calculus booklet

6
Free From www.analyzemath.com Free From www.analyzemath.com 1 Calculus Booklet of Formulas GEOMETRIC SEQUENCES The n th term of a geometric sequence with first term 1 a and common ratio r is given by 1 1 = n n r a a  The sum n S  of the first n terms of a geometric sequence is given by ) 1 ( ) 1 ( 1 r r a S n n =  The sum S of an infinite geometric sequence with 1 | | < r is given by ) 1 ( 1 r a S =  EXPONENTAILS AND LOGARITHMS ) ( log x  y b = if and only if x b  y =  ) ( log ) ( log ) ( log y  x  xy b b b + =  ) ( log ) ( log ) ( log y  x  y  x b b b =  ) ( log log x r  x b r b =   x b x b = ) ( log   x b  x b = ) ( log  0 ) 1 ( log = b  1 ) ( log = b b  ) ( log ) ( log ) ( log b  x  x a a b = , change of base  BINOMIAL THEOREM n positive integer n r r n r n n n n n n n  y  y  x C  y  x C  y  x C  x  y  x + + + + + + = + K L 2 2 2 1 1 ) (  Where )! ( ! ! r n r n C r n =  GREEK ALPHABET Capital Small Name А α Alpha В β Beta Γ γ Gamma  δ Delta Ε ε Epsilon Ζ ζ Zeta Η η Eta Θ θ Theta Ι ι  Iota Κ  κ  Kappa Λ λ  Lambda Μ µ Mu  Ν  ν Nu Ξ ξ Xi Ο ο Omicron Π π Pi Ρ ρ Rho Σ σ Sigma Τ τ Tau Υ  υ Upsilon Φ φ Phi Χ χ  Chi  Ψ ψ Psi  ω Omega ABSOLUTE VALUE < = 0 0 | |  x  for  x  x  for  x  x  2 | | x  x =  ARITHMETIC SEQUENCES The n th term of an arithmetic sequence with first term 1 a and common difference d is given by d n a a n ) 1 ( 1 + =  The sum n S  of the first n terms of an arithmetic sequence is given by ) ( 2 1 n n a a n S + =  

Upload: angie81

Post on 06-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Calculus Booklet

8/3/2019 Calculus Booklet

http://slidepdf.com/reader/full/calculus-booklet 1/6

Page 2: Calculus Booklet

8/3/2019 Calculus Booklet

http://slidepdf.com/reader/full/calculus-booklet 2/6

Free From www.analyzemath.com 

Free From www.analyzemath.com 2

EXPONENTS AND RADICALS

10= x  

 x x x )

1(

1==

−  

r x

 x=

1  

sr sr  x x x

+=  

rssr   x x =)(  

r r 

 y

 x

 y

 x=)(  

sr 

s

 y y

 x −=  

r r r  y x xy =)(  

r r 

 x

 y

 y

 x )()( =−  

nn  x x =1

 

nnn  y x xy =  

nmmn

 x x )(=  

n

n

n

 y

 x

 y

 x=

 

DERIVATIVES

k  is a constant. 

)( x f    )('  x f   k    0  

)( x f k    )('  x f k   

n x   1−

nnx  

 xe  

 xe  

 xln   x

 xsin    xcos 

 xcos    xsin−

 

 xtan    x2sec

  xcot    x

2csc−

 

 xsec    x x tansec 

 xcsc    x xcotcsc−

 

 x x arcsin,sin1−

 21

1

 x−  

 x x arccos,cos 1− 

21

1

 x−−

 

 x x arctan,tan 1− 

21

1

 x+ 

 xsinh    xcosh  

 xcosh    xsinh  

 xtanh    xh2sec  

 xcoth    xh2

csc−  

hxsec    xhx tanhsec−  

hxcsc    xhxcothcsc−  

 x1sinh

 1

1

2+ x

 

 x1cosh

 1

1

2− x

 

 x1tanh −

 21

1

 x− 

 x1

coth−

 21

1

 x−−  

Page 3: Calculus Booklet

8/3/2019 Calculus Booklet

http://slidepdf.com/reader/full/calculus-booklet 3/6

Free From www.analyzemath.com 

Free From www.analyzemath.com 3

INDEFINITE INTEGRALS

A constant of integration should be added inall cases. 

)( x f    ∫  dx x f  )(  k    kx  

)( x f k    ∫  dx x f k  )(  

 x

||ln x  

 xe    xe  

 xln   x x x −ln  

 xsin    xcos−

 

 xcos    xsin 

 xtan   )ln(cos x−

 

 xcot  )ln(sin x 

 xsec   ))42

ln(tan(π 

+ x

  xcsc  

))2

ln(tan( x

  xsinh    xcosh  

 xcosh    xsinh  

 xtanh   ))ln(cosh x  

 xcoth   |))sinhln(| x  

hxsec   )(tan2 1 xe−

 

hxcsc  

|))2

tanh(ln(|x

 

22

1

 xa − 

)(sin1

a

 x−

 

22

1

 xa +  )(sinh 1

a

 x−

 

22

1

a x −  )(cosh 1

a

 x−

 

22

1

a x +  )(tan

1 1

a

 x

a

 

22

1

a x −  )ln(

2

1

a x

a x

a +

 

22

1

 xa −  )ln(

2

1

 xa

 xa

a −

TAYLOR SERIES (about a x = ) 

LL+

++

−+−+=

)(!

)(

)(!2

)()()()()(

)(

''2

'

a f n

a x

a f a x

a f a xa f  x f 

nn

 

MACLAURIN SERIES 

LL +++

++=

)0(!

)0(!2

)0()0()(

)(

''2

'

nn

 f n

 x

 f  x

 xf  f  x f 

 

Page 4: Calculus Booklet

8/3/2019 Calculus Booklet

http://slidepdf.com/reader/full/calculus-booklet 4/6

Free From www.analyzemath.com 

Free From www.analyzemath.com 4

REAL FOURIER SERIES (Period T) 

∑∑∞

=

=

++=

11

0 )2

sin()2

cos(2

1)(

m

m

m

m t T 

mbt 

maat  f 

π π 

 

Where 

dt t T 

mt  f 

T a

m )2

cos()(2

0

∫ =π 

 

dt t T 

mt  f 

T b

m )2

sin()(2

0

∫ =π 

 

COMPLEX FOURIER SERIES (Period T) 

)2

exp()( t T 

mict  f 

m

m

π ∑∞

−∞=

=

 

where

dt t T 

mit  f 

T c

m )2

exp()(1

0

∫  −=π 

 

Relationship between the above coefficients

of the real and complex forms.

0)(2

1

2

1

0))(2

1

00

<+=

=

>−=

−−mibac

ac

mibac

mmm

mmm

 

FOURIER TRANSFORM PAIR

dt t it  f F  ∫ ∞

∞−

−= )exp()()(~ ω ω   

dt t iF t  f  ∫ ∞

∞−

= )exp()(~

2

1)( ω ω 

π  

POWER SERIES FOR SOME FUNCTIONS

 xall for n

 x x xe

n x

LL +++++=!!2

12

 

11

!)1(

32)1ln(

132

≤<−

+−++−=++

 x

n x x x x x

nn

LL

L+−+−=−

=

!7!5!32sin

753 x x x

 xee

 x jx jx

 

L+⋅⋅

⋅⋅

+⋅

⋅++==

7642

531

542

31

32

1arcsinsin

7

531

 x

 x x x x x

 

L+−+−=+

=

!6!4!22cos

642 x x x

 xee

 x jx jx

 

L++++=753

315

17

15

2

3

1tan x x x x x  

L+−+−==−

753arctantan

7531 x x x

 x x x  

L++++=−=

!7!5!32sinh

753

 x x x xee x x x

 

L+⋅⋅

⋅⋅−

⋅+−==

7642

531

542

31

32

1arcsinsinh

7

531

 x

 x x x xh x

 

L++++=+

=

!6!4!22cosh

642 x x x

 xee

 x x x

 

L+−+−=753

315

17

15

2

3

1tanh x x x x x  

L++++==−

753arctantanh

7531 x x x

 xhx x  

Page 5: Calculus Booklet

8/3/2019 Calculus Booklet

http://slidepdf.com/reader/full/calculus-booklet 5/6

Free From www.analyzemath.com 

Free From www.analyzemath.com 5

INTEGER SERIES

)1(2

1321

1

+=++++=∑=

 N  N  N i N 

i

L  

)12)(1(6

1

321 2222

1

2

++

=++++=∑=

 N  N  N 

 N i N 

i

L

23333

1

3 )]1(2

1[321 +=++++=∑

=

 N  N  N i N 

i

L  

NUMERICAL SOLUTIONS OF f(x) = 0

BISECTION METHOD

1 x and 2 x are estimates of the root that are

on opposite sides of the root (i.e. such that

0)()( 21 <⋅ x f  x f  ). The next estimate is

given by the arithmetic mean of the previous

two estimates,2

213

 x x x

+= . Discard

whichever of 1 x  or  2 x is on the same side of

the root as3

 x (2

 x in the diagram) and repeat

the process. The root of 0)( = x f   always

lies between the last two estimates. The

bisection method is slow but always

converges for a 'well behaved' function. 

NEWTON METHOD

Start with a single estimate 1 x of the root;then successive estimates are given in

terms of the previous one by

)(

)('1

n

n

nn x f 

 x f  x x −=

Page 6: Calculus Booklet

8/3/2019 Calculus Booklet

http://slidepdf.com/reader/full/calculus-booklet 6/6

Free From www.analyzemath.com 

Free From www.analyzemath.com 6

NUMERICAL INTEGRATION

Let N 

abh

−=  

Trapezoidal rule

]222

222[2

)(

124

3210

 N  N  N 

b

a

 f  f  f  f 

 f  f  f  f h

dx x f 

++++

++++≈

−−

∫ 

L

 

Simpson rule

The number of intervals N must be even

]42

2424[3

)(

12

43210

 N  N  N 

b

a

 f  f  f 

 f  f  f  f  f h

dx x f 

+++

+++++≈

−−

∫  L

 

LAPLACE TRANSFORMS

dt st t  f sF t  f  L ∫ ∞

−==

0

)exp()()())((  

)(t  f    )(sF    comment

 1  1 

nt    1

!+n

s

at e−

 as +

t ω sin  22

ω 

ω 

+s 

comment

s

t ω cos   22ω +s

t t  ω sin  222 )(

2ω 

ω 

+ss  

t t  ω cos  222

22

)( ω 

ω 

+

s

t ω sinh  22

ω 

ω 

−s 

t ω cosh  22

ω −s

t eat 

ω sin−

  22)( ω ω 

++ as 

t eat 

ω cos−

  22)( ω ++

+

as

as 

)( τ δ   −t   τ s

e−

 dirac delta

function

)( τ −t  H    τ se

s

−1 

step

function, 

)(t  f eat −

  )( asF  +   damping in

t becomes

)(kt  f    )(1

sF 

k  

scale

change

)(t tf   ds

dF −  

first

Derivative

)(' t  f    )0()( f ssF  −   first

derivative

)("' t  f    )0()0()( '2 f sf sF s −−

 

second

derivative

∫ 

dx x f 0 )(  )(

1sF 

s  

Integral of

f(t) w.r.t t

∫ t 

t  f  x f 0

21 ()(

 

)()( 21 sF sF   convolution

integral

()( bgt af  +

 

)()( sbGsaF  +   Linearity