : 456-2000)100A s Permissible shear stress in concrete tc N/mm2

< 0.15

Table 3.2. Facor k

Table 3.3. Maximum shear stress tc.max in concrete (IS : 456-2000)

tc.max

Table 3.4. Permissible Bond stress Table tbd in concrete (IS : 456-2000)

tbd (N / mm2)

Table 3.5. Development Length in tension

Grade of concrete tbd (N / mm2) kd = Ld F tbd (N / mm2) kd = Ld F

Page 18: Canal+Trough+Design

150 or less1.30

45 50

1.3 1.4

in concrete (IS : 456-2000)