campbell7eaise_chapter5

23
Paul D. Adams • University of Arkansas  Mary K. Campbell Shawn O. Farrell international.cengage.com/ Chapter Five Protein Purification and Characterization Techniques 

Upload: ida-timbol

Post on 04-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 1/23

Paul D. Adams • University of Arkansas 

Mary K. Campbell

Shawn O. Farrellinternational.cengage.com/

Chapter FiveProtein Purification and

Characterization Techniques 

Page 2: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 2/23

Isolation of Proteins from Cells

Many different proteins exists within one cell

• Many steps needed to extract protein of interest, and

separate from many contaminants

• Before purification begins, protein must be released

from cell by homogenization 

Page 3: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 3/23

How We Get Proteins Out of Cells 

Page 4: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 4/23

Salting Out 

• After Proteins solubilized, they can be purified based

on solubility (usually dependent on overall charge,ionic strength, polarity

• Ammonium sulfate (NH4SO4) commonly used to “saltout” 

• Takes away water by interacting with it, makes proteinless soluble because hydrophobic interactions amongproteins increases

• Different aliquots taken as function of saltconcentration to get closer to desired protein sampleof interest (30, 40, 50, 75% increments)

• One fraction has protein of interest 

Page 5: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 5/23

Differential Centrifugation 

• Sample is spun, after 

lysis, to separateunbroken cells, nuclei,

other organelles and

particles not soluble in

buffer used

• Different speeds of spin allow for particle

separation

Page 6: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 6/23

Column Chromatography 

• Basis of Chromatography 

• Different compounds distribute themselves to a varying

extent between different phases

• Interact/distribute themselves 

• In different phases 

• 2 phases: 

• Stationary: samples interacts with this phase

• Mobile: Flows over the stationary phase and carries

along with it the sample to be separated

Page 7: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 7/23

Column Chromatography 

Page 8: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 8/23

Size-Exclusion/Gel-Filtration 

• Separates molecules based on size. 

• Stationary phase composed of cross-linked gel

particles.

• Extent of cross-linking can be controlled to determine

pore size

• Smaller molecules enter the pores and are delayed in

elution time. Larger molecules do not enter and elute

from column before smaller ones.

Page 9: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 9/23

Size Exclusion/Gel-filtration (Cont’d) 

Page 10: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 10/23

 Affinity Chromatography 

•Uses specific binding properties of molecules/proteins

•Stationary phase has a polymer that can be covalently

linked to a compound called a ligand that specifically

binds to protein

Page 11: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 11/23

Group Specific Affinity Resins

Page 12: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 12/23

Ion Exchange 

• Interaction based on overall charge

(less specific than affinity)

• Cation exchange

• Anion exchange 

Page 13: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 13/23

Electrophoresis 

• Electrophoresis- charged particles migrate in electric

field toward opposite charge

• Proteins have different mobility: 

• Charge

• Size

• Shape

• Agarose used as matrix for nucleic acids 

• Polyacrylamide used mostly for proteins 

Page 14: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 14/23

Electrophoresis (Cont’d) 

• Polyacrylamide has more resistance towards larger 

molecules than smaller 

• Protein is treated with detergent (SDS) sodium

dodecyl sulfate

• Smaller proteins move through faster (charge andshape usually similar)

Page 15: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 15/23

Isoelectric Focusing 

• Isolectric focusing- based on differing isoelectric pts.

(pI) of proteins

• Gel is prepared with pH gradient that parallels electric-

field. What does this do?

• Charge on the protein changes as it migrates. 

• When it gets to pI, has no charge and stops 

Page 16: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 16/23

Primary Structure Determination 

How is 1˚ structure determined? 

1) Determine which amino acids are present (amino

acid analysis)

2) Determine the N- and C- termini of the sequence

(a.a sequencing)

3) Determine the sequence of smaller peptide

fragments (most proteins > 100 a.a)

4) Some type of cleavage into smaller units necessary

Page 17: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 17/23

Primary Structure Determination 

Page 18: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 18/23

Protein Cleavage 

Protein cleaved at specific sites by:

1) Enzymes- Trypsin, Chymotrypsin

2) Chemical reagents- Cyanogen bromide

Enzymes: 

Trypsin- Cleaves @ C-terminal of (+) charged side

chains

Chymotrypsin- Cleaves @ C-terminal of aromatics

Page 19: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 19/23

Peptide Digestion 

Page 20: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 20/23

Cleavage by CnBr  

Cleaves @ C-terminal of INTERNAL methionines

Page 21: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 21/23

Determining Protein Sequence 

 After cleavage, mixture of peptide fragments produced.

• Can be separated by HPLC or other chromatographic

techniques

• Use different cleavage reagents to help in 1˚ determination 

Page 22: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 22/23

Peptide Sequencing 

• Can be accomplished by Edman Degradation 

• Relatively short sequences (30-40 amino acids) can

be determined quickly

• So efficient, today N-/C-terminal residues usually not

done by enzymatic/chemical cleavage

Page 23: Campbell7eAISE_chapter5

7/29/2019 Campbell7eAISE_chapter5

http://slidepdf.com/reader/full/campbell7eaisechapter5 23/23

Peptide Sequencing