calorimetry (itc/thermodynamics and drug design)

23
Calorimetry (ITC/Thermodynamics and drug design) Lecture 7 MEDCH 528 John Sumida Molecular Analysis Facility/Analytical Biopharmacy Core

Upload: others

Post on 10-Nov-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Calorimetry (ITC/Thermodynamics and drug design)

Calorimetry (ITC/Thermodynamics and drug design)

Lecture 7MEDCH 528John Sumida

Molecular Analysis Facility/Analytical Biopharmacy Core

Page 2: Calorimetry (ITC/Thermodynamics and drug design)

Isothermal Titration Calorimetry

Macromolecule (protein, mAb, liposome, etc) in the calorimetric cell is titrated with a binding partner at constant temperature.

0VHMnQ Bti

Ligand/macromolecule in the cell - titrant/analyte in the syringe

ProteinMacromolecule(Ligand)In the cell

Small moleculeProtein

(Analyte)In the syringe

ITC monitors:• Changes in conformational states• Polar and non-polar interactions in the

active site• Proton transfer upon binding• Changes in hydration and hydrogen

bonding

Page 3: Calorimetry (ITC/Thermodynamics and drug design)

Primary objective of an ITC experiment

n

Macromolecule (protein, mAb, liposome, etc) in the calorimetric cell is titrated with a binding partner at constant temperature.

Ligand/macromolecule in the cell Titrant/analyte in the syringe

Pure sample – SEC, Ion exchange, mixed phase, GPC.Good sample preparation:• Dialysis of ligand and analyte in the

same buffer• Accurate concentration measurement

• Spectroscopic – Abs at 280nm• Refractometry• Least accurate are colorimetric

assays.

Characterizing the type of binding =

Page 4: Calorimetry (ITC/Thermodynamics and drug design)

Characterizing the type of binding G = H – T S

∆𝐶𝑝 ≫ ∆𝑆

∆𝐶𝑝 ≠ 0

Page 5: Calorimetry (ITC/Thermodynamics and drug design)

Entropy-enthalpy compensation

Muralidhara et. al. JBC 2006

65nM = KD1-BI< KD

4-CPI < KD1-CPI < KD

4-PI < KD4-PI < KD

BEI < KD1-PI=486nM

P450 2B4

𝑚 =∆𝐻

∆𝑇𝑃

BEI

4-CPIStern-volmer quenching

4-CPI

Page 6: Calorimetry (ITC/Thermodynamics and drug design)

The instrument

VMMVMVM tttt 00

2

100

analyteby occupied sites binding offraction theis

injection i after the binding ofheat thiQ

Volume Working 0 V

cule)(macromoleion concentrat Ligand Initial 0tM

VXVXVX ttt 2

100

0

VQQVQVQ iiii )1()1(2

100

0VHMnQ Bti

Page 7: Calorimetry (ITC/Thermodynamics and drug design)

0VHMnQ Bti The Analysis

free

aX

K

)1(

tfreet MnXX

0

00

21

21

V

V

V

V

MM tt

0

0

21

V

VXX tt

analyteby occupied sites binding offraction theis

injection i after the binding ofheat thiQ

Volume Working 0 V

cule)(macromoleion concentrat Ligand Initial 0tM

n

t

t

tat

t

Mn

X

MKnMn

X

110 2

Quadratic equation is solved for

Page 8: Calorimetry (ITC/Thermodynamics and drug design)

High Affinity interaction by competition assay

Ka[PA]

[P] [A]=

Kb[PB]

[P] [B]=

1 + [B] Kb

Happ = (Ha - Hb)[B] Kb

Kapp

Ka=

1 + [B] Kb

Low affinity interaction

Displacement of B with A.

Endothermic

ExothermicSigurskjold, et. al. Analytical Biochem. 2000, vol. 277, pp.260-266Wang, et. al. FEBS Lett. 1995, vol.360, pp.111-114

Page 9: Calorimetry (ITC/Thermodynamics and drug design)

Bailey et. al. Biochem J. 1993 289, 363-71.

3ER5.pdb

Study of Aspartyl protease

pH = 4.6T = 25oC

HB = -7.38 kcal/mol

MW=35086.76

Page 10: Calorimetry (ITC/Thermodynamics and drug design)

3ER5.pdb

ITC/DSC for Ultra-tight binding

Temperature dependence of HB

75 oC

62.6 oC

12.4 oC

HUNF = 235 kcal/mol

Kmol

kcalCpUNF

7.3

T0

TM

Kmol

kcalCpB

31.0

Brandts, John F; Lin, Lung-Nan, “Study of Strong to Ultratight Protein Interactions Using Differential Scanning Calorimetry”, Biochemistry, 1990, vol.29, pp6927-6940

Gomez, Javier; Freire, Ernesto; “Thermodynamic Mapping of the Inhibitor Site of the Aspartic Protease Endothiapepsin”, J. Mol. Bio. , 1995, vol.252, pp337-350

Ligand stabilization of the thermal transition

DSC endotherms for Endothiapepsin

inhibitor

HUNF

CpUNF

TMCOMPLEX

T0Free Ligand

𝐾𝐵𝑖𝑛𝑑 𝑇 = 𝐾𝐵𝑖𝑛𝑑 𝑇𝑚 𝑒−∆𝐻𝐵𝑖𝑛𝑑

𝑅1𝑇−

1𝑇𝑚

+∆𝐶𝑃 𝐵𝑖𝑛𝑑

𝑅 𝑙𝑛𝑇𝑇𝑚

−𝑇𝑇𝑚

+1

𝐾𝐵𝑖𝑛𝑑 𝑇𝑚 = 𝑒−∆𝐻(𝑇0)𝑈𝑛𝑓

𝑅1𝑇−1𝑇𝑚

+∆𝐶𝑃𝑈𝑛𝑓

𝑅𝑙𝑛

𝑇𝑇𝑚

−𝑇𝑇𝑚

+1

𝐾𝐵𝑖𝑛𝑑 27𝑜𝐶 = 51pM

Page 11: Calorimetry (ITC/Thermodynamics and drug design)

Measuring proton exchange at the active site

pKa = 1.4

pKa = 4.7

pH = 5

pH = 6

pH = 7

Increasing the pH reduces the affinity for peptatin A

Tang, JBC, vol.246 1971 pp. 4510-4517Fruton, Bergmann, Science vol.87 1938 p.557

Gomez, Javier; Freire, Ernesto; “Thermodynamic Mapping of the Inhibitor Site of the Aspartic Protease Endothiapepsin”, J. Mol. Bio. , 1995, vol.252, pp337-350

Data taken from Gomez et. al

pH

5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2

ln K

B

15.8

16.0

16.2

16.4

16.6

16.8

17.0

17.2

Data taken from Gomez et al Table 1

Regression R2=0.957

)(

)ln(

pHd

Kdn B

Page 12: Calorimetry (ITC/Thermodynamics and drug design)

Characterizing the protonation state at the active site

pKa = 1.4

pKa = 4.7

Gomez, Javier; Freire, Ernesto; JMB. , 1995, vol.252, pp337-350Marciniszyn, J. Jr., Hartsuck JA, Tang JJN, JBC 1976 vol.251, pp7088-7094

pH = 7.0

HBinding = Hrxn + n HIonization

n = 1.1

Enthalpy of binding as a function of the ionization enthalpy

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

4.00E+09

4.50E+09

0 2 4 6 8

KB(pH)

pH

)(

)(

101

10)()(

pHpKa

pHpKa

BB initialKpHK

4.3

cacodylate

Phosphate

HEPES ACES

Tris

Page 13: Calorimetry (ITC/Thermodynamics and drug design)

Displacement isothermal titration calorimetry of HIV-1 protease inhibitors affinity

Endothermic

Exothermic

G = -RTlnKa

H

Kohl et. al. PNAS 1988, vol.88, p.4686

Page 14: Calorimetry (ITC/Thermodynamics and drug design)

Exothermic versus Endothermic Binding: polar vs non-polar interactions

GB = HB - T SB

+Glu-Asp-Leu

G = -6.0 kcal/mol

CP = -60 cal/mol-K

H = -3.6 kcal/mol

+Acetyl-Pepstatin

G = -8 kcal/mol

H = 7.0 kcal/mol

CP = -452 cal/mol-K

Non Polar : Polar854 Å2 : 450 Å2

Non Polar : Polar400 Å2 : 380 Å2

Polar interactions in the binding site

BB GKTR )ln(

Page 15: Calorimetry (ITC/Thermodynamics and drug design)

Exothermic versus Endothermic Binding: solvation and conformational entropy

+Glu-Asp-Leu

G = -6.0 kcal/mol

CP = -60 cal/mol-K

H = -3.6 kcal/mol

+Acetyl-Pepstatin

G = -8 kcal/mol

H = 7.0 kcal/mol

CP = -452 cal/mol-K

Non Polar : Polar854 Å2 : 450 Å2

Non Polar : Polar400 Å2 : 380 Å2

Polar interactions in the binding site

S = 9.0 cal/mol-K

S = 50.0 cal/mol-K

Solvation

Conformational

GB = HB - T SB

Page 16: Calorimetry (ITC/Thermodynamics and drug design)

Exothermic versus Endothermic: temperature dependence of binding

G = H - T S

+Glu-Asp-Leu

+Acetyl-Pepstatin

H = -3.6 kcal/mol

G = -8 kcal/mol

H = 7.0 kcal/mol

G = -6.0 kcal/mol

CP = -60 cal/mol-K

CP = -452 cal/mol-K

S = 9.0 cal/mol-K

S = 50.0 cal/mol-K

Exothermic: affinity decreases with increasing temperature

Endothermic: affinity increases with increasing temperature

15 oC

35 oC

15 oC

35 oC

Page 17: Calorimetry (ITC/Thermodynamics and drug design)

Binding of NNRTs to WT HIV-1 protease

+

Velazquez-Campoy, et. al. Biochemistry, 2000, vol. 39, pp. 2201-2207

Ki = 2.0 nM

Ki = 2.0 nM

Ki = 4.0 nM

Idinavir

Saquinavir

Nelfinavir

Ritonavir

Schon et. al. Biophys. Chem. 2003, vol.105, pp. 221-230

Ki = 0.3 nM

H = 3.9 kcal/mol

H = 2.2 kcal/mol

H = 2.8 kcal

H = -2.3 kcal

-TS = -15.7 kcal/mol

-TS = -14.0 kcal/mol

-TS = -14.2 kcal/mol

-TS = -11.2 kcal/mol

CP = -0.450 kcal/mol-K

CP = -0.340 kcal/mol-K

CP = -0.400 kcal/mol-K

CP = -0.380 kcal/mol-K

Non-pol:pol =3.3

Non-pol:pol =2.8

Non-pol:pol =3.2

Non-pol:pol =2.3

Page 18: Calorimetry (ITC/Thermodynamics and drug design)

Binding of NNRTs to WT HIV-1 protease

+Idinavir

Saquinavir

Nelfinavir

Ritonavir

Page 19: Calorimetry (ITC/Thermodynamics and drug design)

Binding of NNRTs to and active site mutant HIV-1 protease V82F/I84V

+Idinavir

Saquinavir

Nelfinavir

Ritonavir

Page 20: Calorimetry (ITC/Thermodynamics and drug design)

2nd generation protease inhibitors: WT protease

KNI-764

KNI-272

Yoshiumura et. al. PNAS , 1999, vol.96, pp. 8675-8680

Page 21: Calorimetry (ITC/Thermodynamics and drug design)

2nd generation protease inhibitors: V82F/I84V binding

KNI-764

KNI-272

Yoshiumura et. al. PNAS , 1999, vol.96, pp. 8675-8680Luque et. al. Biochemistry, 1998, vol.37, pp. 5791-5797Velazquez-Campoy et. al. Protein Science, 2000, vol. 9 pp.1801-1809Velazquez-Campoy et. al. Archives Biochem Biophys., 2001, vol. 390, pp. 169-175Levitt, et. al. Curr. Op. Struct. Bio. 2001, vol.11, pp.560-566

Page 22: Calorimetry (ITC/Thermodynamics and drug design)

2nd generation protease inhibitors: V82F/I84V binding

KNI-764

KNI-272

Structurally constrainedYoshiumura et. al. PNAS , 1999, vol.96, pp. 8675-8680Luque et. al. Biochemistry, 1998, vol.37, pp. 5791-5797Velazquez-Campoy et. al. Protein Science, 2000, vol. 9 pp.1801-1809Velazquez-Campoy et. al. Archives Biochem Biophys., 2001, vol. 390, pp. 169-175Levitt, et. al. Curr. Op. Struct. Bio. 2001, vol.11, pp.560-566

Page 23: Calorimetry (ITC/Thermodynamics and drug design)

Thermodynamic design parameters in drug design

KNI-764 KNI-272

• High affinity – KD≈10-11

• Conformationally flexible• Exothermic interactions – increased hydrophilic

character• In the examples here the ability to trap water

in the active site resulted in the increased exothermic nature of the binding

More soluble conformationally flexible molecules not more hydrophobic constrained molecules

High affinity is not sufficient