cab’extrac2on:’’asynthe2c’biology’approach’to’microbial...

1
Figure 3. Acid concentra,on present in glucose supplemented LB media inoculated with E. coli. n=3, error bars indicate ±SD. CAB Extrac2on: A Synthe2c Biology Approach to Microbial Enhanced Oil Recovery Gold Sponsors Bronze Sponsors Iain Barkley, Harland Brandon, Mackenzie Coatham, Nathan Dawson, Sutherland Dubé, Jenna Friedt, Dipankar Goyal, Katherine Gzyl, Jennifer Huynh, Boris Lam, Alvin Lee, Jus,n Luu, Richard McLean, Fan Mo, Makay Murray, Ryan Pederson, Dus,n Smith, Zak S,nson, Anthony Vuong, Ben Vuong, Isaac Ward, and HansJoachim Wieden University of Lethbridge, 4401 University Drive Lethbridge, Alberta, Canada T1K 3M4 Increasing global oil demands require new, innova,ve technologies for the extrac,on of unconven,onal oil sources such as those found in Alberta’s Carbonate Triangle. Carbonate oil deposits account for almost 50% of the world’s oil reserves and approximately 26% of the bitumen found in Alberta1. Due to unstable oil prices in Western Canada, these vast reserves have historically been set aside in favor of less ,me consuming, more economical sites. Microbial enhanced oil recovery (MEOR) has been u,lized across the world to increase the produc,vity of difficult resources including carbonate oil deposits. Using a synthe,c biology approach, we have designed the CAB (CO 2 , ace,c acid, and biosurfactant) extrac,on method that demonstrates a modified MEOR method for extrac,ng carbonate oil deposits. CAB extrac,on will u,lize the natural carbon fixa,on machinery in the cyanobacteria Synechococcus elongatus to convert CO 2 into sugars to fuel ace,c acid and biosurfactant produc,on in Escherichia coli. Ace,c acid applied to carbonate rock increases the pore sizes and allows for enhanced oil recovery. The reac,on produces gases that will help pressurize the well site to facilitate extrac,on. The natural biosurfactant rhamnolipid will also be applied to the carbonate rock to further enhance extrac,on yields. By coupling carbon capture with ace,c acid and biosurfactant produc,on, carbonate oil deposits can be mined with reduced greenhouse gas emissions. The use of carbon fixa,on to feed downstream systems can be tailored for use as a module in many applica,ons requiring inexpensive methods for fueling biological systems. CAB extrac,on will be suitable for largescale bioreactors, providing an alterna,ve, inexpensive, and environmentally sustainable method for MEOR from Alberta’s oil deposits. Furthermore, developing the carbon capture module will be of interest in oil extrac,on strategies using steam, as it will help with the mi,ga,on of CO 2 release caused by steam produc,on using, for example, natural gas. Figure 4. Growth curves of E. coli in glucosesupplemented LB media. Data reflects one trial and was fit using a single exponen,al func,on. Glucose Produc2on and Transport: We exploited the carbon fixa,on pathway that is naturally found in S. elongatus for glucose produc,on by introducing a set of genes encoding for proteins that will produce and transport glucose out of the cell. To do this, we implemented Invertase A (InvA) from Zymomonas mobilis that cleaves sucrose into glucose and fructose, as well as GalU that promotes an auxiliary pathway that results in addi,onal sucrose synthesis for enhanced glucose produc,on. For glucose transport, we will employ a Glf (glucose facilitator) protein that also originates from Z. mobilis and exports the intracellular glucose into the surrounding medium. Figure 1. Growth of S. elongatus monitored by op,cal density at 750 nm, grown with and without aera,on provided by a CO 2 bubbler. Data reflects one trial. Ace2c Acid Produc2on: An E. coli chassis is integrated with an enhanced glucose dependent ace,c acid produc,on and transport system. Typically, extracellular glucose diffuses into the cell and is oxidized into pyruvate and converted to acetylCoA through glycolysis. However, the introduced ace,c acid module modifies this pathway by u,lizing the acetylCoA as a substrate for acetate produc,on. First, phosphotransacetylase (PTA) catalyzes the chemical reac,on of acetyl CoA into acetylphosphate (acetylP). As a result of the rela,ve abundance of acetylP , acetate kinase (ACK) will convert acetylP into acetate. The membranebound ace,c acid transporter (Aata) then exports the acetate into the extracellular medium. Pla2num Sponsors Figure 2. 12% SDSPAGE analysis of overexpression of ACK by E. coli. Lane numbers indicate ,me in hours ajer induc,on with IPTG; L indicates ladder. The expected size of ACK is 43 kDa, indicated by the red box. B0010 B0010 InvA K901000 B0034 LacI R0010 BBa_K901003 B0010 B0010 GalU K901004 B0034 LacI R0010 BBa_K901007 B0010 B0010 ACK K901013 B0034 LacI R0010 BBa_K901015 References: 1. Hryhor, D. W. Emerging Solu,ons for Heavy Oil Produc,on from Carbonates. (TAMN Oil and Gas Corp., 2008). AKribu2ons: Dr. George Oworim, University of Alberta, Department of Biological Sciences Dr. Igor Kovalchuk, University of Lethbridge, Department of Biological Sciences Mr. Brad Reamsbooom The Department of Chemistry and Biochemistry, University of Lethbridge BioAlberta Parts SubmiKed: 116.0 45.0 35.0 25.0 18.4 66.2 MW, kDa 0 0.5 1 2 3 L Time ajer induc,on (h)

Upload: others

Post on 03-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CAB’Extrac2on:’’ASynthe2c’Biology’Approach’to’Microbial ...2012.igem.org/files/poster/Lethbridge.pdf · 2012-10-14 · Figure’3.’Acid%concentraon%presentin%glucose%supplemented%LB%media

Figure  3.  Acid  concentra,on  present  in  glucose  supplemented  LB  media  inoculated  with  E.  coli.  n=3,  error  bars  indicate  ±SD.  

CAB  Extrac2on:    A  Synthe2c  Biology  Approach  to  Microbial  Enhanced  Oil  Recovery  

Gold  Sponsors   Bronze  Sponsors  

Iain  Barkley,  Harland  Brandon,  Mackenzie  Coatham,  Nathan  Dawson,  Sutherland  Dubé,  Jenna  Friedt,  Dipankar  Goyal,  Katherine  Gzyl,  Jennifer  Huynh,  Boris  Lam,  Alvin  Lee,  Jus,n  Luu,  Richard  McLean,  Fan  Mo,  Makay  Murray,  Ryan  Pederson,  Dus,n  Smith,  Zak  

S,nson,  Anthony  Vuong,  Ben  Vuong,  Isaac  Ward,  and  Hans-­‐Joachim  Wieden  University  of  Lethbridge,  4401  University  Drive  Lethbridge,  Alberta,  Canada  T1K  3M4  

Increasing   global   oil   demands   require   new,   innova,ve   technologies   for   the   extrac,on   of  unconven,onal   oil   sources   such   as   those   found   in   Alberta’s   Carbonate   Triangle.   Carbonate   oil  deposits  account  for  almost  50%  of  the  world’s  oil  reserves  and  approximately  26%  of  the  bitumen  found   in   Alberta1.   Due   to   unstable   oil   prices   in   Western   Canada,   these   vast   reserves   have  historically   been   set   aside   in   favor   of   less   ,me   consuming,   more   economical   sites.   Microbial  enhanced  oil   recovery   (MEOR)  has  been  u,lized  across  the  world  to   increase  the  produc,vity  of  difficult  resources  including  carbonate  oil  deposits.  

Using  a  synthe,c  biology  approach,  we  have  designed  the  CAB  (CO2,  ace,c  acid,  and  biosurfactant)  extrac,on   method   that   demonstrates   a   modified   MEOR   method   for   extrac,ng   carbonate   oil  deposits.   CAB   extrac,on  will   u,lize   the   natural   carbon   fixa,on  machinery   in   the   cyanobacteria  Synechococcus   elongatus   to   convert   CO2   into   sugars   to   fuel   ace,c   acid   and   biosurfactant  produc,on  in  Escherichia  coli.  Ace,c  acid  applied  to  carbonate  rock   increases  the  pore  sizes  and  allows  for  enhanced  oil  recovery.  The  reac,on  produces  gases  that  will  help  pressurize  the  well  site  to  facilitate  extrac,on.  The  natural  biosurfactant  rhamnolipid  will  also  be  applied  to  the  carbonate  rock  to  further  enhance  extrac,on  yields.  

By  coupling  carbon  capture  with  ace,c  acid  and  biosurfactant  produc,on,  carbonate  oil  deposits  can   be   mined   with   reduced   greenhouse   gas   emissions.   The   use   of   carbon   fixa,on   to   feed  downstream   systems   can   be   tailored   for   use   as   a   module   in   many   applica,ons   requiring  inexpensive  methods  for  fueling  biological  systems.  CAB  extrac,on  will  be  suitable  for  large-­‐scale  bioreactors,   providing   an   alterna,ve,   inexpensive,   and   environmentally   sustainable   method   for  MEOR  from  Alberta’s  oil  deposits.  Furthermore,  developing  the  carbon  capture  module  will  be  of  interest   in  oil  extrac,on  strategies  using  steam,  as   it  will  help  with  the  mi,ga,on  of  CO2  release  caused  by  steam  produc,on  using,  for  example,  natural  gas.    

Figure  4.  Growth  curves  of  E.  coli  in  glucose-­‐supplemented  LB  media.  Data  reflects  one  trial  and  was  fit  using  a  single  exponen,al  func,on.  

Glucose   Produc2on   and   Transport:   We   exploited   the   carbon   fixa,on   pathway   that   is   naturally  found   in  S.  elongatus   for  glucose  produc,on  by   introducing  a  set  of  genes  encoding  for  proteins  that  will  produce  and   transport  glucose  out  of   the  cell.   To  do   this,  we   implemented   Invertase  A  (InvA)   from   Zymomonas  mobilis   that   cleaves   sucrose   into   glucose   and   fructose,   as  well   as  GalU  that   promotes   an   auxiliary   pathway   that   results   in   addi,onal   sucrose   synthesis   for   enhanced  glucose  produc,on.   For  glucose   transport,  we  will   employ  a  Glf   (glucose   facilitator)  protein   that  also  originates  from  Z.  mobilis  and  exports  the  intracellular  glucose  into  the  surrounding  medium.  

Figure  1.  Growth  of  S.  elongatus  monitored  by  op,cal  density  at  750  nm,  grown  with  and  without  aera,on  provided  by  a  CO2  bubbler.  Data  reflects  one  trial.  

Ace2c   Acid   Produc2on:   An   E.   coli   chassis   is   integrated   with   an   enhanced     glucose   dependent    ace,c  acid  produc,on  and  transport  system.    Typically,  extracellular  glucose  diffuses  into  the  cell  and   is   oxidized   into   pyruvate   and   converted   to     acetyl-­‐CoA   through   glycolysis.   However,   the  introduced  ace,c  acid  module  modifies  this  pathway  by  u,lizing  the  acetyl-­‐CoA  as  a  substrate  for  acetate  produc,on.   First,  phosphotransacetylase   (PTA)   catalyzes   the   chemical   reac,on  of  acetyl-­‐CoA   into   acetyl-­‐phosphate   (acetyl-­‐P).  As   a   result   of   the   rela,ve  abundance  of   acetyl-­‐P,     acetate  kinase   (ACK)   will   convert   acetyl-­‐P   into   acetate.   The   membrane-­‐bound   ace,c   acid   transporter  (Aata)  then  exports  the  acetate  into  the  extracellular  medium.    

Pla2num  Sponsors  

Figure   2.   12%   SDS-­‐PAGE   analysis   of   overexpression   of   ACK   by   E.   coli.   Lane  numbers   indicate  ,me  in  hours  ajer   induc,on  with   IPTG;  L   indicates   ladder.    The  expected  size  of  ACK  is  43  kDa,  indicated  by  the  red  box.   B00

10      B00

10      

InvA  K90

1000      

B0034    

 Lac

I  R0010

     

BBa_K901003  

B0010    

 B00

10      

GalU  K

901004

     

B0034    

 Lac

I  R0010

     

BBa_K901007  

B0010    

 B00

10      

ACK  K90

1013      

B0034    

 Lac

I  R0010

     

BBa_K901015  

References:  1.  Hryhor,  D.  W.  Emerging  Solu,ons  for  Heavy  Oil  Produc,on  from  Carbonates.  (TAMN  Oil  and  Gas  Corp.,  2008).  

AKribu2ons:  Dr.  George  Oworim,  University  of  Alberta,  Department  of  Biological  Sciences  Dr.  Igor  Kovalchuk,  University  of  Lethbridge,  Department  of  Biological  Sciences  Mr.  Brad  Reamsbooom  The  Department  of  Chemistry  and  Biochemistry,  University  of  Lethbridge  BioAlberta  

Parts  SubmiKed:  

116.0  

45.0  

35.0  

25.0  

18.4  

66.2  

MW,  kDa  0          0.5        1            2            3              L  

Time  ajer  induc,on  (h)