caliper adapter calculus

Upload: ivanov-sergiu

Post on 04-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Caliper Adapter Calculus

    1/25

    Brake caliper adapter calculus

    Heiko Schroter

    January 16, 2013

    Contents

    1 Dynamical and statical load 2

    2 Force, moment equations 3

    3 Theoretical maximum deceleration 4

    4 Technically maximum braking acceleration 5

    5 Limiting case of the theoretically and technically possible decelerationamax 65.1 Coefficient of adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    6 Maximum front braking force 7

    7 Maximum braking force on the brake discs 8

    8 Minimum thickness of a theoretical caliper adapter 98.1 Thickness of rectangular bar (principal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    8.2 Thickness of a theoretical adapter (tension calculus according to Mises) . . . . . . . . . . 98.3 FEM simulation of the theoretical adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    9 Calculation of the adapter for the GS850 129.1 FEM Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    10 Forces at the hand brake lever and brake pistons 1410.1 B rake piston forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1410.2 H and lever forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1410.3 Stroke of the master cylinder shbz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1510.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    11 FEM simulation of the final draft adapter for Suzuki GS850 16

    11.1 Matrial stress in N/mm2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1711.2 Shifts inmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    12 Various adapters forms 20

    13 Examples of adapters on motorcycles 21

    14 Material values for aluminium materials. 22

    15 Addendum (Grip strength) 24

    1

  • 8/13/2019 Caliper Adapter Calculus

    2/25

    1 Dynamical and statical load

    Figure 1: Forces, Dimensions

    S = Center of gravityl = Wheelbase

    m = Vehicle mass

    g = Acceleration of gravity = 9,81

    ms2

    a = DecelerationFg = m*g

    FN1 = Normal force frontFN2 = Normal force rear

    Fdyn = m*a

    2

  • 8/13/2019 Caliper Adapter Calculus

    3/25

    2 Force, moment equations

    according to [2] and [1, S.41].

    0 =FBr Fdyn (1)

    0 =FN1+FN2 Fg =FN1+FN2 m g (2)

    0 = l FN1+l2 Fg+hs Fdyn , moments around B (3)

    => FN1= Fg l2l

    +Fdyn hsl

    FN1= m g l2l

    statical

    + m a hsl

    dynamical

    , force on front axle (4)

    insert (4) in (1)

    0 =

    (Fg l2+FDyn hs)

    l +FN2

    Fg

    => FN2= Fg (Fg l2+FDyn hs)

    l

    =Fg (1 l2l)

    l1l

    hsl FDyn

    =Fg l1l FDyn

    hsl

    FN2= m g l1l m a

    hsl

    (5)

    During braking, the front axle is additionally loaded with the dynamic component m a hsl

    and the

    rear unloaded by the same amount.

    3

  • 8/13/2019 Caliper Adapter Calculus

    4/25

    3 Theoretical maximum decelerationThe front axial force FN1 is maximum when the rear axle force FN2 0 (incipient rollover).

    FN2= 0 =m g l1

    l

    m a hs

    l

    a= amaxTheor=g l1hs

    (6)

    and (6) inserted in (4)

    FN1= m g (7)

    i.e. at maximum decelaration amaxTheor the total vehicle mass lasts on the front wheel.

    4

  • 8/13/2019 Caliper Adapter Calculus

    5/25

    4 Technically maximum braking acceleration

    Figure 2: Stiction,= Coefficient of adhesion

    FN2= 0 and (7) results in the braking acceleration:

    FBr

    = (FN1

    +FN2

    )m a = m g

    a = g

    a= amaxTech = g (8)

    i.e. the deceleration is determined by the adhesion of the road.

    5

  • 8/13/2019 Caliper Adapter Calculus

    6/25

    5 Limiting case of the theoretically and technically possibledeceleration amax

    amaxTech = amaxTheor

    g = g l1hs

    = l1hs

    (9)

    i.e. if l1hs

    the maximum usable adhesion is limited by the geometry of the bike. For example a dry

    race track with Mu = 1.3 could only be exploited ifhs l11,3 .

    5.1 Coefficient of adhesion

    Table 1: Coefficient of adhesion for dry road surfaces:Type Value Sourcecountry road / highway 0,8 1.Racetracks 1,0 bis 1,4 1.Concrete, stone, granite 0 ,7 2.Asphalt 0,6 2.Blue basalt 0,55 2.Concrete 0,6 bis 0,9 3.Aspahlt 0,6 bis 0,8 3.Concrete bis 1,0 4.

    Source:

    1. Institute for Motorcycle Safety Association, Dr.-Ing.Achim Kuschewski

    2. WABCO GmbH, 31028 Gronau

    3. Schulz,H. (10%Schlupf)

    4. Kirnich,G. (20% Schlupf)

    6

  • 8/13/2019 Caliper Adapter Calculus

    7/25

    6 Maximum front braking force

    with (9) two cases for the maximum possible braking force can be derived: FBrv = Braking force front

    Limited by geometry (rollover)

    FBrvmax = max FN1max = m g l1hs (10)

    Limited by adhesion (slipping of the front wheel)

    FBrv = FN1=

    m g

    l2l

    +m a hsl

    with (4) and (8)

    FBrv =m g

    l2

    l +

    2 hsl

    (11)

    Example with m = 500kg:

    Bike l l1 l2 hs usable max

    M1 1.5m 0,75m 0,75m 0,85m 0,88M2 1,5m 0,85m 0,65m 0.65m 1,3

    Table 2: Comparison of possible brake forces

    Figure 3: FBrs per Rotorx=adhesion coeffcient, y=braking force

    The brake performance of the machine M1 is higher up to = 1.01 , although the center of mass ofM2 lies lower and back. i.e., the geometric possibility of the higher braking power of the lower and

    further back center of mass can only be used at extremely handy dry road surfaces, such as concreteor race tracks.

    7

  • 8/13/2019 Caliper Adapter Calculus

    8/25

    7 Maximum braking force on the brake discs

    Figure 4: Force on the brake disk

    FBr R= FBrs r R = radius wheel, r=radius brake rotor (Brs)

    Braking forces at the front:

    FBrsvmax= m g l1hs

    Rvrv

    , for

    l1hs

    with (10) (12)

    FBrsv =m g

    l2

    l +

    2 hsl

    Rvrv

    , for

    (b) =6 My

    b h2

    Example:

    FBrsv = 9392N, la= 50mm,ha = 75mm,zul(Al6082Rp0.2)= 250 Nmm2

    => bamin= 6 My(zul) h2

    =6 FBrsv la

    (zul) h2a= 2mm

    8.2 Thickness of a theoretical adapter (tension calculus according to Mises)

    Now the braking force is not directly applied on the adapter, but at the caliper (Fig. 7). The allowabletension in the adapter plate is derived from equivalent stress according to Mises [8] (only rough calculation,because the adapter is a parallelogram and not a rectangular plate.)

    (v)= 2s+ 3 2b s= shear stress, b= bending stress, y-component = 0 (14)

    9

  • 8/13/2019 Caliper Adapter Calculus

    10/25

    Figure 7: Caliper adapter

    The brake system is loaded with impulses. Existing microscopic cracks shall not expand. Thereforethe equivalent stress shall not exceed the alternate bending strength of the material. The pulsed loadrequires a material which is not too brittle. Requested is a strong and ductile material.

    (v) bW , bW= alternate bending strength in N/mm2

    Because the adapter plate is not rectangular the following value is apllied for z:

    zParallelogram 0, 7 ha

    Fs = FBrsv sin() (shear stress)Fm = FBrsv cos() (bending stress)

    bas = Fs

    ha bW=

    FBrsv sin()

    ha bW(req thickness by Fs)

    bam =12 0, 7 Fm (la+lz)

    bW h2a

    =8, 4 FBrsv cos() (la+lzange cos())

    bW h2a(req thickness by Fm)

    batot =

    b2as + 3 b2am

    (15)

    Example:la = 40mm, ha = 75mm, lzange= 44mm, = 66

    , = 11, FBrsv = 10000N, d(Al6082)= 95 Nmm2

    batot =

    10000N sin(66)

    75mm 95 Nmm2

    2+. . .

    3

    8, 4 10000N cos(66)

    (40mm+ 44mm cos(11))

    95 Nmm2

    752mm2

    2 12

    =

    1, 64mm2 + 84, 9mm2

    batot = 9, 3mm

    batot is the minimum thickness of the material which can stand all stresses and stays below bW. WithNdisks or adapters the thickness per adapter is: baAdapter =batot/N

    10

  • 8/13/2019 Caliper Adapter Calculus

    11/25

    8.3 FEM simulation of the theoretical adapter

    Figure 8: FEM Simulation ba = 9,3mmThe braking force FBr is applied perpendicular to the right eye. The fixed bearing of the adapteris the entire left edge. In the local lower region of the fixed bearing, the allowed tension value of2bW = 95N/mm is exceeded. The rest of the area stays below bW .

    11

  • 8/13/2019 Caliper Adapter Calculus

    12/25

    9 Calculation of the adapter for the GS850

    TOKICO Two-piston calipers shall be used.

    Type HP weight top speed rotor

    GS850 80 500kg 203km/h 275mmDL1000 98 470kg 208km/h 310mm

    Table 3: technical data GS850,DL1000

    Figure 9: Tokico Bremszange / Adapter Entwurf

    Technical data Suzuki GS850:mmax = 478kg (calc value = 500kg), l = 1,5m, l1 = 0,75m, hs = 0,85m, Rv = 0,24m(19), rv =137,5mm (275mm) => rveff = (275/2 20) = 117, 5mm, ha = 73mm, la = 41,3mm, lcaliper =

    44,9mm, = 9, = 70, l1hs = 0, 88.

    Material chosen: Aluminium AL6082 =(d) = 95 Nmm2

    FBrsvmax= m g Rv

    rveff= 0, 88 500kg 9, 81

    N

    mm2

    0, 24m

    0, 1175m= 8888N

    The braking force 1is distributed on to two rotors 8888N/2 = 4444Nand with (15) the minimumthickness of a single adapter is:

    baAdapter =

    4444N sin(70)

    73mm 95 N

    mm2

    2+. . .

    3

    8, 4 4444N cos(70)

    (41, 3mm+ 44, 9mm cos(9))

    95 Nmm2

    732mm2

    2 12

    =

    0, 62mm2 + 3 2, 162mm2

    baAdapter = 3, 79mm (16)

    9.1 FEM Simulation

    The FEM simulation (Fig. 10,11) of the adapters with a thickness according to (16) shows localareas where the stress value is a little bit higher than the maximum of 95 N/mm2. The leverageeffect of the caliper causes additional tension and bending moments in the Z-direction which arenot considered in the idealized estimate.

    1

    For comparison. The braking force of the DL1000 isFBrsvmaxDL1000 = 0, 9470kg 9, 81 Nmm2

    0,24m

    0,135m = 7377N. Wheeldiameter and wheelbase are identical. The height of the center of gravity assumed to be equal.

    12

  • 8/13/2019 Caliper Adapter Calculus

    13/25

    Figure 10: Front-, Rearside

    Figure 11: bolt fixing level, color table

    13

  • 8/13/2019 Caliper Adapter Calculus

    14/25

    10 Forces at the hand brake lever and brake pistons

    10.1 Brake piston forces

    Figure 12: Master brake cylinder (HBZ), brake piston Scheme

    FBrs = Fk 2 B (*2, because of 2 pads)

    P = F

    A =

    FhbzAhbz

    = FkAk n

    (n = no of pistons per caliper)

    Fhbz = FBrs Ahbz N

    2 B Ak n =

    FBrs d2hbz N

    2 B d2k n (N = no of rotors)

    adhesion coefficient B for brake pads according to ATE ca. 0,3-0,5. FBrs = braking force per rotor,see (13) and (12). dk = of brake piston, dhbz = of main braking cylinder.

    10.2 Hand lever forces

    Figure 13: Forces at the hand lever

    Fhbz lhbz =FHand lh

    FHand= lhbz

    lh

    d2hbz

    d2k

    FBrs N

    2 B n (17)

    14

  • 8/13/2019 Caliper Adapter Calculus

    15/25

    10.3 Stroke of the master cylinder shbz

    With FkFhbz

    = AkNnAhbz

    = shbzsk

    (Hydraulic Press)and an estimated air gap ofsk = 0.1 mm between rotor and the brake pads the hub of the master cylinderis:

    shbz= d2k N n sk

    d2hbz(18)

    10.4 Example

    Suzuki GS850m=500kg, N=2, FBrs = 4444N (Force per disk) , lhbz = 20mm, lh = 100mm, B = 0.4, dhbz = 16mm,P = brake tube pressure(bar).

    GS850 n dk shbz FHand FHandkg FHBZ P

    Original 1 38mm 1,13mm 394N 40kg 1970N 15,7bar

    Tokico 2 30mm 1,41mm 316N 32kg 1580N 9,8bar

    Table 4: Hand force and hub of the master cylinder

    15

  • 8/13/2019 Caliper Adapter Calculus

    16/25

    11 FEM simulation of the final draft adapter for Suzuki GS850

    FBrsvmax = 4509N, Material Al6082 (bW = 95 Nmm2

    ). The flanges are 10mm thick with 3,79mm needed

    according to eq (16). The allowed stress level is adhered to. At the top fixing bolt a stress level of 136 Nmm2

    can be observed. The other areas stay below v

  • 8/13/2019 Caliper Adapter Calculus

    17/25

    11.1 Matrial stress in N/mm2

    Figure 16: Front-, Rearview

    17

  • 8/13/2019 Caliper Adapter Calculus

    18/25

    Figure 17: Stud level, color table

    11.2 Shifts inmm

    Figure 18: X-direction

    18

  • 8/13/2019 Caliper Adapter Calculus

    19/25

    Figure 19: Y-direction

    Figure 20: Z-direction

    19

  • 8/13/2019 Caliper Adapter Calculus

    20/25

    12 Various adapters forms

    20

  • 8/13/2019 Caliper Adapter Calculus

    21/25

    13 Examples of adapters on motorcycles

    21

  • 8/13/2019 Caliper Adapter Calculus

    22/25

    14 Material values for aluminium materials.

    Selected data for some aluminium.

    Material Rp0,2 bW Br Z S E Be

    AW-2014 T6 380 100 7 1 5 4 4AW-2017 T3 240 8 2 5 5 4AW-5083 H111 120 110 10 2 2 4 4AW-6012 T6 260 80 8 2 5 5 2AW-6082 T6 250 95 12 2 2 3 2AW-7022 T6 370 110 6 1 5 5 3AW-7075 T6 480 160 5 2 5 5 3

    Table 5: Material Properties (without guarantee)

    Rp0,2 = offset yield strength [ Nmm2

    ], bW= alternate bending strength [ Nmm2

    ],Br=breaking strain [%], Z=machining, S=welding,E=anodising, Be=coating

    1 very well

    2 good

    3 satisfactory

    4 sufficient

    5 not suitable

    The corrosion protection is to be considered in the high-strength aluminum alloys. The alternatebending strength can be estimated from the tensile strength (b, Rm): A value of 0.2 . . . 0.25 bis allowable with alternating forces [7, S.103]

    22

  • 8/13/2019 Caliper Adapter Calculus

    23/25

    References

    [1] Projekt Antidive System, Markus Kriete, Max Kohler, Prof Dr.Ing. Uwe Reinert,WS07/08 , S.41,Hochschule Bremen

    [2] Vittore Cossalter, Motorcycle Dynamics, 2006, ISBN-10: 1430308613, ISBN-13: 978-1430308614

    [3] Vittore Cossalter, Roberto Lot , About the motorcycle braking,http://www.dinamoto.it/index.html

    [4] z88aurora, Uni Bayreuth, Univ. Prof. Dr.-Ing. Frank Rieg,http://www.z88.uni-bayreuth.de/z88aurora/wasistz88.htm

    [5] gmsh, a three-dimensional finite element mesh generator with built-in pre- and post-processing facil-ities, Christophe Geuzaine and Jean-Francois Remaclehttp://geuz.org/gmsh

    [6] FreeCAD, A parametric 3D CAD modeler,http://sourceforge.net/apps/mediawiki/free-cad/index.php

    [7] Feinwerkelemente, Horst Ringhardt,Carl Hanser Verlag Munchen, 1974

    [8] http://de.wikipedia.org/wiki/Vergleichsspannung

    23

  • 8/13/2019 Caliper Adapter Calculus

    24/25

    15 Addendum (Grip strength)

    Standard value for grip strength (in kg):

    Age Men Female

    2024 years right 4655 right 2532Links 3847 left 2228

    2529 years right 4455 right 2834left 4350 left 2329

    3034 years right 4555 right 2736left 4050 left 2331

    3539 years right 4354 right 2934left 4151 left 2530

    4044 years right 4453 right 2632left 4351 left 2228

    4549 years right 3950 right 2128left 3546 left 2025

    5054 years right 4352 right 2530left 3946 left 2126

    5559 years right 3446 right 2026left 2738 left 1622

    6064 years right 3141 right 2025left 2635 left 1621

    6569 years right 3241 right 1823left 2635 left 1219

    7074 years right 2434 right 1723left 2129 left 1419

    75 years und above right 2030 right 1419left 1725 left 1317

    Table 6: Grip strength in kg

    24

  • 8/13/2019 Caliper Adapter Calculus

    25/25

    MALES FEMALES

    Age (years) Weak Normal Strong Weak Normal Strong

    10-11 22.4 < 11.8 11.8-21.6 >21.612-13 31.2 < 14.6 14.6-24.4 >24.414-15 44.3 < 15.5 15.5-27.3 >27.316-17 52.4 < 17.2 17.2-29.0 >29.018-19 55.5 < 19.2 19.2-31.0 >31.020-24 56.6 < 21.5 21.5-35.3 >35.325-29 57.5 < 25.6 25.6-41.4 >41.430-34 55.8 < 21.5 21.5-35.3 >35.335-39 55.6 < 20.3 20.3-34.1 >34.140-44 55.3 < 18.9 18.9-32.7 >32.7

    45-49 54.5 < 18.6 18.6-32.4 >32.450-54 50.7 < 18.1 18.1-31.9 >31.955-59 48.5 < 17.7 17.7-31.5 >31.560-64 48.0 < 17.2 17.2-31.0 >31.065-69 44.0 < 15.4 15.4-27.2 >27.270-99 35.1 < 14.7 14.7-24.5 >24.5

    Table 7: Grip Strength Ratings for Males and Females (in kg)source: Camry Electronic Hand Dynamometer Instruction manual