calculus of variations solvedproblems - univerzita...

37
Calculus of Variations solved problems Pavel Pyrih June 4, 2012 ( public domain ) Acknowledgement. The following problems were solved using my own procedure in a program Maple V, release 5. All possible errors are my faults. 1 Solving the Euler equation Theorem.(Euler) Suppose f (x, y, y 0 ) has continuous partial derivatives of the second order on the interval [a, b]. If a functional F (y)= R b a f (x, y, y 0 )dx attains a weak relative extrema at y 0 , then y 0 is a solution of the following equation ∂f ∂y - d dx ∂f ∂y 0 =0 . It is called the Euler equation. 1

Upload: phungkien

Post on 01-Feb-2018

233 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

Calculus of Variationssolved problems

Pavel Pyrih

June 4, 2012

( public domain )

Acknowledgement. The following problems were solved using my own procedurein a program Maple V, release 5. All possible errors are my faults.

1 Solving the Euler equation

Theorem.(Euler) Suppose f(x, y, y′) has continuous partial derivatives of the

second order on the interval [a, b]. If a functional F (y) =∫ b

af(x, y, y′)dx attains

a weak relative extrema at y0, then y0 is a solution of the following equation

∂f

∂y− d

dx

( ∂f

∂y′

)= 0 .

It is called the Euler equation.

1

Page 2: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.1 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

12x y(x) + (∂

∂xy(x))2 dx

Hint:

elementary

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = 12x y(x) + (

∂xy(x))2

in the form

f(x, y, z) = 12x y + z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 12x

and

∂zf(x, y(x),

∂xy(x)) = 2 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 2 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

12x− 2 (∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = x3 + C1 x + C2

Info.

cubic polynomial

Comment.

no comment

2

Page 3: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.2 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

3x +

ö

∂xy(x) dx

Hint:

elementary

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = 3x +

ö

∂xy(x)

in the form

f(x, y, z) = 3x +√z

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 0

and

∂zf(x, y(x),

∂xy(x)) =

1

2

1√∂∂x y

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = −1

4

∂2

∂x2 y(x)

( ∂∂x y(x))(3/2)

and finally obtain the Euler equation for our functional

1

4

∂2

∂x2 y(x)

( ∂∂x y(x))(3/2)

= 0

We solve it using various tools and obtain the solution

y(x) = C1 x + C2

Info.

linear function

Comment.

no comment

3

Page 4: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.3 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

x + y(x)2 + 3 (∂

∂xy(x)) dx

Hint:

elementary

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = x + y(x)2 + 3 (

∂xy(x))

in the form

f(x, y, z) = x + y2 + 3 z

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2 y

and

∂zf(x, y(x),

∂xy(x)) = 3

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 0

and finally obtain the Euler equation for our functional

2 y(x) = 0

We solve it using various tools and obtain the solution

y(x) = 0

Info.

constant solution

Comment.

no comment

4

Page 5: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.4 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x)2 dx

Hint:

elementary

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x)2

in the form

f(x, y, z) = y2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2 y

and

∂zf(x, y(x),

∂xy(x)) = 0

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 0

and finally obtain the Euler equation for our functional

2 y(x) = 0

We solve it using various tools and obtain the solution

y(x) = 0

Info.

zero

Comment.

no comment

5

Page 6: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.5 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x)2 + x2 (∂

∂xy(x)) dx

Hint:

elementary

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x)2 + x2 (

∂xy(x))

in the form

f(x, y, z) = y2 + x2 z

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2 y

and

∂zf(x, y(x),

∂xy(x)) = x2

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 2x

and finally obtain the Euler equation for our functional

2 y(x)− 2x = 0

We solve it using various tools and obtain the solution

y(x) = x

Info.

linear

Comment.

no comment

6

Page 7: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.6 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x) + x (∂

∂xy(x)) dx

Hint:

elementary

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x) + x (

∂xy(x))

in the form

f(x, y, z) = y + x z

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 1

and

∂zf(x, y(x),

∂xy(x)) = x

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 1

and finally obtain the Euler equation for our functional

0 = 0

We solve it using various tools and obtain the solution

y(x) = Y(x)

Info.

all functions

Comment.

no comment

7

Page 8: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.7 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

∂xy(x) dx

Hint:

elementary

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) =

∂xy(x)

in the form

f(x, y, z) = z

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 0

and

∂zf(x, y(x),

∂xy(x)) = 1

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 0

and finally obtain the Euler equation for our functional

0 = 0

We solve it using various tools and obtain the solution

y(x) = Y(x)

Info.

all functions

Comment.

no comment

8

Page 9: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.8 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x)2 − (∂

∂xy(x))2 dx

Hint:

missing x

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x)2 − (

∂xy(x))2

in the form

f(x, y, z) = y2 − z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2 y

and

∂zf(x, y(x),

∂xy(x)) = −2 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = −2 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

2 y(x) + 2 (∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = C1 cos(x) + C2 sin(x)

Info.

trig functions

Comment.

no comment

9

Page 10: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.9 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

√1 + (

∂xy(x))2 dx

Hint:

missing x y

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) =

√1 + (

∂xy(x))2

in the form

f(x, y, z) =√

1 + z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 0

and

∂zf(x, y(x),

∂xy(x)) =

∂∂x y√

1 + ( ∂∂x y)2

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = −

( ∂∂x y(x))2 ( ∂2

∂x2 y(x))

(1 + ( ∂∂x y(x))2)(3/2)

+∂2

∂x2 y(x)√1 + ( ∂

∂x y(x))2

and finally obtain the Euler equation for our functional

( ∂∂x y(x))2 ( ∂2

∂x2 y(x))

(1 + ( ∂∂x y(x))2)(3/2)

−∂2

∂x2 y(x)√1 + ( ∂

∂x y(x))2= 0

We solve it using various tools and obtain the solution

y(x) = C1 x + C2

Info.

linear function

Comment.

no comment

10

Page 11: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.10 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

x (∂

∂xy(x)) + (

∂xy(x))2 dx

Hint:

missing y

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = x (

∂xy(x)) + (

∂xy(x))2

in the form

f(x, y, z) = x z + z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 0

and

∂zf(x, y(x),

∂xy(x)) = x + 2 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 1 + 2 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

−1− 2 (∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = −1

4x2 + C1 x + C2

Info.

quadratic function

Comment.

no comment

11

Page 12: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.11 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

(1 + x) (∂

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = (1 + x) (

∂xy(x))2

in the form

f(x, y, z) = (1 + x) z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 0

and

∂zf(x, y(x),

∂xy(x)) = 2 (1 + x) (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 2 (

∂xy(x)) + 2 (1 + x) (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

−2 (∂

∂xy(x))− 2 (1 + x) (

∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = C1 + C2 ln(1 + x)

Info.

not supplied

Comment.

no comment

12

Page 13: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.12 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

2 y(x) ex + y(x)2 + (∂

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = 2 y(x) ex + y(x)2 + (

∂xy(x))2

in the form

f(x, y, z) = 2 y ex + y2 + z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2 ex + 2 y

and

∂zf(x, y(x),

∂xy(x)) = 2 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 2 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

2 ex + 2 y(x)− 2 (∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = (1

2cosh(x)2 +

1

2cosh(x) sinh(x) +

1

2x) sinh(x)

+ (−1

2cosh(x) sinh(x) +

1

2x− 1

2cosh(x)2) cosh(x) + C1 sinh(x) + C2 cosh(x)

Info.

not supplied

Comment.

no comment

13

Page 14: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.13 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

2 y(x) + (∂

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = 2 y(x) + (

∂xy(x))2

in the form

f(x, y, z) = 2 y + z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2

and

∂zf(x, y(x),

∂xy(x)) = 2 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 2 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

2− 2 (∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) =1

2x2 + C1 x + C2

Info.

not supplied

Comment.

no comment

14

Page 15: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.14 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

2 (∂

∂xy(x))3 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = 2 (

∂xy(x))3

in the form

f(x, y, z) = 2 z3

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 0

and

∂zf(x, y(x),

∂xy(x)) = 6 (

∂xy)2

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 12 (

∂xy(x)) (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

−12 (∂

∂xy(x)) (

∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = C1

Info.

not supplied

Comment.

no comment

15

Page 16: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.15 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

4x (∂

∂xy(x)) + (

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = 4x (

∂xy(x)) + (

∂xy(x))2

in the form

f(x, y, z) = 4x z + z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 0

and

∂zf(x, y(x),

∂xy(x)) = 4x + 2 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 4 + 2 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

−4− 2 (∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = −x2 + C1 x + C2

Info.

not supplied

Comment.

no comment

16

Page 17: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.16 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

7 (∂

∂xy(x))3 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = 7 (

∂xy(x))3

in the form

f(x, y, z) = 7 z3

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 0

and

∂zf(x, y(x),

∂xy(x)) = 21 (

∂xy)2

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 42 (

∂xy(x)) (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

−42 (∂

∂xy(x)) (

∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = C1

Info.

not supplied

Comment.

no comment

17

Page 18: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.17 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

√y(x) (1 + (

∂xy(x))2) dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) =

√y(x) (1 + (

∂xy(x))2)

in the form

f(x, y, z) =√y (1 + z2)

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) =

1

2

1 + ( ∂∂x y)2√

y (1 + ( ∂∂x y)2)

and

∂zf(x, y(x),

∂xy(x)) =

y ( ∂∂x y)√

y (1 + ( ∂∂x y)2)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) =

−1

2

y(x) ( ∂∂x y(x)) (( ∂

∂x y(x)) (1 + ( ∂∂x y(x))2) + 2 y(x) ( ∂

∂x y(x)) ( ∂2

∂x2 y(x)))

(y(x) (1 + ( ∂∂x y(x))2))(3/2)

+( ∂∂x y(x))2√

y(x) (1 + ( ∂∂x y(x))2)

+y(x) ( ∂2

∂x2 y(x))√y(x) (1 + ( ∂

∂x y(x))2)

and finally obtain the Euler equation for our functional

1

2

1√y(x)

+1

2

y(x) ( ∂∂x y(x)) (( ∂

∂x y(x)) (1 + ( ∂∂x y(x))2) + 2 y(x) ( ∂

∂x y(x)) ( ∂2

∂x2 y(x)))

(y(x) (1 + ( ∂∂x y(x))2))(3/2)

−( ∂∂x y(x))2√

y(x) (1 + ( ∂∂x y(x))2)

−y(x) ( ∂2

∂x2 y(x))√y(x) (1 + ( ∂

∂x y(x))2)= 0

18

Page 19: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

We solve it using various tools and obtain the solution

y(x) =1

4

4 + C1 2 x2 + 2 C1 2 x C2 + C2 2 C1 2

C1

Info.

quadratic function

Comment.

no comment

19

Page 20: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.18 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

x y(x) (∂

∂xy(x)) dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = x y(x) (

∂xy(x))

in the form

f(x, y, z) = x y z

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = x (

∂xy)

and

∂zf(x, y(x),

∂xy(x)) = x y

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = y(x) + x (

∂xy(x))

and finally obtain the Euler equation for our functional

−y(x)− x (∂

∂xy(x)) = 0

We solve it using various tools and obtain the solution

y(x) = 0

Info.

not supplied

Comment.

no comment

20

Page 21: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.19 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

x y(x) + 2 (∂

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = x y(x) + 2 (

∂xy(x))2

in the form

f(x, y, z) = x y + 2 z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = x

and

∂zf(x, y(x),

∂xy(x)) = 4 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 4 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

x− 4 (∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) =1

24x3 + C1 x + C2

Info.

not supplied

Comment.

no comment

21

Page 22: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.20 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

x y(x) + y(x)2 − 2 y(x)2 (∂

∂xy(x)) dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = x y(x) + y(x)2 − 2 y(x)2 (

∂xy(x))

in the form

f(x, y, z) = x y + y2 − 2 y2 z

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = x + 2 y − 4 y (

∂xy)

and

∂zf(x, y(x),

∂xy(x)) = −2 y2

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = −4 y(x) (

∂xy(x))

and finally obtain the Euler equation for our functional

x + 2 y(x) + 4 y(x) (∂

∂xy(x)) = 0

We solve it using various tools and obtain the solution

y(x) = −1

2x

Info.

no extremal

Comment.

no comment

22

Page 23: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.21 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x)

√1 + (

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x)

√1 + (

∂xy(x))2

in the form

f(x, y, z) = y√

1 + z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) =

√1 + (

∂xy)2

and

∂zf(x, y(x),

∂xy(x)) =

y ( ∂∂x y)√

1 + ( ∂∂x y)2

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) =

( ∂∂x y(x))2√

1 + ( ∂∂x y(x))2

−y(x) ( ∂

∂x y(x))2 ( ∂2

∂x2 y(x))

(1 + ( ∂∂x y(x))2)(3/2)

+y(x) ( ∂2

∂x2 y(x))√1 + ( ∂

∂x y(x))2

and finally obtain the Euler equation for our functional

1−( ∂∂x y(x))2√

1 + ( ∂∂x y(x))2

+y(x) ( ∂

∂x y(x))2 ( ∂2

∂x2 y(x))

(1 + ( ∂∂x y(x))2)(3/2)

−y(x) ( ∂2

∂x2 y(x))√1 + ( ∂

∂x y(x))2= 0

We solve it using various tools and obtain the solution

y(x) =1

2

1 + (e(√

C1 (x+ C2)))2

e(√

C1 (x+ C2))√

C1

Info.

not supplied

Comment.

no comment

23

Page 24: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.22 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x) (∂

∂xy(x)) dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x) (

∂xy(x))

in the form

f(x, y, z) = y z

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) =

∂xy

and

∂zf(x, y(x),

∂xy(x)) = y

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) =

∂xy(x)

and finally obtain the Euler equation for our functional

−(∂

∂xy(x)) = 0

We solve it using various tools and obtain the solution

y(x) = Y(x)

Info.

not supplied

Comment.

no comment

24

Page 25: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.23 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x) (∂

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x) (

∂xy(x))2

in the form

f(x, y, z) = y z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = (

∂xy)2

and

∂zf(x, y(x),

∂xy(x)) = 2 y (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 2 (

∂xy(x))2 + 2 y(x) (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

−2 (∂

∂xy(x))2 − 2 y(x) (

∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = 0

Info.

not supplied

Comment.

no comment

25

Page 26: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.24 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x)2 + 2x y(x) (∂

∂xy(x)) dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x)2 + 2x y(x) (

∂xy(x))

in the form

f(x, y, z) = y2 + 2x y z

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2 y + 2x (

∂xy)

and

∂zf(x, y(x),

∂xy(x)) = 2x y

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 2 y(x) + 2x (

∂xy(x))

and finally obtain the Euler equation for our functional

−2x (∂

∂xy(x)) = 0

We solve it using various tools and obtain the solution

y(x) = Y(x)

Info.

all functions

Comment.

no comment

26

Page 27: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.25 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x)2 + 4 y(x) (∂

∂xy(x)) + 4 (

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x)2 + 4 y(x) (

∂xy(x)) + 4 (

∂xy(x))2

in the form

f(x, y, z) = y2 + 4 y z + 4 z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2 y + 4 (

∂xy)

and

∂zf(x, y(x),

∂xy(x)) = 4 y + 8 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 4 (

∂xy(x)) + 8 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

2 y(x)− 4 (∂

∂xy(x))− 8 (

∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = C1 cosh(1

2x) + C2 sinh(

1

2x)

Info.

two exponentials

Comment.

no comment

27

Page 28: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.26 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x)2 + y(x) (∂

∂xy(x)) + (

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x)2 + y(x) (

∂xy(x)) + (

∂xy(x))2

in the form

f(x, y, z) = y2 + y z + z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2 y + (

∂xy)

and

∂zf(x, y(x),

∂xy(x)) = y + 2 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = (

∂xy(x)) + 2 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

2 y(x)− (∂

∂xy(x))− 2 (

∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = C1 sinh(x) + C2 cosh(x)

Info.

not supplied

Comment.

no comment

28

Page 29: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.27 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

2 y(x) ex + y(x)2 + (∂

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = 2 y(x) ex + y(x)2 + (

∂xy(x))2

in the form

f(x, y, z) = 2 y ex + y2 + z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2 ex + 2 y

and

∂zf(x, y(x),

∂xy(x)) = 2 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 2 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

2 ex + 2 y(x)− 2 (∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = (1

2cosh(x)2 +

1

2cosh(x) sinh(x) +

1

2x) sinh(x)

+ (−1

2cosh(x) sinh(x) +

1

2x− 1

2cosh(x)2) cosh(x) + C1 sinh(x) + C2 cosh(x)

Info.

not supplied

Comment.

no comment

29

Page 30: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.28 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x)2 + (∂

∂xy(x))2 − 2 y(x) sin(x) dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x)2 + (

∂xy(x))2 − 2 y(x) sin(x)

in the form

f(x, y, z) = y2 + z2 − 2 y sin(x)

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2 y − 2 sin(x)

and

∂zf(x, y(x),

∂xy(x)) = 2 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 2 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

2 y(x)− 2 sin(x)− 2 (∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = (1

4ex cos(x)− 1

4sin(x) ex +

1

4e(−x) cos(x) +

1

4e(−x) sin(x)) sinh(x)

+ (−1

4ex cos(x) +

1

4sin(x) ex +

1

4e(−x) cos(x) +

1

4e(−x) sin(x)) cosh(x)

+ C1 sinh(x) + C2 cosh(x)

Info.

exponentials and sin

Comment.

no comment

30

Page 31: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.29 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x)2 − 4 y(x) (∂

∂xy(x)) + 4 (

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x)2 − 4 y(x) (

∂xy(x)) + 4 (

∂xy(x))2

in the form

f(x, y, z) = y2 − 4 y z + 4 z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2 y − 4 (

∂xy)

and

∂zf(x, y(x),

∂xy(x)) = −4 y + 8 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = −4 (

∂xy(x)) + 8 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

2 y(x) + 4 (∂

∂xy(x))− 8 (

∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = C1 cosh(1

2x) + C2 sinh(

1

2x)

Info.

not supplied

Comment.

no comment

31

Page 32: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.30 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x) + y(x) (∂

∂xy(x)) + (

∂xy(x)) +

1

2(∂

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x) + y(x) (

∂xy(x)) + (

∂xy(x)) +

1

2(∂

∂xy(x))2

in the form

f(x, y, z) = y + y z + z +1

2z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 1 + (

∂xy)

and

∂zf(x, y(x),

∂xy(x)) = y + 1 + (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = (

∂xy(x)) + (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

1− (∂

∂xy(x))− (

∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) =1

2x2 + C1 x + C2

Info.

quadratic function

Comment.

no comment

32

Page 33: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.31 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

y(x)− y(x) (∂

∂xy(x)) + x (

∂xy(x))2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = y(x)− y(x) (

∂xy(x)) + x (

∂xy(x))2

in the form

f(x, y, z) = y − y z + x z2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 1− (

∂xy)

and

∂zf(x, y(x),

∂xy(x)) = −y + 2x (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = (

∂xy(x)) + 2x (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

1− (∂

∂xy(x))− 2x (

∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) =1

2x + C1 + C2 ln(x)

Info.

not supplied

Comment.

no comment

33

Page 34: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.32 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

(∂

∂xy(x)) (1 + x2 (

∂xy(x))) dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = (

∂xy(x)) (1 + x2 (

∂xy(x)))

in the form

f(x, y, z) = z (1 + x2 z)

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 0

and

∂zf(x, y(x),

∂xy(x)) = 1 + 2x2 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 4x (

∂xy(x)) + 2x2 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

−4x (∂

∂xy(x))− 2x2 (

∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = C1 +C2

x

Info.

hyperbolic function

Comment.

no comment

34

Page 35: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.33 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

( ∂∂x y(x))2

x3dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) =

( ∂∂x y(x))2

x3

in the form

f(x, y, z) =z2

x3

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 0

and

∂zf(x, y(x),

∂xy(x)) = 2

∂∂x y

x3

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 2

∂2

∂x2 y(x)

x3− 6

∂∂x y(x)

x4

and finally obtain the Euler equation for our functional

−2∂2

∂x2 y(x)

x3+ 6

∂∂x y(x)

x4= 0

We solve it using various tools and obtain the solution

y(x) = C1 + C2 x4

Info.

not supplied

Comment.

no comment

35

Page 36: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.34 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

(∂

∂xy(x))2 + 2 y(x) (

∂xy(x))− 16 y(x)2 dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = (

∂xy(x))2 + 2 y(x) (

∂xy(x))− 16 y(x)2

in the form

f(x, y, z) = z2 + 2 y z − 16 y2

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = 2 (

∂xy)− 32 y

and

∂zf(x, y(x),

∂xy(x)) = 2 (

∂xy) + 2 y

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 2 (

∂2

∂x2y(x)) + 2 (

∂xy(x))

and finally obtain the Euler equation for our functional

−32 y(x)− 2 (∂2

∂x2y(x))− 2 (

∂xy(x)) = 0

We solve it using various tools and obtain the solution

y(x) = C1 cos(4x) + C2 sin(4x)

Info.

trig functions

Comment.

no comment

36

Page 37: Calculus of Variations solvedproblems - Univerzita Karlovamatematika.cuni.cz/dl/pyrih/variationProblems/variationProblems.pdf · Calculus of Variations solvedproblems Pavel Pyrih

1.35 Problem.

Using the Euler equation find the extremals for the following functional∫ b

a

(∂

∂xy(x))2 + cos(y(x)) dx

Hint:

no hint

Solution.We denote auxiliary function f

f(x, y(x),∂

∂xy(x)) = (

∂xy(x))2 + cos(y(x))

in the form

f(x, y, z) = z2 + cos(y)

Substituting we x, y(x) and y′(x) for x, y and z we obtain the integrand in thegiven functional. We compute partial derivatives

∂yf(x, y(x),

∂xy(x)) = −sin(y)

and

∂zf(x, y(x),

∂xy(x)) = 2 (

∂xy)

and

∂2

∂x ∂zf(x, y(x),

∂xy(x)) = 2 (

∂2

∂x2y(x))

and finally obtain the Euler equation for our functional

−sin(y(x))− 2 (∂2

∂x2y(x)) = 0

We solve it using various tools and obtain the solution

y(x) = 0

Info.

not supplied

Comment.

no comment

37