caesar ii quick reference guide

30
Version 5.10 CAESAR II Quick Reference Guide Copyright © 1985-2008 COADE, Inc. All Rights Reserved. www.cadfamily.com EMail:[email protected] The document is for study only,if tort to your rights,please inform us,we will delete

Upload: guacharo1

Post on 18-Apr-2015

1.319 views

Category:

Documents


24 download

TRANSCRIPT

Page 1: CAESAR II Quick Reference Guide

Version 5.10 CAESAR II Quick Reference Guide

Copyright © 1985-2008 COADE, Inc. All Rights Reserved.

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 2: CAESAR II Quick Reference Guide

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 3: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 1

The CAESAR II Quick Reference Guide is intended to aid users in quickly identifying needed information and to resolve common questions and problems. This Reference Guide is distributed with each copy of the software and users are urged to copy the Reference Guide as necessary. Comments and suggestions concerning CAESAR II, the User Guide, or the Quick Reference Guide are always welcome. Users with problems, questions, or suggestions can contact the COADE Development/Support staff at: [email protected].

CAESAR II Quick Reference Guide Table of Contents

CAESAR II Quick Reference Guide Version 5.10.......................................................................1

CAESAR II Software ..............................................................................................2 CAESAR II Pipe Stress Seminars ...........................................................................2 System Requirements ..............................................................................................3 Troubleshooting.......................................................................................................3 CAESAR II Interfaces .............................................................................................3 Piping Codes............................................................................................................4 Restraints .................................................................................................................5 Setup File Directives List ........................................................................................6 List of Materials.....................................................................................................11 CAESAR II Intersection Types .............................................................................12 Code Stresses .........................................................................................................13 Node Locations on Bends......................................................................................24 CAESAR II Quality Assurance Manual ................................................................26 Mechanical Engineering News ..............................................................................26 Additional COADE Software Programs................................................................26

CAESAR II Quick Reference Guide Version 5.10

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 4: CAESAR II Quick Reference Guide

2 Quick Reference Guide Version 5.10

CAESAR II Software CAESAR II is an advanced PC based tool for the engineer who designs or analyzes piping systems. CAESAR II uses input spreadsheets, on-line help, graphics, and extensive error detection procedures to facilitate timely operation and solution. CAESAR II is capable of analyzing large piping models, structural steel models, or combined models, both statically and dynamically. ASME, B31, WRC, and rotating equipment reports combine to provide the analyst with a complete description of the piping system’s behavior under the applied loading conditions. Additional technical capabilities such as out-of-core solvers, force spectrum analysis (for water hammer and relief valve solutions), time history, and large rotation rod hangers provide the pipe stress engineer with the most advanced computer based piping program available today. CAESAR II is continuously enhanced to incorporate new technical abilities, to provide additional functionality, and to modify existing computation procedures as the piping codes are updated. A complete list of the most recent changes to CAESAR II can be found in the Chapter 1 of the User Guide. Users wanting software sales are urged to contact the COADE Sales staff at: Phone:281-890-4566 E-mail: [email protected]

FAX: 281-890-3301 Web: http://www.coade.com/product_overview.asp?varflag=CAESARII

CAESAR II Pipe Stress Seminars COADE offers seminars periodically to augment the Engineers knowledge of CAESAR II and Pipe Stress Analysis. The general seminar is held in our Houston office and covers five days of Statics. Twice yearly we also cover five days of Statics and three days of Dynamics. These seminars emphasize the piping codes, static analysis, dynamic analysis, and problem solving. Custom seminars held at client locations are also available. For additional seminar details, please contact the COADE Support staff at: seminars @coade.com.

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 5: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 3

System Requirements CAESAR II requires Windows 2000, or Windows XP Professional, with a minimum graphic card capability of 1024x768 resolution. However, for more efficient usage of the software, higher graphics resolutions are necessary. Usually any hardware capable of running these operating systems will be sufficient to run CAESAR II. For effective use of CAESAR II, COADE recommends as a minimum configuration:

� 2+ Ghz processor � 1+ Gbytes of RAM � 1280x1024 graphics resolution or better � 256+ Mbytes of video RAM � Windows 2000 or Windows XP Professional � Please note that Windows XP Home Edition, Windows Vista Professional and Windows Vista

Home Edition are not supported.

Troubleshooting For troubleshooting and problem solving issues, refer to the CAESAR II Frequently Asked Questions (FAQ) located on the COADE Website. To access the FAQ: (http://www.coade.com/product_faq.asp?varflag=CAESARII&varflagmaster=).

CAESAR II Interfaces There are several external interfaces which allow data transfer between CAESAR II and other software packages. Users can access these interfaces via the Tools menu on the CAESAR II Main Menu.

CADWorx requires AUTOCAD

AUTOCAD DXF Output

COMPUTER VISION mainframe

INTERGRAPH mainframe

CADPIPE requires AUTOCAD

ISOMET mainframe

PDMS mainframe

PCF Alias format

Users interested in these interfaces should contact COADE for further information. We anticipate other interfaces in the future keep users updated via the newsletter or revised documentation.

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 6: CAESAR II Quick Reference Guide

4 Quick Reference Guide Version 5.10

Piping Codes The table below displays the Piping Code, publication and/or revision date.

PIPING CODE PUBLICATION REVISION

ANSI B31.1 (2004) December 15, 2006

ANSI B31.3 (2006) May 31, 2007

ANSI B31.4 (2006) October 20, 2006

ANSI B31.4 Chapter IX (2006) October 20, 2006

ANSI B31.5 (2001) May 30, 2005

ANSI B31.8 (2003) February 6, 2004

ANSI B31.8 Chapter VIII (2003) February 6, 2004

ANSI B31.11 (2002) May 30, 2003

ASME SECT III CLASS 2 (2004) July 1, 2005

ASME SECT III CLASS 3 (2004) July 1, 2005

U.S. NAVY 505 (1984) N/A

CANADIAN Z662 (6/2003) N/A

CANADIAN Z662 Ch 11 (6/2003) N/A

BS 806 1993, ISSUE 1, SEPTEMBER 1993 N/A

SWEDISH METHOD 1 2ND EDITION STOCKHOLM 1979 N/A

SWEDISH METHOD 2 2ND EDITION STOCKHOLM 1979 N/A

ANSI B31.1 (1967) N/A

STOOMWEZEN (1989) N/A

RCC-M C (1988) N/A

RCC-M D (1988) N/A

CODETI (2001) June 2004

NORWEGIAN (1999) N/A

FDBR (1995) N/A

BS7159 (1989) N/A

UKOOA (1994) N/A

IGE/TD/12 (2003) N/A

DnV (1996) N/A

EN-13480 (12/2006) Issue 9

GPTC/192 (1998) N/A

PD 8010 Part 1&2 (2004) N/A www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 7: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 5

Restraints

No. Restraint Type Abbreviation

1 Anchor A

2 Translational Double Acting X,Y, or Z

3 Rotational Double Acting RX, RY, or RZ

4 Guide, Double Acting GUI

5 Double Acting Limit Stop LIM

6 Translational Double Acting Snubber XSNB, YSNB, ZSNB

7 Translational Directional +X, -X, +Y, -Y, +Z, -Z

8 Rotational Directional +RX, -RX, +RY, etc.

9 Directional Limit Stop +LIM, -LIM

10 Large Rotation Rod XROD, YROD, ZROD

11 Translational Double Acting Bilinear X2, Y2, Z2

12 Rotational Double Acting Bilinear RX2, RY2, RZ2

13 Translational Directional Bilinear -X2, +Y2, -Y2, etc.

14 Rotational Double Acting Bilinear -RX2, +RY2, - RY2, etc.

15 Bottom Out Spring XSPR, YSPR, ZSPR

16 Directional Snubber +XSNB, -XSNB, +YSNB, etc.

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 8: CAESAR II Quick Reference Guide

6 Quick Reference Guide Version 5.10

Setup File Directives List The following list represents the possible directives which can be controlled by the user via the CAESAR II configuration file CAESAR.CFG. These directives can be changed by the user through the use of the CONFIGURE-SETUP program, accessed via Main Menu option #9. Directives are listed in groups corresponding to the configuration program's menu options.

Geometry Directives GEOMETRY DIRECTIVES

CONNECT GEOMETRY THRU CNODES = YES 34

MIN ALLOWED BEND ANGLE = .5000000E+01 36

MAX ALLOWED BEND ANGLE = .9500000E+02 37

BEND LENGTH ATTACHMENT PERCENT = .1000000E+01 38

MIN ANGLE TO ADJACENT BEND PT = .5000000E+01 39

LOOP CLOSURE TOLERANCE = .1000000E+01 42

THERMAL BOWING HORIZONTAL TOLERANCE = .1000000E-03 92

AUTO NODE NUMBER INCREMENT= 1000000E+02 109

Z AXIS UP NO 129

Computation Control COMPUTATION CONTROL

USE PRESSURE STIFFENING = DEFAULT 65

ALPHA TOLERANCE = .5000000E-01 33

HANGER DEFAULT RESTRAINT STIFFNESS = .1000000E+13 49

DECOMPOSITION SINGULARITY TOLERANCE = .1000000E+11 50

BEND AXIAL SHAPE = YES 51

FRICTION STIFFNESS = .1000000E+07 45

FRICTION NORMAL FORCE VARIATION = .1500000E+00 47

FRICTION ANGLE VARIATION = .1500000E+02 48

FRICTION SLIDE MULTIPLIER = .1000000E+01 46

ROD TOLERANCE = .1000000E+01 59

ROD INCREMENT = 2000000E+01 58

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 9: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 7

COMPUTATION CONTROL

INCORE NUMERICAL CHECK = NO 60

DEFAULT TRANSLATIONAL RESTRAINT STIFFNESS .1000000E+13 98

DEFAULT ROTATIONAL RESTRAINT STIFFNESS = .1000000E+13 99

IGNORE SPRING HANGER STIFFNESS = NO 100

MISSING MASS ZPA = EXTRACTED 101

MINIMUM WALL MILL TOLERANCE = .1200000E+02 107

WRC-107 VERSION = MAR 79 1B1/2B1 119

WRC-107 INTERPOLATION = LAST VALUE 120

INCLUDE_INSULATION_IN_HYDROTEST= NO 147

AMBIENT TEMPERATURE = 70.00 135

BORDER PRESSURE = NONE 136

COEFFICIENT OF FRICTION = 0. 140

INCLUDE SPRING STIFFNESS IN FREE THERMAL CASES =

NO 141

SIFS and Stresses SIFS AND STRESSES

REDUCED INTERSECTION = B31.1 POST1980 32

USE WRC329 = NO 62

NO REDUCED SIF FOR RFT AND WLT NO 53

B31.1 REDUCED Z FIX = YES 54

CLASS 1 BRANCH FLEXIBILITY NO 55

ALL STRESS CASES CORRODED = NO 35

ADD TORSION IN SL STRESS = DEFAULT 66

ADD F/A IN STRESS = DEFAULT 67

OCCASIONAL LOAD FACTOR = .000000E+00 41

DEFAULT CODE = B31.3 43

B31.3 SUSTAINED CASE SIF FACTOR = 100000E+01 40

ALLOW USERS BEND SIF = NO 52

USE SCHNEIDER = NO 63

YIELD CRITERION STRESS = MAX 3D SHEAR 108

USE PD/4T = NO 64 www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 10: CAESAR II Quick Reference Guide

8 Quick Reference Guide Version 5.10

SIFS AND STRESSES

BASE HOOP STRESS ON = NO 57

EN-13480 use in-plane/out-plane SIF NO 133

LIBERAL ALLOWANCE = YES 137

STREE STIFFENING DUE TO PRESS = NO 138

B31.3 WELDING/CONTOUR TEE MEET B16.9 = NO 139

IMPLEMENT _B31.3_APPENDIX_P NO 144

IMPLEMENT_B31.3_CODECASE NO 145

B31.3 Sec 319.2.3(c), Saxial NO 146

PRESSURE VARIATION IN EXPANSION CASE DEFAULT =

DEFAULT 143

FRP Properties FRP PROPERTIES

USE FRP SIF = YES 110

USE FRP FLEXIBILITY = YES 11

BS 7159 PRESSURE STIFFENING = DESIGN STRAIN 121

FRP PROPERTY DATA FILE = CAESAR.FRP 122

AXIAL MODULUS OF ELASTICITY 3200000E+07 113

RATIO SHEAR MOD : AXIAL MOD = 2500000E+00 114

AXIAL STRAIN : HOOP STRESS 1527272E+00 115

FRP LAMINATE TYPE = THREE 116

FRP ALPHA = .1200000E+02 117

FRP DENSITY = .6000000E-01 118

EXCLUDE F2 FROM BENDING STRESS (UKOOA) NO 134

Plot Colors PLOT COLORS

PIPES LIGHTCYAN 1

HIGHLIGHTS GREEN 2

LABELS GREEN 3

BACKGROUND BLACK 5

AXES LIGHTRED 15 www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 11: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 9

PLOT COLORS

HANGER/NOZZLES BROWN 16

RIGID/BENDS LIGHTGREEN 17

NODES YELLOW YELLOW 18

STRUCTURE LIGHTRED 31

DISPLACED SHAPE BROWN 30

STRESS > LEVEL 5 RED 24

STRESS > LEVEL 4 YELLOW 25

STRESS > LEVEL 3 GREEN 26

STRESS > LEVEL 2 LIGHTCYAN 27

STRESS > LEVEL 1 BLUE 28

STRESS < LEVEL 1 DARKBLUE 29

STRESS LEVEL 5 .3000000E+05 19

STRESS LEVEL 4 .2500000E+05 20

STRESS LEVEL 3 .2000000E+05 21

STRESS LEVEL 2 .1500000E+05 22

STRESS LEVEL 1 .1000000E+05 23

Database Definitions DATABASE DEFINITIONS

STRCT DBASE = AISC89.BIN 70

VALVE & FLANGE = CADWORX.VHD 90

EXPANSION JT DATABASE = PATHWAY.JHD 91

PIPING SIZE SPECIFICATION = ANSI 88

DEFAULT SPRING HANGER TABLE = 1 112

SYSTEM DIRECTORY NAME = SYSTEM 123

UNITS FILE NAME = .ENGLISH.FIL 124

LOAD CASE TEMPLATE = .LOAD.TPL 142

ENABLE ODBC OUTPUT NO 128

APPEND RE-RUNS TO EXISTING DATA NO 126

ODBC DATABASE NAME <NONE> 127

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 12: CAESAR II Quick Reference Guide

10 Quick Reference Guide Version 5.10

Miscellaneous Computations MISCELLANEOUS COMPUTATIONS

OUTPUT REPORTS BY LOAD CASE YES 87

DISPLACEMENT NODAL SORTING YES 89

DYNAMIC INPUT EXAMPLE TEXT MAX 94

TIME HIST ANIMATE YES 104

OUTPUT TABLE OF CONTENTS ON 105

INPUT FUNCTION KEYS DISPLAYED YES 106

MEMORY ALLOCATED 12 NA

USER ID " " NA

DISABLE _UNDO NO 128

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 13: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 11

List of Materials The CAESAR II Material Table contains 17 different isotropic materials. Properties and allowed temperature ranges for each isotropic material are listed below. Material No.

Material Name Elastic Modulus

Poisson's Ratio

Pipe Density (lb./cu.in)

Temperature Range (deg. F)

1 Low Carbon Steel 29.5 E6 0.292 0.28993 -325 1400

2 High Carbon Steel 29.3 E6 0.289 0.28009 -325 1400

3 Carbon Moly Steel 29.2 E6 0.289 0.28935 -325 1400

4 Low Chrome Moly Steel 29.7 E6 0.289 0.28935 -325 1400

5 Med Chrome Moly Steel 30.9 E6 0.289 0.28935 -325 1400

6 Austenitic Stainless 28.3 E6 0.292 0.28930 -325 1400

7 Straight Chromium 29.2 E6 0.305 0.28010 -325 1400

8 Type 310 Stainless 28. 3 E6 0.305 0.28990 -325 1400

9 Wrought Iron 29.5 E6 0.300 0.28070 -325 1400

10 Grey Cast Iron 13.4 E6 0.211 0.25580 70 1000

11 Monel 67% Ni/30% Cu 26.0 E6 0.315 0.31870 -325 1400

12 K-Monel 26.0 E6 0.315 0.30610 -325 1400

13 Copper Nickel 22.0 E6 0.330 0.33850 -325 1400

14 Aluminum 10.2 E6 0.330 0.10130 -325 600

15 Copper 99.8% Cu 16.0 E6 0.355 0.32270 70 400

16 Commercial Brass 17.0 E6 0.331 0.30610 -325 1200

17 Leaded Tin Bronze 1 14.0 E6 0.330 0.31890 -325 1200

In addition CAESAR II supports material types 18 or 19 for cut short and cut long cold spring elements. Material number 20 activates the CAESAR II Orthotropic Material Model (i.e., Fiber-glass reinforced plastic pipe); the default coefficient of expansion is 12.0 E-6 in./in./°F. Material 21 indicates user-defined properties. Material numbers over 100 are from the Material Database and include the allowable stress and other piping code data.

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 14: CAESAR II Quick Reference Guide

12 Quick Reference Guide Version 5.10

CAESAR II Intersection Types CAESAR II Type B31.3 Type Notes Sketch

1 Reinforced Reinforced Fabricated Tee Used to lower SIFs

Not a fitting

Modified pipe

2 Unreinforced Unreinforced Fabricated Tee Routine intersection

Not a fitting

Modified pipe

Usually the cheapest

3 Welded Tee Welding Tee Usually size-on-size

Governed by B16.9

Usually the lowest SIF

Usually expensive

4 Sweepolet Welded-in Contour Insert Sit-in" fitting

Forged fittings on a pipe

5 Weldolet Branch Welded on Fitting "Sit-on" fitting

Forged fittings on a pipe

6 Extruded Extruded Welding Tee Seldom used

Used for thick wall manifolds

Extruded from straight pipe

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 15: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 13

Code Stresses Listed below are the Code Stress equations for the actual and allowable stresses used by CAESAR II. For the listed codes, the actual stress is defined by the left hand side of the equation and the allowable stress is defined by the right hand side. The CAESAR II load case label is also listed after the equation. Typically the load case recommendations made by CAESAR II are sufficient for code compliance. However, CAESAR II does not recommend occasional load cases. Occasional loads are unknown in origin and must be specified by the user.

US Codes

Longitudinal Pressure Stress - Slp Slp = PD0/4tn code approximation

Slp = PDi2/(D0

2 - Di2) code exact equation, CAESAR II default

Operating Stress - unless otherwise specified S = Slp + Fax/A + Sb < NA (OPE)

B31.1 Sl = Slp + 0.75 i Ma / Z < Sh (SUS)

i Mc / Z < f [ 1.25 (Sc+Sh) - Sl ] (EXP)

Slp + 0.75 i Ma / Z + 0.75 i Mb / Z < k Sh (OCC)

B31.3 Sl = Slp + Fax/A + Sb < Sh (SUS)

sqrt (Sb2 + 4 St2) < f [ 1.25 (Sc+Sh) - Sl ] (EXP)

Fax/A + Sb + Slp < k Sh (OCC)

Sb = [sqrt ( (iiMi)2 + (i0M0)2 )]/Z

ASME SECT III CLASS 2 & 3 < 1.5 Sh (SUS)

i Mc / Z < f (1.25 Sc + 0.25 Sh) + Sh -Sl (EXP)

B1 * Slpmax + B2 * (Ma + Mb) / Z < 1.8 Sh and < 1.5 Sy (OCC)

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 16: CAESAR II Quick Reference Guide

14 Quick Reference Guide Version 5.10

B31.1 (1967) and Navy Section 505 Sl = Slp + sqrt (Sb2 + 4 St2) < Sh (SUS)

sqrt ( Sb2 + 4 St2 ) < f (1.25Sc + 0.25Sh + (Sh-Sl)) (EXP)

Slp + sqrt (Sb2 + 4 St2) < k Sh (OCC)

B31.4 If FAC = 1.0 (fully restrained pipe)

FAC | Eα dT - ν SHOOP| + SHOOP < 0.9 (Syield) (OPE)

If FAC = 0.001 (buried, but soil restraints modeled)

Fax/A - ν SHOOP + Sb + SHOOP < 0.9 (Syield) (OPE)

(If Slp + Fax/A is compressive)

If FAC = 0.0 (fully above ground)

Slp + Fax/A + Sb + SHOOP < 0.9 (Syield) (OPE)

(If Slp + Fax/A is compressive)

(Slp + Sb + Fax/A) (1.0 - FAC) < (0.75) (0.72) (Syield) (SUS)

sqrt ( Sb2 + 4 St2 ) < 0.72 (Syield) (EXP)

(Slp + Sb + Fax/A) (1.0 - FAC) < 0.8 (Syield) (OCC)

B31.4 Chapter IX Hoop Stress: Sh ≤ F1 Sy (OPE, SUS, OCC)

Longitudinal Stress: |SL| ≤ 0.8 Sy (OPE, SUS, OCC)

Equivalent Stress: Se ≤ 0.9 Sy (OPE, SUS, OCC)

Where:

Sy = specified minimum yield strength

F1 = hoop stress design factor (0.60 or 0.72, see Table A402.3.5(a) of B31.4)

Sh = (Pi – Pe) D / 2t

SL= Sa + Sb or Sa - Sb, whichever results in greater stress value

Se = 2[((SL - Sh)/2)2 + St2]1/2

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 17: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 15

B31.5 Sl = Slp + Fax/A + Sb < Sh (SUS)

sqrt (Sb2 + 4 St2) < f [ 1.25 (Sc+Sh) - Sl ] (EXP)

Fax/A + Sb + Slp < k Sh (OCC)

Sb = [sqrt ( (iiMi)2 + (i0M0)2 )]/Z

B31.8

� B31.8 For Restrained Pipe (as defined in Section 833.1): For Straight Pipe:

Max(SL, SC) < 0.9ST (OPE)

Max(SL, SC) < 0.9ST (SUS)

SL < 0.9ST (OCC)*

and

SC < ST (OCC) *

CAESAR II prints the controlling stress of the two

SL = SP + SX + SB

For All Other Components

SL < 0.9ST (OPE, SUS, OCC)

� B31.8 For Unrestrained Pipe (as defined in Section 833.1):

SL < 0.75ST (SUS, OCC)

SE < f[1.25(SC + SH) – SL] (EXP)

Where:

SL = SP + SX + SB

SP = 0.3SHoop (for restrained pipe)

= 0.5SHoop (for unrestrained pipe)

SX = R/A

SB = MB/Z (for straight pipe/bends with SIF = 1.0)

= MR/Z (for other components)

SC = Max (|SHoop – SL|, sqrt[SL2 – SLSHoop + SHoop

2])

MR = sqrt[(0.75iiMi)2 + (0.75ioMo)2 +Mt

2]

SE = ME/Z

ME = sqrt[(0.75iiMi)2 + (0.75ioMo)2 + Mt2]

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 18: CAESAR II Quick Reference Guide

16 Quick Reference Guide Version 5.10

� B31.8 For Unrestrained Pipe (as defined in Section 833.1): Continued… S = Specified Minimum Yield Stress

T = Temperature Derating Factor

SH = 0.33SUT

SC = 0.33SU

SU = Specified Minimum Ultimate Tensile Stress

B31.8 Chapter VIII Hoop Stress: Sh ≤ F1 S T (OPE, SUS, OCC)

Longitudinal Stress: |SL| ≤ 0.8 S (OPE, SUS, OCC)

Equivalent Stress: Se ≤ 0.9 S (OPE, SUS, OCC)

Where:

S = Specified Minimum Yield Strength

F1= Hoop Stress Design Factor (0.50 or 0.72, see Table A842.22 of the B31.8 Code)

T= Temperature Derating Factor (see Table 841.116A of the B31.8 Code)

Note: The product of S and T (i.e. the yield stress at operating temperature) is required in SH of the CAESAR II Input.Sh= (Pi – Pe) D / 2t

SL = maximum longitudinal stress (positive tensile, negative compressive)

Se = 2[((SL - Sh)/2)2 + Ss2]1/2

Ss = tangential shear stress

GPTC Slp + 0.75i Ma/Z < Syield (OPE)

Sl = Slp+Sb < 0.75(Sy)Ft (SUS)

Se = sqrt(Sb2 +4St2) < 0.72 (Syield) (EXP)

Note: GPTC is similar to B31.8 with noted changes.

B31.11 If FAC = 1.0 (fully restrained pipe)

FAC | E α dT - ν SHOOP| + SHOOP < 0.9 (Syield) (OPE)

If FAC = 0.001 (buried, but soil restraints modeled)

Fax/A - ν SHOOP + Sb + SHOOP < 0.9 (Syield) (OPE)

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 19: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 17

B31.11 Continued …

(If Slp + Fax/A is compressive)

If FAC = 0.0 (fully above ground)

Slp + Fax/A + Sb + SHOOP < 0.9 (Syield) (OPE)

(If Slp + Fax/A is compressive)

(Slp + Sb + Fax/A) (1.0 - FAC) < (0.75) (0.72) (Syield) (SUS)

sqrt ( Sb2 + 4 St2 ) < 0.72 (Syield) (EXP)

(Slp + Sb + Fax/A) (1.0 - FAC) < 0.88 (Syield) (OCC)

International Codes

Canadian Z662 If FAC = 1.0 (fully restrained pipe)

|E α dT - ν Sh| + Sh < 0.9 S * T (OPE)

If FAC = 0.001 (buried, but soil restraints modeled)

|Fax / A - ν Sh| + Sb + Sh < S * T (OPE)

(If Fax / A - ν Sh is compressive)

If FAC = 0.0 (fully above ground)

|Slp + Fax / A| + Sb + Sh < S * T (OPE)

(If Slp + Fax / A is compressive)

Sl = 0.5Sh + Sb < S * F * L * T (SUS, OCC)

SE = sqrt [Sb2 + 4St

2] < 0.72 S * T (EXP)

RCC-M C & D Slp + 0.75i Ma/Z < Sh (SUS)

iMc/Z < f (1.25 Sc + .25 Sh) + Sh - Sl (EXP)

Slpmax + 0.75i (Ma + Mb)/Z < 1.2 Sh (OCC)

Stoomwezen Slp + 0.75i Ma/Z < f (SUS)

iMc/Z < fe (EXP)

Slp + 0.75i (Ma + Mb)/Z < 1.2f (OCC)

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 20: CAESAR II Quick Reference Guide

18 Quick Reference Guide Version 5.10

CODETI Sl = Slp + Fax/A + Sb < Sh (SUS)

sqrt (Sb2 + 4St2) < f [1.25 (Sl + Sh)] - Sl (EXP)

Slp + Fax/A + iMa/Z + iMb/Z < Ksh (OCC)

Sb = [ Sqrt ((iiMi)2 + (i0M0)2] /Z

Norwegian

2PDi .75MaSI = 2 2 ZEff(D D )0 1

+−

(SUS)

iMc/Z < Sh + Sr - Sl (EXP) 2 .75i (Ma + Mb) PmaxDi + 2 2 ZEff(D -D ) 0 i

(OCC)

M = sqrt (Mx2 + My

2 + Mz2)

Sr= Minimum of 1.25 Sc + 0.25 Sh; FrRs-F2;

or Fr (1.25R1 + 0.25R2)

The latter applies to temperatures over 370°C; 425°C for Austenitic stainless steel

Fr= Cyclic reduction factor

Rs= Permissible extent of stress for 7000 cycles

R1= Minimum of Sc and 0.267 Rm

R2= Minimum of Sh and 0.367 Rm

Rm = Ultimate tensile strength at room temperature

FDBR Sl = Slp + 0.75 i Ma / Z < Sh (SUS)

i Mc / Z < f [ 1.25 (Sc+Sh) - Sl ] (EXP)

Slp + 0.75 i Ma / Z + 0.75 i Mb / Z < k Sh (OCC)

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 21: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 19

BS 7159 If Sx is tensile: < Sh (OPE)

2 2sqrt (S 4S )x s+

and

2 2sqrt (S 4S )s+φ< Sh*EH/EA (OPE)

or, if Sx is compressive:

S Sxx+ νφ φ < Sh*EH/EA (OPE)

and

Sx< 1.25Sh (OPE)

( )( )

2 2P D [sqrt((i M ) +(i M ) )]m xi i xo oS = +x 4t Z

( )( )

2 2P D [sqrt((i M ) +(i M ) )] Fm xi i xo o x- - A4t Z

(If Fx/A > P(Dm)/(4t), and it is compressive)

( )( )

MP DmS = 2tφ

for straight pipes

( )( )

2 2[sqrt((i M ) +(i M ) )]MP D i i o om +2t Z

φ φ=

for bends

( )( )

2 2MP D [sqrt((i M ) +(i M ) )]m i i o o+2t Z

x x=

for tees

Dm and t are always for the Run Pipe

Eff = Ratio of E� to Ex

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 22: CAESAR II Quick Reference Guide

20 Quick Reference Guide Version 5.10

UKOOA σab (f2/r) + PDm/ (4t) < (f1 f2 LTHS) / 2.0

Where:

P = design pressure

Dm = pipe mean diameter

t = pipe wall thickness

f1 = factor of safety for 97.5% lower confidence limit, usually 0.85

f2 = system factory of safety, usually 0.67

σab = axial bending stress due to mechanical loads

r = σa(0:1) /σa(2:1)

σa(0:1) = long term axial tensile strength in absence of pressure load

σa(2:1) = long term axial tensile strength in under only pressure loading

LTHS = long term hydrostatic strength (hoop stress allowable)

BS 806 Straight Pipe

< SAOPE

fc = sqrt(F2 + 4fs2) < SASUS

< SAEXP

fs = Mt(d + 2t) / 4I

F = max (ft, fL)

ft = pd/2t + 0.5p

fL = pd2/[4t(d + t)] + (d + 2t)[sqrt(mi2 + mo

2)] / 2I

Bends < SAOPE

fc = sqrt (F2 + 4 fs2) < SASUS

< SAEXP

fs = Mt (d + 2t) /4I

F = max (ft, fL)

ft = r/I * sqrt[(miFTi)2 + (m0FTo)2]

fs = r/I * sqrt[(miFLi)2 + (m0FLo)2]

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 23: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 21

BS 806 Continued …

Branch Junctions < SAOPE

fcb = q * sqrt[fb2 + 4fsb

2] < SASUS < SAEXP

fb = (d + t)*p*m/(2t) + r/I*sqrt[(miFTL)2 +(moFTO

)2]

Fsb = Mt (d + 2t) / 4I

q = 1.0 except for operating cases = 5 or .44 bases on d2/d1 ratio in operating cases

m = geometric parameter

EXP SA = min[(H*Sproof ambient + H*Sproof design); (H*Sproof ambient + F)]

OPE SA = Savg rupture at design temperature

SUS SA = min[.8*Sproof, Screep rupture]

Det Norske Veritas (DNV) Hoop Stress: Sh ≤ ns SMYS

Hoop Stress: Sh ≤ nu SMTS

Longitudinal Stress: SL ≤ n SMYS

Equivalent Stress: Se≤ n SMYS

Where:

Sh = (Pi – Pe) (D – t) / 2t

ns = hoop stress yield usage factor Tables C1 and C2 of DNV

SMYS = specified minimum yield strength, at operating temperature

nu = hoop stress bursting usage factor Tables C1 and C2 of DNV

SMTS = specified minimum tensile strength, at operating temperature

SL = maximum longitudinal stress

n = equivalent stress usage factor Table C4 of DNV

Se = [Sh2 + SL

2 - ShSL + 3t2]1/2

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 24: CAESAR II Quick Reference Guide

22 Quick Reference Guide Version 5.10

EN-13480 < Kfn (SUS)

< fn + fh (EXP)

< Kfn (OCC)

EN-13480 Alternate Option due to primary loads

< Kfn (SUS)

< fn + fh (EXP)

< Kfn (OCC)

due to occasional loads

PD8010 Part 1 Hoop Stress Sh< aeSy (OPE, SUS, OCC)

Equivalent Stress Se< 0.9Sy (OPE, SUS, OCC)

Where:

Sy = specified minimum yield strength

e = weld joint factor

a = design factor

Sh

Se

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 25: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 23

PD8010 Part 1 Continued …

Shl hoop stress using nominal dimensions

ST =

SL Based on restrained/unrestrained status

SL for unrestrained piping

SL for restrained piping

If FAC = 1.0 (fully restrained pipe)

FAC | E α dT - υSHOOP| + SHOOP < 0.9 (Syield) (OPE)

If FAC = 0.001 (buried, but soil restraints modeled)

Fax/A - ν SHOOP + Sb + SHOOP < 0.9 (Syield) (OPE)

(If Slp + Fax/A is compressive)

If FAC = 0.0 (fully above ground)

Slp + Fax/A + Sb + SHOOP < 0.9 (Syield) (OPE)

(If Slp + Fax/A is compressive)

(Slp + Sb + Fax/A) (1.0 - FAC) < (0.75) (0.72) (Syield) (SUS)

sqrt ( Sb2 + 4 St2 ) < 0.72 (Syield) (EXP)

(Slp + Sb + Fax/A) (1.0 - FAC) < 0.8 (Syield) (OCC)

PD8010 Part 2 Hoop Stress Sh< fdhSy (OPE, SUS, OCC)

Equivalent Stress Se< fdeSy (OPE, SUS, OCC)

Where:

Sy specified minimum yield strength

fdh hoop stress design factor (See Table 2)

fde equivalent stress design factor (See Table 2)

Sh=

Se=

ST =

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 26: CAESAR II Quick Reference Guide

24 Quick Reference Guide Version 5.10

Node Locations on Bends � Bends are defined by the element entering the bend and the element leaving the bend. The actual

bend curvature is always physically at the TO end of the element entering the bend. � The element leaving a bend must appear immediately after the element defining (entering) the

bend. � The default bend radius is 1.5 times the pipe nominal OD. � For stress and displacement output the TO node of the element entering the bend is located

geometrically at the FAR point on the bend. The FAR point is at the weld line of the bend, and adjacent to the straight element leaving the bend.

� The NEAR point on the bend is at the weld line of the bend, and adjacent to the straight element entering the bend.

� The FROM point on the element is located at the NEAR point of the bend if the total length of the element as specified in the DX, DY and DZ fields is equal to: Radius * tan( Beta / 2 ) where “Beta” is the bend angle, and Radius is the bend radius of curvature to the bend centerline.

� Nodes defined in the Angle # and Node # fields are placed at the given angle on the bend curvature. The angle starts with zero degrees at the NEAR point on the bend and goes to “Beta” degrees at the FAR point of the bend.

� Angles are always entered in degrees. � By default, nodes on the bend curvature cannot be specified within five (5) degrees of one

another or within five degrees of the nearest end point. This and other bend settings may be changed through the Main Menu, Configure-Setup processor.

� When the FROM node on the element entering the bend is not at the bend NEAR point a node may be placed at the near point of the bend by entering an Angle # on the bend spreadsheet equal to 0.0 degrees. For more information see the following figure.

� When defining a bend element for the first time in the pipe spreadsheet, nodes are automatically placed at the near and mid point of the bend. The generated midpoint node number is one less than the TO node number on the element, and the generated near point node number is two less than the TO node number on the element. A near point should always be included in the model in tight, highly formed piping systems. The top-left figure below shows the points on the bend as they would be input. The top-right figure shows the actual geometric location of the points on the bend. The bottom-left figure shows the same geometry except that two nodes are defined on the bend curvature at angles of zero and forty-five degrees.

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 27: CAESAR II Quick Reference Guide

Quick Reference Guide Version 5.10 25

� For an animated tutorial on modeling bends, select the ANIMATED TUTORIALS option on the Help menu.

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 28: CAESAR II Quick Reference Guide

26 Quick Reference Guide Version 5.10

CAESAR II Quality Assurance Manual The CAESAR II Quality Assurance Manual is intended to serve as a publicly available verification document. This manual discusses (briefly) the current industry QA standards, the COADE QA standard, a series of benchmark jobs, and instructions for users implementing QA procedures on their own hardware. The benchmark jobs consist of comparisons to published data by ASME and the NRC. Additional test jobs compare CAESAR II results to other industry programs. For additional information on the Quality Assurance Manual, please contact the sales department at [email protected].

Mechanical Engineering News As an aid to the users of COADE software products, COADE publishes Mechanical Engineering News several times a year. This publication contains discussions on recent developments that affect users, and technical features illustrating modeling techniques and software applications. This newsletter is sent to all users of COADE software at the time of publication. Back issues can be acquired by contacting the COADE sales staff.

Additional COADE Software Programs CADWorx Plant - An AutoCAD based plant design/drafting program with a bi-directional data transfer link to CAESAR II. CADWorx allows models to be created in ortho, iso, 2D or 3D modes. CADWorx template specifications, contained with built in auto routing, auto iso, stress iso, auto dimensioning, complete libraries, center of gravity calculations, and bill of materials, provides the most complete plant design package to designers. CodeCalc - A program for the design or analysis of pressure vessel components. CodeCalc capabilities include: analysis of tubesheets, rectangular vessels, flanges, nozzles, Zick Analysis, and the standard internal/external thickness and pressure computations on heads, shells, and cones. API 579 calculations are also included. PV Elite - A comprehensive program for the design or analysis of vertical and horizontal vessels. Pressure Vessel Codes include ASME VIII-1 and VIII-2, PD:5500 and EN-13445. PVElite includes all of the CodeCalc functionality. TANK - A program for the design or rerating of API-650/653 storage tanks. The program includes API 650 Appendices A, E, F, M, P, and S, as well as API 653 Appendix B. Computations address: winds girders, conical roof design, allowed fluid heights, and remaining corrosion allowance.

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 29: CAESAR II Quick Reference Guide

Index 1

AAdditional COADE Software Programs • 26 ASME SECT III CLASS 2 & 3 • 13

BB31.1 • 13 B31.1 (1967) and Navy Section 505 • 14 B31.11 • 16, 17 B31.3 • 13 B31.4 • 14 B31.4 Chapter IX • 14 B31.5 • 15 B31.8 • 15 B31.8 Chapter VIII • 16 Bends • 20 Branch Junctions • 21 BS 7159 • 19 BS 806 • 20, 21

CCAESAR II Interfaces • 3 CAESAR II Intersection Types • 12 CAESAR II Pipe Stress Seminars • 2 CAESAR II Quality Assurance Manual • 26 CAESAR II Quick Reference Guide Version

5.10 • 1 CAESAR II Software • 2 Canadian Z662 • 17 Code Stresses • 13 CODETI • 18 Computation Control • 6

DDatabase Definitions • 9 Det Norske Veritas (DNV) • 21

EEN-13480 • 22

FFDBR • 18

GGeometry Directives • 6 GPTC • 16

IInternational Stresses • 17

LList of Materials • 11

MMechanical Engineering News • 26 Miscellaneous Computations • 10

NNode Locations on Bends • 24 Norwegian • 18

PPiping Codes • 4 Plot Colors • 8

RRCC-M C & D • 17 Restraints • 5

SSetup File Directives List • 6 SIFS and Stresses • 7 Stoomwezen • 17 System Requirements • 3

TTroubleshooting • 3

UUKOOA • 20 US Codes • 13

Quick Reference Guide Index

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete

Page 30: CAESAR II Quick Reference Guide

COADE Inc.

12777 Jones Road Suite 480

Houston, Texas 77070

Phone: (281)890-4566

Fax: (281)890-3301

Email: [email protected]

Web: www.coade.com

CAESAR II

Quick Reference Guide

Version 5.10

Last Revised 111/2007

www.cadfamily.com EMail:[email protected] document is for study only,if tort to your rights,please inform us,we will delete