calorimetry on pure substances and complex non … · buyco, davis 1970 brooks 1969 ditmars 1985...

24
Calorimetry on pure substances and complex non-equilibrium Al-systems 08.07.2016 UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP Richard Kemsies a Benjamin Milkereit a,b,c , Christoph Schick b,c , Olaf Kessler a,c a,b,c University of Rostock, Germany a Chair of Materials Science, b Polymer Physics Group c CALOR Calorimetry and Thermal Analysis Laboratory Rostock GTT-Technologies' 18th Annual Users' Meeting Herzogenrath, Germany June 29 - July 1, 2016

Upload: trananh

Post on 31-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Calorimetry on pure substances and complex non-equilibrium Al-systems

08.07.2016 UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

Richard Kemsiesa

Benjamin Milkereita,b,c, Christoph Schickb,c, Olaf Kesslera,c

a,b,cUniversity of Rostock, Germany aChair of Materials Science,

bPolymer Physics Group cCALOR Calorimetry and Thermal Analysis Laboratory Rostock

GTT-Technologies' 18th Annual Users' Meeting

Herzogenrath, Germany

June 29 - July 1, 2016

08.07.2016 UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP 2

• Motivation

• Differential Scanning

Calorimetry on Aluminium

alloys

• DSC Step Scan method

for cp measurement

heating

heat treatment of metallic materials

e. g. steels, Ni- & Co based superalloys, Al alloys, …

basic scheme applies for several materials

08.07.2016 3© 2009 UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

ageing

T

t

solution annealing

SAT

RTC0

600

400

200

0

lα+l

α

α+β

CB

quenching

How slow to

dissolve everything?

full solution

How fast to freeze

supersaturated

solid solution?

avoid precipitation

08.07.2016 UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP 4

• Motivation

• Differential Scanning

Calorimetry on Aluminium

alloys

• DSC Step Scan method

for cp measurement

08.07.2016 5© 2009 UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE

S: sample furnace; R: reference

furnace (equal S), 1heating wire,

2 Thermopile; measuring

systems – separately – in

ambience of const. temperature

G.HÖHNE, W. HEMMINGER, H.FLAMMERSHEIM:

Differential Scanning Calorimetry, SPRINGER

Differential Scanning Calorimetry (DSC)

2 identical micro furnaces in symmetric system

PC controlled temperature programs: heating/ cooling

regulation: equal temperature

difference in heating power or heat flow measured

measurement of (tiny) heat

Differential Scanning Calorimetry (DSC)

ideal:

heating/ cooling empty system: signal = 0

thermal reaction in sample furnace: Signal ≠ 0

real:

certain asymmetry: device depending bending

correct: subtract baseline from sample measurement

functional principle

08.07.2016 6© 2009 UNIVERSITÄT ROSTOCK

Δ P

T

0

Δ P

T

0

specific reaction

heat

sample

measurement

baseline

100 200 300 400 500

0,9

1,0

1,1

exosp

ecific

he

at

in J

g-1K

-1temperature in °C

100 200 300 400 500

0,00

0,02

0,04

0,06

ecxe

ss s

pe

cific

he

at

in J

g-1K

-1

temperature in °C

exo

Preliminary tests Al alloys

cooling EN AW-6005A , 50 K/min

Perkin-Elmer Pyris 1

after: 540 °C 20 min

How to measure precipitation heat – Cp or excess-Cp?

08.07.2016 7

alloyed sample

pure Al sample

alloyed sample

empty

© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

100 200 300 400 500

-10

-5

0

5

heat

flow

in m

W

900 mg EN AW-6005A

without any package

100 200 300 400 500-2

0

2

heat

flow

in m

W

3600 mg EN AW-6005A

wrapt in pure Al-foile

100 200 300 400 500-1

0

1

2

3

4

°C

°C

heat

flow

in m

W

temperature in °C

1570 mg EN AW-6005A

packed in pure Al crucible

Preliminary tests Al alloys

important role of radiation losses

baseline stability

samples change surface color:

bright dark grey

radiation effect changing bending

bending reduction sample package!

Obligatory sample package!

08.07.2016 8

Sample-measurement

Baseline-measurement

subtraction of sample- &

baseline-measurement

Setaram 121 DSC

cooling with 0.5 K/min after

solution annealing: 540°C 20 min

© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

DSC measures heat effects

sample compared with inert reference sample

9© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

T

t

0 100 200 300 400 500 600-0.3

-0.2

-0.1

0.0

0.1

0.2

exothermic

AA6005A initial T4

temperature in °C

0.05 K/s

endothermic

exce

ss C

p in

Jg

-1K

-1

Challenge

Very large scale of technically & physically interesting heating & cooling rates!

10

1E-4 1E-3 0,01 0,1 1 10 100 1000 10000 100000

cooling rate in K/s

e.g. one cooling method – different component dimensions

MMG GmbH

auto-lexikon.de

weloe.de

fi-sch.de

© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

range depends on physical requirements alloy, heating/cooling procedure, dimensions

How to cover all relevant rates?

Use different DSC types and methods

08.07.2016 11UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

Milkereit et al., Thermochim. Acta 492 (2009) 73-78.

Zohrabyan et al.

Thermochim. Acta 529 (2012) 51-58.

Schumacher et al.

Thermochim. Acta

602 (2015) 63-73.

indirect

"Differential Reheating"

Chip Calorimeter, e. g.

Mettler-Toledo Flash DSC

Me

ttle

r-T

ole

do D

SC

82

3

0.1

s

1 s1 m

in

1 h1 d

1 m

o cooling rate in K/s

cooling duration 540 °C 20 °C

1 a

0.0

1 s

1 w

e

Seta

ram

C600 D

SC

Seta

ram

12

1 D

SC

Perk

in-E

lme

r P

yris 1

DS

C

indirect

"Reheating"

Setaram

121 DSC &

C600 DSC

direct in-situ cooling experiments

Continuous heating DSC AA6005A to 580 °C

suppression of reactions with increasing

rate

serious peak shift, e. g. peak b:

observed T: 160 K

thermal lag 10 K

0.01 – 5 K/s

12© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

0 100 200 300 400 500 600

initial T4

temperature in °C

0.1 K/s

0.05 K/s

0.01 K/s

0.5

Jg

-1K

-1

0.5 K/s

5 K/s

1 K/s

3 K/s

endo

exce

ss s

pe

cific

he

at

160 K

T

t

b

J. Osten et al.. Dissolution and Precipitation Behaviour during

Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating

Rates. Materials 2015, 8, 2830-2848. DOI: 10.3390/ma8052830

0 100 200 300 400 500 600

initial T4

temperature in °C

0.1 K/s

0.05 K/s

0.01 K/s

0.5

Jg

-1K

-1

0.5 K/s

5 K/s

1 K/s

3 K/s

endo

challenges for interpretation of DSC heating curves

DSC measures sum signal!

sum might be zero...

separation of overlapped reactions problem to

solve in future

serious overlapping several reactions

13© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

t

Jg-1

K-1

0endo

exo

Continuous cooling precipitation diagrams

08.07.2016 UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP 14

T

t

α α + β

α α + B‘

precipitation start temperature

08.07.2016 15

0,5 mass% Mg2Si1

540

liquid

liquid

© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

mass % Si Mg …

1.23 1.05 …

mass % Si Mg …

0.4 0.44 …

Milkereit, B., et al. (2009). "Recording

of continuous cooling precipitation

diagrams of aluminium alloys."

Thermochimica Acta 492: 73-78. DOI:

10.1016/j.tca.2009.01.027

100 µm

Method

Which reactions occur when and how intensive?

16

tem

pera

ture

time

α α+ β

α

Which?

When & how

strong?

Structure analysis

Differential

Scanning

Calorimetry

t

T

100 200 300 400 500

0,00

0,05

cooling of an aluminium alloy

Jg-1

K-1

temperature in °C

exo

© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

time

10 µm

CCP-diagrams

Milkereit, B., et al. (2012). "Continuous cooling precipitation

diagrams of Al-Mg-Si alloys." Materials Science & Engineering A

550: 87-96. DOI: 10.1016/j.msea.2012.04.033

08.07.2016 UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP 17

• Motivation

• Differential Scanning

Calorimetry on Aluminium

alloys

• DSC Step Scan method

for cp measurement

cp measurement with DSC

high accuracy through step scan method

18© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

Al crucible

sample

hea

t flo

w

time

T

tem

pera

ture

sample sample

empty

𝑄𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄𝑒𝑚𝑝𝑡𝑦𝑑𝑡

𝑚 ∆𝑇

cp

temperature

C. Schick (2002): Temperature modulated differential scanning calorimetry

(TMDSC)- basics and applications to polymers In: Handbook of Thermal

Analysis and Calorimetry. Vol. 3: Applications to Polymers and Plastics

S.Z.D. Cheng, editor, pp. 713-810.

validity of the data?

calibration with sapphire

19© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

-100 0 100 200 300 400 500 600

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

cp

in J

/(g

K)

temperature in °C

sapphire literature

cp of sapphire (Al2O

3)

0.990

0.995

1.000

1.005

1.010

1.015

1.020

lite

ratu

re / m

ea

sure

men

t

• well known cp of sapphire

• after each sample measurement

error correction

sapphire literature

sapphire measurement

-100 0 100 200 300 400 500 600

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

uncorrected

cp in J

/(gK

)

temperature in °C

cp of Al5N5 (Al 99.995%)

uncorrected

corrected

correction factor

evaluating the data

comparison cp of pure Al with different literature sources

08.07.2016 20UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

-273.15 -73.15 126.85 326.85 526.85 726.85

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

5

11

16

22

27

32

38

cp

in J

/(m

ol K

)

temperature in K

DSC device 1

DSC device 2

Takahashi, 1989

Buyco, Davis 1970

Brooks 1969

Ditmars 1985

cp

in J

/(g

K)

temperature in °C

-100 100 300 500

173.15 373.15 573.15 773.15

0.8

0.9

1.0

1.1

1.2

22

24

27

30

32

cp

in J

/(m

ol K

)

temperature in K

DSC device 1

DSC device 2

Takahashi, 1989

Buyco, Davis 1970

Brooks 1969

Ditmars 1985

cp

in J

/(g

K)

temperature in °C

high correspondence between

literature and measurement

step scan application on intermetallic phases

aluminium alloys for long-term stable

electrical aluminium connections (ALLEE)

large collaborative project (GTT, Hydro Aluminium,

TU Dresden, RWTH Aachen)

goal:

long-term stable intermetallic phases (e.g. Al3Zr, Al3Ni)

also at elevated temperatures (140 °C)

challenge:

prediction (modelling) of precipitation and dissolution/growth

investigation of Al alloy: sum cp of all phases

solution:

investigation of pure intermetallic phases (Uni Jena, Germany)

why important?

08.07.2016 21UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

very difficult to produce!

intermetallic phases

08.07.2016 22UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

results

pure intermetallic phases Al3Zr, Al13Fe4, Al3Ni, Al10Fe3Ni

08.07.2016 23UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

150 300 450 600 750 9000.4

0.5

0.6

0.7

0.8

0.9

Al3Zr

Cp in J

/(g

K)

Temperatur in K

150 300 450 600 750 9000.4

0.5

0.6

0.7

0.8

0.9

Al10Fe3Ni

Cp in J

/(g

K)

Temperatur in K

150 300 450 600 750 9000.4

0.5

0.6

0.7

0.8

0.9

Al13Fe4

cp

in

J/(

gK

)

Temperatur in K

150 300 450 600 750 9000.4

0.5

0.6

0.7

0.8

0.9

Al3Ni

cp

in

J/(

gK

)

Temperatur in K

-100 100 300 500 700

173.15 373.15 573.15 773.15 973.15

0.5

0.6

0.7

0.8

13

16

19

22

temperature in K

cp

in J

/(m

ol K

)

Cp

in

J/(

gK

)

temperature in °C

Al3Zr-Fit

Al10Fe3Ni-Fit

Al13Fe4-Fit

Al3Ni-Fit

24© UNIVERSITY OF ROSTOCK | CHAIR OF MATERIALS SCIENCE & POLYMER PHYSICS GROUP

10-4

10-3

10-2

10-1

100

101

102

103

104

0

10

20

30

40

50

60

406080100120140160180200

HV

1 a

fter

agein

g

exce

ss c

p in

J/g

cooling rate in K/s

cooling EN AW-Al Zn8MgCu from 470 °C

0 100 200 300 400 500

0.00

0.05

0.10

0.15

0.20

0.25

cooling of EN AW-7150 after 480 °C 1 h

exce

ss c

p in

Jg

-1K

-1

temperature in °C

0.3 K/min

15 K/min

180 K/min

exo

-100 100 300 500 700

173.15 373.15 573.15 773.15 973.15

0.5

0.6

0.7

0.8

13

16

19

22

temperature in K

cp in J

/(m

ol K

)

Cp in J

/(gK

)

temperature in °C

Al3Zr

Al10Fe3Ni

Al13Fe4

Al3Ni