c3 ch6 solutions

111
8/10/2019 C3 CH6 Solutions http://slidepdf.com/reader/full/c3-ch6-solutions 1/111 Solutionbank Edexcel AS and A Level Modular Mathematics Exercise A, Question 1 © Pearson Education Ltd 2008 Question: Without using your calculator, write down the sign of the following trigonometric ratios: (a) sec 300° (b) cosec 190° (c) cot 110° (d) cot 200° (e) sec 95° Solution: (a) 300° is in the 4th quadrant sec 300 ° = In 4th quadrant cos is +ve, so sec 300° is +ve. (b) 190° is in the 3rd quadrant cosec 190 ° = In 3rd quadrant sin is −ve, so cosec 190° is −ve. (c) 110° is in the 2nd quadrant cot 110 ° = In the 2nd quadrant tan is −ve, so cot 110° is −ve. (d) 200° is in the 3rd quadrant. tan is +ve in the 3rd quadrant, so cot 200° is+ve. (e) 95° is in the 2nd quadrant cos is −ve in the 2nd quadrant, so sec 95° is −ve. 1 cos300 ° 1 sin190 ° 1 tan110 ° Page 1 of 1 Heinemann Solutionbank: Core Maths 3 C3

Upload: gia-khanh

Post on 02-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 1/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise A, Question 1

© Pearson Education Ltd 2008

Question:

Without using your calculator, write down the sign of the followingtrigonometric ratios:

(a) sec 300°

(b) cosec 190°

(c) cot 110°

(d) cot 200°

(e) sec 95°

Solution:

(a) 300° is in the 4th quadrant

sec 300 ° =

In 4th quadrant cos is +ve, so sec 300° is +ve.

(b) 190° is in the 3rd quadrant

cosec 190 ° =

In 3rd quadrant sin is −ve, so cosec 190° is −ve.

(c) 110° is in the 2nd quadrant

cot 110 ° =In the 2nd quadrant tan is −ve, so cot 110° is −ve.

(d) 200° is in the 3rd quadrant.tan is +ve in the 3rd quadrant, so cot 200° is+ve.

(e) 95° is in the 2nd quadrantcos is −ve in the 2nd quadrant, so sec 95° is −ve.

1

cos300 °

1sin190 °

1

tan110 °

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 2: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 2/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise A, Question 2

Question:

Use your calculator to find, to 3 significant figures, the values of

(a) sec 100°

(b) cosec 260°

(c) cosec 280°

(d) cot 550°

(e) cot

(f) sec2.4 c

(g) cosec

(h) sec6 c

3

11 π

10

Solution:

(a) sec 100 ° = = − 5.76

(b) cosec 260 ° = = − 1.02

(c) cosec 280 ° = = − 1.02

(d) cot 550 ° = = 5.67

(e) cot = = 0.577

1

cos100 °

1

sin260 °

1sin280 °

1tan550 °

3 1

tan4π

3

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 3: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 3/111

© Pearson Education Ltd 2008

(f) sec2.4 c = = − 1.36

(g) cosec = = − 3.24

(h) sec6 c = = 1.04

1

cos2.4 c

11 π

101

sin11 π

10

1

cos6 c

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 4: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 4/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise A, Question 3

Question:

Find the exact value (in surd form where appropriate) of the following:

(a) cosec 90°

(b) cot 135°

(c) sec 180°

(d) sec 240°

(e) cosec 300°(f) cot ( − 45 ° )

(g) sec 60°

(h) cosec ( − 210 ° )

(i) sec 225°

(j) cot

(k) sec

(l) cosec −

3

11 π

6

4

Solution:

(a) cosec 90 ° = = = 1 (refer to graph of y = sin θ )

(b) cot 135 ° = = = = − 1

(c) sec 180 ° = = = − 1 (refer to graph of y = cos θ )

(d) 240° is in 3rd quadrant

1sin90 °

11

1

tan135 °

1

− tan 45 °

1

− 1

1cos180 °

1− 1

Page 1 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 5: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 5/111

sec 240 ° = = = = − 2

(e) cosec 300 ° = = = − = − = −

(f) cot ( − 45 ° ) = = = = − 1

(g) sec 60 ° = = = 2

(h) − 210 ° is in 2nd quadrant

cosec ( − 210 ° ) = = = = 2

(i) 225° is in 3rd quadrant

sec 225 ° = =

(j) is in 3rd quadrant

cot = = = =

(k) = 2π − (in 4th quadrant)

1

cos240 °

1

− cos 60 °1

−1

2

1sin300 °

1− sin 60 °

1

√ 312

2√ 3

2 √ 33

1

tan ( − 45 ° )

1

− tan 45 °

1

− 1

1cos60 °

11

2

1sin ( − 210 ° )

1sin30 °

1

12

1

cos225 °

1

− cos 45 °

3

31

tan4π

3

1

+ tanπ

3

1√ 3

√ 33

11 π

6

π

6

Page 2 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 6: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 6/111

© Pearson Education Ltd 2008

(l)

Page 3 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 7: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 7/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise A, Question 4

Question:

(a) Copy and complete the table, showing values (to 2 decimal places) of sec θ forselected values of θ .

(b) Copy and complete the table, showing values (to 2 decimal places) of cosec θ forselected values of θ .

(c) Copy and complete the table, showing values (to 2 decimal places) of cot θ forselected values of θ .

Solution:

(a) Change sec θ into and use your calculator.

1

cos θ

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 8: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 8/111

© Pearson Education Ltd 2008

(b) Change cosec θ to and use your calculator.

(c) Change cot θ to and use your calculator.

1

sin θ

1

tan θ

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 9: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 9/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise B, Question 1

Question:

(a) Sketch, in the interval − 540 ° ≤ θ ≤ 540 ° , the graphs of:(i) sec θ (ii) cosec θ (iii) cot θ

(b) Write down the range of(i) sec θ (ii) cosec θ (iii) cot θ

Solution:

(a)(i)

(ii)

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 10: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 10/111

© Pearson Education Ltd 2008

(iii)

(b)(i) (Note the gap in the range) sec θ ≤ − 1, sec θ ≥ 1(ii) ( cosec θ also has a gap in the range) cosec θ ≤ − 1, cosec θ ≥ 1(iii) cot θ takes all real values, i.e. cot θ ∈ ℝ .

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 11: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 11/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise B, Question 2

© Pearson Education Ltd 2008

Question:

(a) Sketch, on the same set of axes, in the interval 0 ≤ θ ≤ 360 ° , thegraphs of y = sec θ and y = − cos θ .

(b) Explain how your graphs show that sec θ = − cos θ has no solutions.

Solution:

(a)

(b) You can see that the graphs of sec θ and − cos θ do not meet, sosec θ = − cos θ has no solutions.Algebraically, the solutions of sec θ = − cos θ

are those of = − cos θ

This requires cos 2 θ = − 1, which is not possible for real θ .

1cos θ

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 12: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 12/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise B, Question 3

© Pearson Education Ltd 2008

Question:

(a) Sketch, on the same set of axes, in the interval 0 ≤ θ ≤ 360 ° , thegraphs of y = cot θ and y = sin2 θ .

(b) Deduce the number of solutions of the equation cot θ = sin2 θ in the interval0 ≤ θ ≤ 360 ° .

Solution:

(a)

(b) The curves meet at the maxima and minima of y = sin2 θ , and on the θ -axis atodd integer multiples of 90°.In the interval 0 ≤ θ ≤ 360 ° there are 6 intersections.So there are 6 solutions of cot θ = sin2 θ , is 0 ≤ θ ≤ 360 ° .

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 13: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 13/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise B, Question 4

© Pearson Education Ltd 2008

Question:

(a) Sketch on separate axes, in the interval 0 ≤ θ ≤ 360 ° , the graphs of y = tan θ and y = cot ( θ + 90 ° ) .

(b) Hence, state a relationship between tan θ and cot ( θ + 90 ° ) .

Solution:

(a)

(b) y = cot ( θ + 90 ° ) is a reflection in the θ -axis of y = tan θ , so cot ( θ + 90 ° )= − tan θ

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 14: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 14/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise B, Question 5

Question:

(a) Describe the relationships between the graphs of

(i) tan θ + and tan θ

(ii) cot ( − θ ) and cot θ

(iii) cosec θ + and cosec θ

(iv) sec θ − and sec θ

(b) By considering the graphs of tan θ + , cot ( − θ ) , cosec θ +

and sec θ − , state which pairs of functions are equal.

π

2

π

4

π

4

π

2

π

4

π

4

Solution:

(a) (i) The graph of tan θ + is the same as that of tan θ translated by to

the left.

(ii) The graph of cot ( − θ ) is the same as that of cot θ reflected in the y -axis.

(iii) The graph of cosec θ + is the same as that of cosec θ translated by

to the left.

(iv) The graph of sec θ − is the same as that of sec θ translated by to

the right.

π

2

π

2

π

4

π

4

π

4

π

4

Page 1 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 15: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 15/111

(b)

(reflect y = cot θ in the y -axis)

tan θ + = cot ( − θ )

π

2

Page 2 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 16: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 16/111

© Pearson Education Ltd 2008

cosec θ + = sec θ −

π

4

π

4

Page 3 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 17: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 17/111

Page 4 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 18: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 18/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise B, Question 6

Question:

Sketch on separate axes, in the interval 0 ≤ θ ≤ 360 ° , the graphs of:

(a) y = sec2 θ

(b) y = − cosec θ

(c) y = 1 + sec θ

(d) y = cosec ( θ − 30 ° )In each case show the coordinates of any maximum and minimum points, and ofany points at which the curve meets the axes.

Solution:

(a) A stretch of y = sec θ in the θ direction with scale factor .

Minimum at (180°, 1)Maxima at (90°, -1) and (270°, -1)

(b) Reflection in θ -axis of y = cosec θ .Minimum at (270°, 1)Maximum at (90°, -1)

1

2

Page 1 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 19: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 19/111

(c) Translation of y = sec θ by + 1 in the y direction.Maximum at (180°, 0)

(d) Translation of y = cosec θ by 30° to the right.Minimum at (120°, 1)Maximum at (300°, -1)

Page 2 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 20: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 20/111

© Pearson Education Ltd 2008

Page 3 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 21: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 21/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise B, Question 7

© Pearson Education Ltd 2008

Question:

Write down the periods of the following functions. Give your answer in terms ofπ .

(a) sec3 θ

(b) cosec θ

(c) 2 cotθ

(d) sec ( − θ )

1

2

Solution:

(a) The period of sec θ is 2 π radians.

y = sec3 θ is a stretch of y = sec θ with scale factor in the θ direction.

So period of sec 3 θ is .

(b) cosec θ has a period of 2 π .

cosec θ is a stretch of cosec θ in the θ direction with scale factor 2.

So period of cosec θ is 4 π .

(c) cotθ

has a period ofπ

.2 cot θ is a stretch in the y direction by scale factor 2.So the periodicity is not affected.Period of 2 cot θ is π .

(d) sec θ has a period of 2 π .sec ( − θ ) is a reflection of sec θ in y-axis, so periodicity is unchanged.Period of sec ( − θ ) is 2 π .

13

3

1

2

12

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 22: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 22/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise B, Question 8

© Pearson Education Ltd 2008

Question:

(a) Sketch the graph of y = 1 + 2 sec θ in the interval − π ≤ θ ≤ 2π .

(b) Write down the y-coordinate of points at which the gradient is zero.

(c) Deduce the maximum and minimum values of , and give the

smallest positive values of θ at which they occur.

1

1 + 2 sec θ

Solution:

(a)

(b) The y coordinates at stationary points are − 1 and 3.

(c) Minimum value of is where 1 + 2 sec θ is a maximum.

So minimum value of is = − 1

It occurs when θ = π (see diagram) (1st +ve value)

Maximum value of is where 1 + 2 sec θ is a minimum.

So maximum value of is

It occurs when θ = 2π (1st +ve value)

11 + 2 sec θ

1

1 + 2 secθ

1

− 1

11 + 2 sec θ

1

1 + 2 sec θ

1

3

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 23: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 23/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise C, Question 1

Question:

Give solutions to these equations correct to 1 decimal place.

Rewrite the following as powers of sec θ , cosec θ or cot θ :

(a)

(b) \

(c)

(d)

(e)

(f) \ cosec 3 θ cot θ sec θ

(g)

(h)

1

sin 3 θ

4

tan 6 θ

1

2 cos 2 θ

1 − sin 2 θ

sin2 θ

sec θ

cos 4 θ

2 \ tan θ

cosec 2 θ tan 2 θ

cos θ

Solution:

(a) = 3 = cosec 3 θ

(b) \ = = 2 × 3 = 2 cot 3 θ

1

sin 3 θ

1

sin θ

4

tan6

θ

2

tan3

θ

1tan θ

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 24: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 24/111

© Pearson Education Ltd 2008

(c) = × 2 = sec 2 θ

(d) = (using sin 2 θ + cos 2 θ ≡ 1)

So = 2 = cot 2 θ

(e) = × = = 5 = sec 5 θ

(f) \ cosec 3 θ cot θ sec θ = \ × × = \ =

= cosec 2 θ

(g) = 2 × = 2 cot θ

(h) = × × = 3 = sec 3 θ

1

2 cos 2 θ

12

1cos θ

12

1 − sin 2 θ

sin2 θ

cos 2 θ

sin 2 θ

1 − sin 2 θ

sin2 θ

cos θ

sin θ

sec θ

cos 4 θ

1

cos θ 1

cos 4 θ

1

cos 5 θ

1

cos θ

1

sin3 θ

cos θ

sin θ

1cos θ

1

sin4 θ

1

sin2 θ

2 \ tan θ

1

( tan θ )1

2

1

2

cosec 2 θ tan 2 θ

cos θ 1

sin2 θ

sin2 θ

cos 2 θ

1cos θ

1cos θ

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 25: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 25/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise C, Question 2

© Pearson Education Ltd 2008

Question:

Give solutions to these equations correct to 1 decimal place.

Write down the value(s) of cot x in each of the following equations:

(a) 5 sin x = 4 cos x

(b) tan x = − 2

(c) 3 =sin x

cos x

cos x

sin x

Solution:

(a) 5 sin x = 4 cos x

⇒ 5 = 4 (divide by sin x )

⇒ = cot x (divide by 4)

(b) tan x = − 2

⇒ =

⇒ cot x = −

(c) 3 =

3 sin2 x

= cos2 x

(multiply by sin x

cos x

)

⇒ 3 = (divide by sin 2 x )

⇒ 2 = 3

⇒ cot 2 x = 3

⇒ cot x = ± √ 3

cos x

sin x

5

4

1

tan x

1

− 2

12

sin x

cos x

cos x

sin x

cos 2 x

sin2 x

cos x

sin x

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 26: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 26/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise C, Question 3

Question:

Give solutions to these equations correct to 1 decimal place.

Using the definitions of sec , cosec , cot and tan simplify the followingexpressions:

(a) sin θ cot θ

(b) tan θ cot θ

(c) tan 2 θ cosec 2 θ

(d) cos θ sin θ (cot θ + tan θ )

(e) sin 3 x cosec x + cos 3 x sec x

(f) sec A - sec A sin 2 A

(g) sec 2 x cos 5 x + cot x cosec x sin 4 x

Solution:

(a) sin θ cot θ = sin θ × = cos θ

(b) tan θ cot θ = tan θ × = 1

(c) tan2 θ cosec2 θ = × = = sec2 θ

(d) cos θ sin θ ( cot θ + tan θ ) = cos θ sin θ +

= cos 2 θ + sin 2 θ = 1

(e) sin3 x cosec x + cos 3 x sec x = sin 3 x × + cos 3 x ×

= sin 2 x + cos 2 x = 1

cos θ

sin θ

1

tan θ

sin2 θ

cos2 θ 1

sin2 θ 1

cos2 θ

cos θ

sin θ

sin θ

cos θ

1

sin x

1cos x

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 27: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 27/111

© Pearson Education Ltd 2008

(f) sec A − sec A sin2 A

= sec A ( 1 − sin 2 A ) (factorise)

= × cos 2 A (using sin 2 A + cos 2 A ≡ 1)

= cos A

(g) sec 2 x cos 5 x + cot x cosec x sin4 x

= × cos 5 x + × × sin 4 x

= cos 3 x + sin 2 x cos x

= cos x ( cos 2 x + sin 2 x )= cos x (since cos 2 + sin 2 ≡ 1)

1

cos A

1

cos 2 x

cos x

sin x

1

sin x

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 28: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 28/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise C, Question 4

Question:

Show that

(a) cos θ + sin θ tan θ ≡ sec θ

(b) cot θ + tan θ ≡ cosec θ sec θ

(c) cosec θ − sin θ ≡ cos θ cot θ

(d) ( 1 − cos x ) ( 1 + sec x ) ≡ sin x tan x

(e) + ≡ 2 sec x

(f) ≡

cos x

1 − sin x 1 − sin x

cos x

cos θ

1 + cot θ

sin θ

1 + tan θ

Solution:

(a) L.H.S. ≡ cos θ + sin θ tan θ

≡ cos θ + sin θ

≡ (using sin 2 θ + cos 2 θ ≡ 1)

≡ sec θ ≡ R.H.S.

(b) L.H.S. ≡ cot θ + tan θ

≡ +

≡ ×

≡ cosec θ sec θ ≡ R.H.S.

(c) L.H.S.≡

cosecθ

− sinθ

≡ − sin θ

sin θ

cos θ

cos 2 θ + sin 2 θ

cos θ

1

cos θ

cos θ

sin θ

sin θ

cos θ

cos 2 θ + sin 2 θ

sin θ cos θ

1

sin θ cos θ

1

sin θ

1

cos θ

1

sin θ

Page 1 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 29: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 29/111

≡ cos θ ×≡ cos θ cot θ ≡ R.H.S.

(d) L.H.S. ≡ ( 1 − cos x ) ( 1 + sec x )≡ 1 − cos x + sec x − cos x sec x (multiplying out)≡ sec x − cos x

≡ − cos x

≡ sin x ×

≡ sin x tan x ≡ R.H.S.

(e) L.H.S. ≡ +

≡ (using sin 2 x + cos 2 x ≡ 1)

≡ (factorising)

=

≡ 2 sec x ≡ R.H.S.

(f)

1 − sin 2 θ

sin θ

cos 2 θ

sin θ

cos θ

sin θ

1

cos x

1 − cos 2 x

cos x

sin 2 x

cos x

sin x

cos x

cos x

1 − sin x

1 − sin x

cos x

cos 2 x + ( 1 − sin x ) 2

( 1 − sin x ) cos x

cos 2 x + ( 1 − 2 sin x + sin 2 x )

( 1 − sin x ) cos x

2 − 2 sin x

( 1 − sin x ) cos x

2 ( 1 − sin x )

( 1 − sin x ) cos x

2cos x

Page 2 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 30: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 30/111

© Pearson Education Ltd 2008

Page 3 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 31: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 31/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise C, Question 5

Question:

Solve, for values of θ in the interval 0 ≤ θ ≤ 360 ° , the followingequations. Give your answers to 3 significant figures where necessary.

(a) sec θ = √ 2

(b) cosec θ = − 3

(c) 5 cot θ = − 2

(d) cosec θ = 2

(e) 3 sec 2 θ − 4 = 0

(f) 5 cos θ = 3 cot θ

(g) cot 2 θ − 8 tan θ = 0

(h) 2 sin θ = cosec θ

Solution:

(a) sec θ = √ 2

⇒ = √ 2

⇒ cos θ =

Calculator value is θ = 45 °cos θ is +ve ⇒ θ in 1st and 4th quadrantsSolutions are 45°, 315°

(b) cosec θ = − 3

⇒ = − 3

⇒ sin θ = −

Calculator value is − 19.5 °sin θ is −ve ⇒ θ is in 3rd and 4th quadrants

1

cos θ

1√ 2

1sin θ

1

3

Page 1 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 32: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 32/111

Solutions are 199°, 341° (3 s.f.)

(c) 5 cot θ = − 2

⇒ cot θ = −

⇒ tan θ = −

Calculator value is − 68.2 °tan θ is −ve ⇒ θ is in 2nd and 4th quadrants

Solutions are 112°, 292° (3 s.f.)

(d) cosec θ = 2⇒ = 2

⇒ sin θ =

sin θ is +ve ⇒ θ is in 1st and 2nd quadrantsSolutions are 30°, 150°

(e) 3 sec 2 θ = 4

2

55

2

1

sin θ

12

Page 2 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 33: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 33/111

⇒ sec 2 θ =

⇒ cos 2 θ =

⇒ cos θ = ±

Calculator value for cos θ = is 30°

As cos θ is ± , θ is in all four quadrantsSolutions are 30°, 150°, 210°, 330°

(f) 5 cos θ = 3 cot θ

⇒ 5 cos θ = 3

Note Do not cancel cos θ on each side. Multiply through by sin θ .⇒ 5 cos θ sin θ = 3 cos θ ⇒ 5 cos θ sin θ − 3 cos θ = 0⇒ cos θ ( 5 sin θ − 3 ) = 0 (factorise)

So cos θ = 0 or sin θ =

Solutions are (90°, 270°), (36.9°, 143°) = 36.9°, 90°, 143°, 270°.

(g) cot 2 θ − 8 tan θ = 0

⇒ − 8 tan θ = 0

⇒ 1 − 8 tan 3 θ = 0

⇒ 8 tan 3 θ = 1

⇒ tan 3 θ =

⇒ tan θ =

tan θ is +ve ⇒ θ is in 1st and 3rd quadrantsCalculator value is 26.6°Solutions are 26.6° and ( 180 ° + 26.6 ° ) = 26.6 ° and 207 ° (3 s.f.).

(h) 2 sin θ = cosec θ

⇒ 2 sin θ =

43

3

4

√ 3

2

√ 3

2

cos θ

sin θ

3

5

1

tan2 θ

18

1

2

1

sin θ

Page 3 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 34: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 34/111

© Pearson Education Ltd 2008

⇒ sin 2 θ =

⇒ sin θ = ±

Calculator value for sin− 1

is 45°

Solution are in all four quadrantsSolutions are 45°, 135°, 225°, 315°

12

1√ 2

1

√ 2

Page 4 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 35: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 35/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise C, Question 6

Question:

Solve, for values of θ in the interval − 180 ° ≤ θ ≤ 180 ° , thefollowing equations:

(a) cosec θ = 1

(b) sec θ = − 3

(c) cot θ = 3.45

(d) 2 cosec 2 θ − 3 cosec θ = 0

(e) sec θ = 2 cos θ

(f) 3 cot θ = 2 sin θ

(g) cosec2 θ = 4

(h) 2 cot 2 θ − cot θ − 5 = 0

Solution:

(a) cosec θ = 1⇒ sin θ = 1⇒ θ = 90 °

(b) sec θ = − 3

Page 1 of 5Heinemann Solutionbank: Core Maths 3 C3

Page 36: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 36/111

⇒ cos θ = −

Calculator value for cos − 1 − is 109° (3 s.f.)

cos θ is −ve ⇒ θ is in 2nd and 3rd quadrants

Solutions are 109° and − 109 °[If you are not using the quadrant diagram, answer in this case would be cos − 1

− and − 360 ° + cos − 1 − . See key point on page 84.]

(c) cot θ = 3.45⇒ = 3.45

⇒ tan θ = = 0.28985...

Calculator value for tan − 1 ( 0.28985... ) is 16.16°

tan θ is +ve ⇒ θ is in 1st and 3rd quadrants

Solutions are 16.2 ° , − 180 ° + 16.2 ° = 16.2 ° , − 164 ° (3 s.f.)

13

13

1

3

1

3

1tan θ

1

3.45

Page 2 of 5Heinemann Solutionbank: Core Maths 3 C3

Page 37: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 37/111

(d) 2 cosec 2 θ − 3 cosec θ = 0 ⇒ cosec θ ( 2 cosec θ − 3 ) = 0 (factorise)

⇒ cosec θ = 0 or cosec θ =

⇒ sin θ = cosec θ = 0 has no solutions

Calculator value for sin − 1 is 41.8°

θ is in 1st and 2nd quadrantsSolutions are 41.8°, ( 180 − 41.8 ) ° = 41.8 ° , 138 ° (3 s.f.)

(e) sec θ = 2 cos θ

= 2 cosθ

⇒ cos 2 θ =

⇒ cos θ = ±

Calculator value for cos − 1 is 45°

θ is in all quadrants, but remember that − 180 ° ≤ θ ≤ 180 °

Solutions are ± 45 ° , ± 135 °

(f) 3 cot θ = 2 sin θ

⇒ 3 = 2 sin θ

⇒ 3 cos θ = 2 sin 2 θ

⇒ 3 cos θ = 2 ( 1 − cos 2 θ ) (use sin 2 θ + cos 2 θ ≡ 1)

⇒ 2 cos 2 θ + 3 cos θ − 2 = 0

⇒ ( 2 cos θ − 1 ) ( cos θ + 2 ) = 0

⇒ cos θ = or cos θ = − 2

As cos θ = − 2 has no solutions, cos θ =

Solutions are ± 60 °

(g) cosec2 θ = 4

⇒ sin2 θ =

Remember that − 180 ° ≤ θ ≤ 180 °

3

2

23

23

1

cos θ

1

2

1√ 2

1√ 2

cos θ

sin θ

12

12

14

Page 3 of 5Heinemann Solutionbank: Core Maths 3 C3

Page 38: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 38/111

So − 360 ° ≤ 2θ ≤ 360 °

Calculator solution for 2 θ is sin − 1 = 14.48 °

sin 2 θ is +ve ⇒ 2θ is in 1st and 2nd quadrants

2θ = − 194.48 ° , − 345.52 ° , 14.48 ° , 165.52 °θ = − 97.2 ° , − 172.8 ° , 7.24 ° , 82.76 ° = − 173 ° , − 97.2 ° , 7.24°, 82.8°(3 s.f.)

(h) 2 cot 2 θ − cot θ − 5 = 0

As this quadratic in cot θ does not factorise, use the quadratic formula

cot θ =

(You could change cot θ to and work with the quadratic

5 tan 2 θ + tan θ − 2 = 0)

So cot θ = = − 1.3507... or 1.8507 …

So tan θ = − 0.7403... or 0.5403 …The calculator value for tan θ = − 0.7403... is θ = − 36.51 °

Solution are − 36.5 ° , + 143 ° (3 s.f.).

1

4

− b ± \ b 2 − 4ac

2a

1tan θ

1 ± \ 414

Page 4 of 5Heinemann Solutionbank: Core Maths 3 C3

Page 39: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 39/111

© Pearson Education Ltd 2008

The calculator value for tan θ = 0.5403... is θ = 28.38 °

Solution are 28.4°, ( − 180 + 28.4 ) °Total set of solutions is − 152 ° , − 36.5 ° , 28.4°, 143° (3 s.f.)

Page 5 of 5Heinemann Solutionbank: Core Maths 3 C3

Page 40: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 40/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise C, Question 7

Question:

Solve the following equations for values of θ in the interval 0 ≤ θ ≤ 2π .Give your answers in terms of π .

(a) sec θ = − 1

(b) cot θ = − √ 3

(c) cosec θ =

(d) sec θ = √ 2 tan θ θ ≠ , θ ≠

1

2

2 √ 3

3

π

2

2

Solution:

(a) sec θ = − 1⇒ cos θ = − 1

⇒ θ = π (refer to graph of y = cos θ )

(b) cot θ = − √ 3

⇒ tan θ = −

Calculator solution is − you should know that tan =

− is not in the interval

1√ 3

π

6

π

61

√ 3

π

6

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 41: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 41/111

© Pearson Education Ltd 2008

Solution are π − , 2 π − = ,

(c) cosec θ =

⇒ sin θ = =

Remember that 0 ≤ θ ≤ 2π

so 0 ≤ θ ≤ π

First solution for sin θ = is θ =

So θ = ,

⇒ θ = ,

(d) sec θ = √ 2 tan θ

⇒ = √ 2

⇒ 1 = √ 2 sin θ ( cos θ ≠ 0 )

⇒ sin θ =

Solutions are ,

π

6

π

65π

611 π

6

1

2

2 √ 3

3

12

32 √ 3

√ 32

1

2

12

√ 32

12

π

3

1

2

π

3

3

3

3

1cos θ

sin θ

cos θ

1√ 2

π

43π

4

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 42: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 42/111

Page 43: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 43/111

© Pearson Education Ltd 2008

⇒ AC = 6 cos θ DC = AD − AC = 6 sec θ − 6 cos θ = 6 ( sec θ − cos θ )

(b) As 16 = 6 sec θ − 6 cos θ

⇒ 8 = − 3 cos θ

⇒ 8 cos θ = 3 − 3 cos 2 θ

⇒ 3 cos 2 θ + 8 cos θ − 3 = 0

⇒ ( 3 cos θ − 1 ) ( cos θ + 3 ) = 0

⇒ cos θ = as cos θ ≠ − 3

From (a) AC = 6 cos θ = 6 × = 2 cm

3cos θ

1

3

1

3

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 44: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 44/111

Page 45: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 45/111

Page 46: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 46/111

© Pearson Education Ltd 2008

= cos 2 θ ×

= 1

(i)

=

= × cot θ

= ×

= cos θ

(j) sec 4 θ − 2 sec 2 θ tan 2 θ + tan 4 θ

= ( sec 2 θ − tan 2 θ ) 2 (factorise)

= [ ( 1 + tan 2 θ ) − tan 2 θ ] 2

= 12 = 1

(k) 4 cosec 2 2θ + 4 cosec 2 2θ cot 2 2θ

= 4 cosec 2 2θ ( 1 + cot 2 2θ )= 4 cosec 2 2θ cosec 2 2θ

= 4 cosec 4 2θ

1

cos 2 θ

cosec θ cot θ

1 + cot 2 θ

cosec θ cot θ

cosec 2 θ

1cosec θ

sin θ

1

cos θ

sin θ

Page 3 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 47: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 47/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise D, Question 2

© Pearson Education Ltd 2008

Question:

Given that cosec x = , where k > 1, find, in terms of k , possible values of

cot x.

k

cosec x

Solution:

cosec x =

⇒ cosec 2 x = k ⇒ 1 + cot 2 x = k

⇒ cot 2 x = k − 1

⇒ cot x = ± \ k − 1

k

cosec x

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 48: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 48/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise D, Question 3

© Pearson Education Ltd 2008

Question:

Given that cot θ = − √ 3, and that 90 ° < θ < 180 ° , find the exact value of

(a) sin θ

(b) cos θ

Solution:

(a) cot θ = − √ 3 90 ° < θ < 180 °⇒ 1 + cot 2 θ = 1 + 3 = 4 ⇒ cosec 2 θ = 4

⇒ sin 2 θ =

⇒ sin θ = (as θ is in 2nd quadrant, sin θ is +ve)

(b) Using sin 2 θ + cos 2 θ = 1

⇒ cos 2 θ = 1 − sin 2 θ = 1 − =

⇒ cos θ = − (as θ is in 2nd quadrant, cos θ is −ve)

1

4

1

2

1

4

3

4

√ 3

2

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 49: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 49/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise D, Question 4

Question:

Given that tan θ = , and that 180 ° < θ < 270 ° , find the exact value of

(a) sec θ

(b) cos θ

(c) sin θ

34

Solution:

tan θ = 180 ° < θ < 270 °

Draw right-angled triangle where tan θ =

Using Pythagoras' theorem, x = 5

So cos θ = and sin θ =

As θ is in 3rd quadrant, both sin θ and cos θ are −ve.

So sin θ = − , cos θ = −

(a) sec θ = = −

(b) cos θ = −

34

34

45

35

35

45

1cos θ

54

45

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 50: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 50/111

© Pearson Education Ltd 2008

(c) sin θ = −35

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 51: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 51/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise D, Question 5

© Pearson Education Ltd 2008

Question:

Given that cos θ = , and that θ is a reflex angle, find the exact value of

(a) tan θ

(b) cosec θ

24

25

Solution:

cos θ = , θ reflex

As cos θ is +ve and θ reflex, θ is in the 4th quadrant.

Use right-angled triangle where cos θ =

Using Pythagoras' theorem,252 = x 2 + 24 2

⇒ x 2 = 25 2 − 24 2 = 49

⇒ x = 7

So tan ϕ = and sin ϕ =

As θ is in 4th quadrant,

(a) tan θ = −

(b) cosec θ = = − = −

24

25

2425

7

24

7

25

7

24

1sin θ

1

725

257

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 52: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 52/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise D, Question 6

Question:

Prove the following identities:

(a) sec 4 θ − tan 4 θ ≡ sec 2 θ + tan 2 θ

(b) cosec 2 x − sin 2 x ≡ cot 2 x + cos 2 x

(c) sec 2 A ( cot 2 A − cos 2 A ) ≡ cot 2 A

(d) 1 − cos 2 θ ≡ ( sec 2 θ − 1 ) ( 1 − sin 2 θ )

(e) ≡ 1 − 2 sin 2 A

(f) sec 2 θ + cosec 2 θ ≡ sec 2 θ cosec 2 θ

(g) cosec A sec 2 A ≡ cosec A + tan A sec A

(h) ( sec θ − sin θ ) ( sec θ + sin θ ) ≡ tan 2 θ + cos 2 θ

1 − tan 2 A

1 + tan 2 A

Solution:

(a) L.H.S. ≡ sec 4 θ − tan 4 θ

≡ ( sec 2 θ − tan 2 θ ) ( sec 2 θ + tan 2 θ ) (difference of twosquares)

≡ ( 1 ) ( sec 2 θ + tan 2 θ ) (as

1 + tan 2 θ ≡ sec 2 θ ⇒ sec 2 θ − tan 2 θ ≡ 1) ≡ sec 2 θ + tan 2 θ ≡ R.H.S.

(b) L.H.S. ≡ cosec 2 x − sin 2 x

≡ ( 1 + cot 2 x ) − ( 1 − cos 2 x )≡ 1 + cot 2 x − 1 + cos 2 x ≡ cot 2 x + cos 2 x ≡ R.H.S.

(c) L.H.S. ≡ sec 2 A ( cot 2 A − cos 2 A )

Page 1 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 53: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 53/111

≡ − cos 2 A

≡ − 1

≡ cosec 2 A − 1 (use 1 + cot 2 θ = cosec 2 θ ) ≡ 1 + cot 2 A − 1 ≡ cot 2 A ≡ R.H.S.

(d) R.H.S. ≡ ( sec 2 θ − 1 ) ( 1 − sin 2 θ )≡ tan 2 θ × cos 2 θ (use 1 + tan 2 θ ≡ sec 2 θ and

cos 2 θ + sin 2 θ ≡ 1)

× cos2

θ

≡ sin 2 θ ≡ 1 − cos 2 θ ≡ L.H.S.

(e) L.H.S. ≡

≡ ( 1 − tan 2 A )

≡ cos 2 A 1 −

≡ cos 2 A − sin 2 A ≡ ( 1 − sin 2 A ) − sin 2 A ≡

1 − 2 sin2 A ≡

R.H.S.

(f) R.H.S. ≡ sec 2 θ cosec 2 θ

≡ sec 2 θ ( 1 + cot 2 θ )

≡ sec 2 θ + ×

≡ sec 2 θ +

≡ sec 2 θ + cosec 2 θ ≡ L.H.S.

(g) L.H.S. ≡ cosec A sec 2 A

1

cos 2 A

cos 2 A

sin2 A

1

sin2 A

sin 2 θ

cos 2 θ

1 − tan 2 A

1 + tan 2 A

1 − tan 2 A

sec2 A

1

sec2 A

sin2 A

cos 2 A

1

cos 2 θ

cos 2 θ

sin 2 θ

1

sin2 θ

Page 2 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 54: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 54/111

© Pearson Education Ltd 2008

≡ cosec A ( 1 + tan 2 A )

≡ cosec A + ×

≡ cosec A +

≡ cosec A + ×

≡ cosec A + tan A sec A ≡ R.H.S.

(h) L.H.S. ≡ ( sec θ − sin θ ) ( sec θ + sin θ )≡ sec 2 θ − sin 2 θ ≡ ( 1 + tan 2 θ ) − ( 1 − cos 2 θ )≡

1 + tan2

θ − 1 + cos2

θ ≡ tan 2 θ + cos 2 θ ≡ R.H.S.

1sin A

sin2 A

cos 2 A

sin A

cos 2 A

sin A

cos A

1cos A

Page 3 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 55: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 55/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise D, Question 7

© Pearson Education Ltd 2008

Question:

Given that 3 tan 2 θ + 4 sec 2 θ = 5, and that θ is obtuse, find the exact value ofsin θ .

Solution:

3 tan 2 θ + 4 sec 2 θ = 5

⇒ 3 tan 2 θ + 4 ( 1 + tan 2 θ ) = 5

3 tan2 θ

+ 4 + 4 tan2 θ

= 5

⇒ 7 tan 2 θ = 1

⇒ tan 2 θ =

⇒ cot 2 θ = 7

⇒ cosec 2 θ − 1 = 7

⇒ cosec 2 θ = 8

⇒ sin 2 θ =

As θ is obtuse (2nd quadrant), so sin θ is +ve.

So sin θ = \ = =

17

1

8

18

12 √ 2

√ 24

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 56: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 56/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise D, Question 8

Question:

Giving answers to 3 significant figures where necessary, solve the followingequations in the given intervals:

(a) sec2 θ = 3 tan θ , 0 ≤ θ ≤ 360 °

(b) tan 2 θ − 2 sec θ + 1 = 0, − π ≤ θ ≤ π

(c) cosec 2 θ + 1 = 3 cot θ , − 180 ° ≤ θ ≤ 180 °

(d) cot θ = 1 − cosec 2 θ , 0 ≤ θ ≤ 2π

(e) 3 sec θ = 2 tan 2 θ , 0 ≤ θ ≤ 360 °

(f) ( sec θ − cos θ ) 2 = tan θ − sin 2 θ , 0 ≤ θ ≤ π

(g) tan 2 2θ = sec2 θ − 1, 0 ≤ θ ≤ 180 °

(h) sec 2 θ − ( 1 + √ 3 ) tan θ + √ 3 = 1 , 0 ≤ θ ≤ 2π

1

2

1

2

Solution:

(a) sec2 θ = 3 tan θ 0 ≤ θ ≤ 360 °

⇒ 1 + tan 2 θ = 3 tan θ

⇒ tan 2 θ − 3 tan θ + 1 = 0

tan θ = (equation does not factorise).

For tan θ = , calculator value is 69.1°

3 ± √ 52

3 + √ 5

2

Page 1 of 6Heinemann Solutionbank: Core Maths 3 C3

Page 57: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 57/111

Solutions are 69.1°, 249°

For tan θ = , calculator value is 20.9°

Solutions are 20.9°, 201°Set of solutions: 20.9°, 69.1°, 201°, 249° (3 s.f.)

(b) tan 2 θ − 2 sec θ + 1 = 0 − π ≤ θ ≤ π

⇒ ( sec 2 θ − 1 ) − 2 sec θ + 1 = 0

⇒ sec 2 θ − 2 sec θ = 0

⇒ sec θ ( sec θ − 2 ) = 0⇒ sec θ = 2 (as sec θ cannot be 0)

⇒ cos θ =

⇒ θ = − ,

3 − √ 5

2

1

2

π

3

π

3

Page 2 of 6Heinemann Solutionbank: Core Maths 3 C3

Page 58: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 58/111

(c) cosec 2 θ + 1 = 3 cot θ − 180 ° ≤ θ ≤ 180 °

⇒ ( 1 + cot 2 θ ) + 1 = 3 cot θ

⇒ cot 2 θ − 3 cot θ + 2 = 0

⇒ ( cot θ − 1 ) ( cot θ − 2 ) = 0⇒ cot θ = 1 or cot θ = 2

⇒ tan θ = 1 or tan θ =

tan θ = 1 ⇒ θ = − 135 ° , 45°

tanθ

=⇒

θ

= − 153 ° , 26.6°

(d) cot θ = 1 − cosec 2 θ 0 ≤ θ ≤ 2π

⇒ cot θ = 1 − ( 1 + cot 2 θ )⇒ cot θ = − cot 2 θ

⇒ cot 2 θ + cot θ = 0

⇒ cot θ ( cot θ + 1 ) = 0⇒ cot θ = 0 or cot θ = − 1

1

2

1

2

Page 3 of 6Heinemann Solutionbank: Core Maths 3 C3

Page 59: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 59/111

For cot θ = 0 refer to graph: θ = ,

For cot θ = − 1, tan θ = − 1

So θ = ,

Set of solutions: , , ,

(e) 3 sec θ = 2 tan 2 θ 0 ≤ θ ≤ 360 °

⇒ 3 sec θ = 2 sec 2 θ − 1 (use 1 + tan 2 A ≡ sec 2 A with

= θ )

⇒ 2 sec 2 θ − 3 sec θ − 2 = 0

⇒ 2 sec θ + 1 sec θ − 2 = 0

⇒ sec θ = − or sec θ = 2

Only sec θ = 2 applies as sec A ≤ − 1 or sec A ≥ 1

⇒ cos θ =

As 0 ≤ θ ≤ 360 °

so 0 ≤ θ ≤ 180 °

Calculator value is 60°This is the only value in the interval.

π

23π

2

3π 4

7π 4

π

2

4

2

4

12

12

12

12

12

12

12

12

12

12

12

12

1

2

1

2

1

2

1

2

Page 4 of 6Heinemann Solutionbank: Core Maths 3 C3

Page 60: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 60/111

So θ = 60 °

⇒ θ = 120 °

(f) ( sec θ − cos θ ) 2 = tan θ − sin 2 θ 0 ≤ θ ≤ π

⇒ sec 2 θ − 2 sec θ cos θ + cos 2 θ = tan θ − sin 2 θ

⇒ sec 2 θ − 2 + cos 2 θ = tan θ − sin 2 θ sec θ cos θ =

× cos θ = 1

⇒ ( 1 + tan 2 θ ) − 2 + ( cos 2 θ + sin 2 θ ) = tan θ

⇒ 1 + tan 2 θ − 2 + 1 = tan θ

⇒ tan 2 θ − tan θ = 0 ⇒ tan θ ( tan θ − 1 ) = 0⇒ tan θ = 0 or tan θ = 1

tan θ = 0 ⇒ θ = 0, π

tan θ = 1 ⇒ θ =

Set of solutions: 0 , ,π

(g) tan 2 2θ = sec2 θ − 1 0 ≤ θ ≤ 180 °

⇒ sec 2 2θ − 1 = sec2 θ − 1

⇒ sec 2 2θ − sec2 θ = 0

⇒ sec2 θ ( sec2 θ − 1 ) = 0⇒ sec2 θ = 0 (not possible) or sec 2 θ = 1⇒ cos2 θ = 1 0 ≤ 2θ ≤ 360 °

Refer to graph of y = cos θ ⇒ 2θ = 0 ° , 360°⇒ θ = 0 ° , 180°

(h) sec 2 θ − ( 1 + √ 3 ) tan θ + √ 3 = 1 0 ≤ θ ≤ 2π ⇒ ( 1 + tan 2 θ ) − ( 1 + √ 3 ) tan θ + √ 3 = 1

⇒ tan2

θ − ( 1 + √ 3 ) tan θ + √ 3 = 0⇒ ( tan θ − √ 3 ) ( tan θ − 1 ) = 0

12

1

cos θ

π

4

π

4

Page 5 of 6Heinemann Solutionbank: Core Maths 3 C3

Page 61: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 61/111

© Pearson Education Ltd 2008

⇒ tan θ = √ 3 or tan θ = 1

First answer ( α ) for tan θ = √ 3 is

Second solution is π + =

First answer for tan θ = 1 is

Second solution is π + =

Set of solutions: , , ,

π

3

π

34π

3

π

4

π

4

4

π

4

π

35π

44π

3

Page 6 of 6Heinemann Solutionbank: Core Maths 3 C3

Page 62: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 62/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise D, Question 9

© Pearson Education Ltd 2008

Question:

Given that tan 2 k = 2 sec k ,

(a) find the value of sec k .

(b) deduce that cos k = √ 2 − 1

(c) hence solve, in the interval 0 ≤ k ≤ 360 ° , tan 2 k = 2 sec k , giving youranswers to 1 decimal place.

Solution:

(a) tan 2 k = 2 sec k

⇒ ( sec 2 k − 1 ) = 2 sec k ⇒ sec 2 k − 2 sec k − 1 = 0

⇒ sec k = = = 1 ± √ 2

As sec k has no values between − 1 and 1sec k = 1 + √ 2

(b) cos k = = = = √ 2 − 1

(c) Solutions of tan 2 k = 2 sec k , 0 ≤ k ≤ 360 °

are solutions of cos k = √ 2 − 1Calculator solution is 65.5°

⇒ k = 65.5 ° , 360 ° − 65.5 ° = 65.5 ° , 294.5° (1 d.p.)

2 ± √ 8

2

2 ± 2 √ 2

2

11 + √ 2

√ 2 − 1( 1 + √ 2 ) ( √ 2 − 1 )

√ 2 − 12 − 1

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 63: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 63/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise D, Question 10

© Pearson Education Ltd 2008

Question:

Given that a = 4 sec x, b = cos x and c = cot x,

(a) express b in terms of a

(b) show that c 2 =16

a 2 − 16

Solution:

(a) As a = 4 sec x

⇒ sec x =

⇒ cos x =

As cos x = b

⇒ b =

(b) c = cot x ⇒ c 2 = cot 2 x

⇒ = tan 2 x

⇒ = sec 2 x − 1 (use 1 + tan 2 x ≡ sec 2 x)

⇒ = − 1 sec x =

⇒ 16 = a 2c 2 − 16 c 2 (multiply by 16 c 2)

⇒ c 2 ( a 2 − 16 ) = 16

⇒ c 2 =

a

4

4a

4a

1

c 2

1

c 2

1c 2

a 2

16 a

4

16

a 2 − 16

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 64: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 64/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise D, Question 11

© Pearson Education Ltd 2008

Question:

Given that x = sec θ + tan θ ,

(a) show that = sec θ − tan θ .

(b) Hence express x 2 + + 2 in terms of θ , in its simplest form.

1 x

1

x 2

Solution:

(a) x = sec θ + tan θ

=

=

=

= sec θ − tan θ (as 1 + tan 2 θ ≡ sec 2 θ ⇒ sec 2 θ − tan 2 θ ≡ 1)

(b) x + = sec θ + tan θ + sec θ − tan θ = 2 sec θ

⇒ x + 2 = 4 sec 2 θ

⇒ x 2 + 2 x × + = 4 sec 2 θ

⇒ x 2 + + 2 = 4 sec 2 θ

1 x

1sec θ + tan θ

sec θ − tan θ

( sec θ + tan θ ) ( sec θ − tan θ )

sec θ − tan θ

sec 2 θ − tan 2 θ

1 x

1 x

1

x

1

x 2

1

x 2

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 65: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 65/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise D, Question 12

© Pearson Education Ltd 2008

Question:

Given that 2 sec 2 θ − tan 2 θ = p show that cosec 2 θ = , p ≠ 2.

p − 1

p − 2

Solution:

2 sec 2 θ − tan 2 θ = p

⇒ 2 ( 1 + tan 2 θ ) − tan 2 θ = p ⇒ 2 + 2 tan 2 θ − tan 2 θ = p

⇒ tan 2 θ = p − 2

⇒ cot 2 θ = cot θ =

cosec 2 θ = 1 + cot 2 θ = 1 + = =

1

p − 2

1

tan θ

1

p − 2

( p − 2 ) + 1

p − 2 p − 1

p − 2

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 66: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 66/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise E, Question 1

Question:

Without using a calculator, work out, giving your answer in terms of π , the valueof:

(a) arccos 0

(b) arcsin(1)

(c) arctan ( − 1 )

(d) arcsin −

(e) arccos −

(f) arctan −

(g) arcsin sin

(h) arcsin sin

1

2

1√ 2

1√ 3

π

3

3

Solution:

(a) arccos 0 is the angleα

in 0 ≤ α

≤ π

for which cosα

= 0Refer to graph of y = cos θ ⇒ α =

So arccos 0 =

(b) arcsin 1 is the angle α in − ≤ α ≤ for which sin α = 1

Refer to graph of y = sin θ ⇒ α =

π

2

π

2

π

2

π

2

π

2

Page 1 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 67: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 67/111

So arcsin 1 =

(c) arctan ( − 1 ) is the angle α in − < α < for which tan α = − 1

So arctan ( − 1 ) = −

(d) arcsin − is the angle α in − ≤ α ≤ for which

sin α = −

So arcsin − = −

(e) arccos − is the angle α in 0 ≤ α ≤ π for which cos α = −

So arccos − =

π

2

π

2

π

2

π

4

1

2

π

2

π

2

1

2

12

π

6

1√ 2

1√ 2

1√ 2

4

Page 2 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 68: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 68/111

(f) arctan − is the angle α in − < α < for which tan α = −

So arctan − = −

(g) arcsin sin is the angle α in − ≤ α ≤ for which

sin α = sin

So arcsin sin =

(h) arcsin sin is the angle α in − ≤ α ≤ for which

sin α = sin

So arcsin sin =

1√ 3

π

2

π

21

√ 3

1√ 3

π

6

π

3

π

2

π

2

π

3

π

3

π

3

3

π

2

π

2

3

3

π

3

Page 3 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 69: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 69/111

© Pearson Education Ltd 2008

Page 4 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 70: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 70/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise E, Question 2

© Pearson Education Ltd 2008

Question:

Find the value of:

(a) arcsin + arcsin −

(b) arccos − arccos −

(c) arctan ( 1 ) − arctan ( − 1 )

12

12

12

12

Solution:

(a) arcsin + arcsin − = + − = 0

(b) arccos − arccos − = − = −

(c) arctan ( 1 ) − arctan ( − 1 ) = − − =

1

2

1

2

π

6

π

6

1

2

1

2

π

3

3

π

3

π

4

π

4

π

2

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 71: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 71/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise E, Question 3

Question:

Without using a calculator, work out the values of:

(a) sin arcsin

(b) sin arcsin −

(c) tan [ arctan ( − 1 ) ]

(d) cos(arccos 0)

12

12

Solution:

(a) sin arcsin

arcsin = α where sin α = , − ≤ α ≤

So arcsin =

⇒ sin arcsin = sin =

(b) sin arcsin −

arcsin − = α where sin α = − , − ≤ α ≤

So arcsin − = −

⇒ sin arcsin − = sin − = −

(c) tan [ arctan ( − 1 ) ]

arctan ( − 1 ) = α where tan α = − 1, − < α <

1

2

1

2

1

2

π

2

π

212

π

6

1

2

π

6

1

2

1

2

12 12

π

2

π

2

12

π

6

1

2

π

6

1

2

π

2

π

2

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 72: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 72/111

© Pearson Education Ltd 2008

So arctan ( − 1 ) = −

⇒ tan [ arctan ( − 1 ) ] = tan − = − 1

(d) cos(arccos 0)arccos 0 = α where cos α = 0, 0 ≤ α ≤ π

So arccos 0 =

⇒ cos ( arccos 0 ) = cos = 0

π

4

π

4

π

2

π

2

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 73: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 73/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise E, Question 4

Question:

Without using a calculator, work out the exact values of:

(a) sin arccos

(b) cos arcsin −

(c) tan arccos −

(d) sec [ arctan ( √ 3 ) ]

(e) cosec [ arcsin ( − 1 ) ]

(f) sin 2 arcsin

12

12

√ 22

√ 2

2

Solution:

(a) sin arccos

arccos =

sin =

(b) cos arcsin −

arcsin − = −

cos − = +

1

2

1

2

π

3

π

3

√ 32

1

2

12

π

6

π

6

√ 3

2

Page 1 of 3Heinemann Solutionbank: Core Maths 3 C3

Page 74: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 74/111

Page 75: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 75/111

Page 76: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 76/111

Page 77: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 77/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise E, Question 6

© Pearson Education Ltd 2008

Question:

Given that x satisfies arcsin x = k , where 0 < k < ,

(a) state the range of possible values of x

(b) express, in terms of x,(i) cos k (ii) tan k

Given, instead, that − < k < 0,

(c) how, if at all, would it affect your answers to (b)?

π

2

π

2

Solution:

(a) arcsin x is the angle α in − ≤ α ≤ such that sin α = x

In this case x = sin k where 0 < k <

As sin is an increasing function

sin0 < x < sin

i.e. 0 < x < 1

(b) (i) cos k = ± \ 1 − sin 2 k = ± \ 1 − x2

k is in the 1st quadrant ⇒ cos k > 0

So cosk

= \ 1 − x2

(ii) tan k = =

(c)k is now in the 4th quadrant, where cos k is positive.So the value of cos k remains the same and there is no change to tan k .

π

2

π

2

π

2

π

2

sin k

cos k

x

\ 1 − x2

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 78: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 78/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise E, Question 7

Question:

The function f is defined as f : x → arcsin x , − 1 ≤ x ≤ 1, and thefunction g is such that g ( x ) = f ( 2 x ) .

(a) Sketch the graph of y = f ( x ) and state the range of f.

(b) Sketch the graph of y = g ( x ) .

(c) Define g in the form g : x → … and give the domain of g.

(d) Define g − 1 in the form g − 1 : → …

Solution:

(a) y = arcsin x

Range: − ≤ f ( x ) ≤

(b) Using the transformation work, the graph of y = f ( 2 x ) is the graph of y = f

( x ) stretched in the x direction by scale factor .

y = g ( )

π

2

π

2

12

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 79: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 79/111

© Pearson Education Ltd 2008

(c) g : x → arcsin 2 x , − ≤ x ≤

(d) Let y = arcsin 2 x ⇒ 2 x = sin y

⇒ x = sin y

So g − 1 : x → sin x , − ≤ x ≤

1

2

1

2

1

2

12

π

2

π

2

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 80: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 80/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise E, Question 8

Question:

(a) Sketch the graph of y = sec x , with the restricted domain

0 ≤ x ≤ π , x ≠ .

(b) Given that arcsec x is the inverse function of sec x , 0 ≤ x ≤ π , x ≠

, sketch the graph of y = arcsec x and state the range of arcsec x .

π

2

π

2

Solution:(a) y = sec x

(b) Reflect the above graph in the line y = x y = arcsec x , x ≤ − 1 , ≥ 1

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 81: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 81/111

© Pearson Education Ltd 2008

Range: 0 ≤ arcsec x ≤ π , arcsec x ≠ π

2

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 82: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 82/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 1

© Pearson Education Ltd 2008

Question:

Solve tan x = 2 cot x , in the interval − 180 ° ≤ x ≤ 90 ° . Give anynon-exact answers to 1 decimal place.

Solution:

tan x = 2 cot x , − 180 ° ≤ x ≤ 90 °

⇒ tan x =

⇒ tan 2 x = 2 ⇒ tan x = ± √ 2

Calculator value for tan x = + √ 2 is 54.7°

Solutions are required in the 1st, 3rd and 4th quadrants.Solution set: − 125.3 ° , − 54.7 ° , + 54.7 °

2

tan x

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 83: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 83/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 2

© Pearson Education Ltd 2008

Question:

Given that p = 2 sec θ and q = 4 cos θ , express p in terms of q .

Solution:

= 2 sec θ ⇒ sec θ =

q = 4 cos θ ⇒ cos θ =

sec θ = ⇒ = = ⇒ p =

p

2

q

4

1cos θ

p

21

q

4

4

q

8

q

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 84: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 84/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 3

© Pearson Education Ltd 2008

Question:

Given that p = sin θ and q = 4 cot θ , show that p 2q 2 = 16 ( 1 − p 2 ) .

Solution:

= sin θ ⇒ = = cosec θ

q = 4 cot θ ⇒ cot θ =

Using 1 + cot 2 θ ≡ cosec 2 θ

⇒ 1 + = (multiply by 16 p 2)

⇒ 16 p 2 + p 2q 2 = 16

⇒ p 2q 2 = 16 − 16 p 2 = 16 ( 1 − p 2 )

1

p

1sin θ

q

4

q2

161

p2

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 85: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 85/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 4

Question:

Give any non-exact answers to 1 decimal place.

(a) Solve, in the interval 0 < θ < 180 ° ,(i) cosec θ = 2 cot θ (ii) 2 cot 2 θ = 7 cosec θ − 8

(b) Solve, in the interval 0 ≤ θ ≤ 360 ° ,(i) sec ( 2 θ − 15 ° ) = cosec135 °

(ii) sec 2 θ + tan θ = 3

(c) Solve, in the interval 0 ≤ x ≤ 2π ,

(i) cosec x + = − √ 2

(ii) sec 2 x =

π

15

4

3

Solution:

(a) (i) cosec θ = 2 cot θ , 0 < θ < 180 °

⇒ =

⇒ 2 cos θ = 1

⇒ cos θ =

⇒ θ = 60 °

(ii) 2 cot 2 θ = 7 cosec θ − 8, 0 < θ < 180 ° ⇒ 2 ( cosec 2 θ − 1 ) = 7 cosec θ − 8⇒ 2 cosec 2 θ − 7 cosec θ + 6 = 0

⇒ ( 2 cosec θ − 3 ) ( cosec θ − 2 ) = 0

⇒ cosec θ = or cosec θ = 2

So sin θ = or sin θ =

1sin θ

2 cos θ

sin θ

12

32

23

12

Page 1 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 86: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 86/111

Solutions are α ° and ( 180 − α ) ° where α is the calculator value.Solutions set: 41.8°, 138.2°, 30°, 150°i.e. 30°, 41.8°, 138.2°, 150°

(b) (i) sec ( 2 θ − 15 ° ) = cosec 135 ° , 0 ≤ θ ≤ 360 °

⇒ cos ( 2 θ − 15 ° ) = = sin 135 ° =

Solve cos ( 2 θ − 15 ° ) = , − 15 ° ≤ 2θ − 15 ° ≤ 705 °

The calculator value is cos − 1 = 45 °

cos is positive, so ( 2θ

− 15 ° ) is in the 1st and 4th quadrants.

So ( 2 θ − 15 ° ) = 45°, 315°, 405°, 675°⇒ 2θ = 60°, 330°, 420°, 690°⇒ θ = 30°, 165°, 210°, 345°

(ii) sec 2 θ + tan θ = 3, 0 ≤ θ ≤ 360 ° ⇒ 1 + tan 2 θ + tan θ = 3 ⇒ tan 2 θ + tan θ − 2 = 0

1cosec 135 °

√ 22

√ 2

2

√ 22

Page 2 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 87: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 87/111

⇒ ( tan θ − 1 ) ( tan θ + 2 ) = 0⇒ tan θ = 1 or tan θ = − 2

tan θ = 1 ⇒ θ = 45 ° , 180 ° + 45 ° , i.e. 45°, 225°

tan θ = − 2 ⇒ θ = 180 ° + ( − 63.4 ) ° , 360 ° + ( − 63.4 ° ) , i.e.116.6°, 296.6°

(c) (i) cosec x + = − √ 2 , 0 ≤ x ≤ 2π

⇒ sin x + = −

Calculator value is sin − 1 − = −

sin x + is negative, so x + is in 3rd and 4th quadrants.

So x + = ,

⇒ x = − , − = , = ,

(ii) sec 2 x = , 0 ≤ x ≤ 2π

⇒ cos 2 x =

⇒ cos x = ±

Calculator value for cos x = + is

As cos is ± , is in all four quadrants.

π

15

π

15

1√ 2

1√ 2

π

4

π

15

π

15

π

155π

47π

4

4

π

15

4

π

15

75π − 4 π

60

105 π − 4 π

60

71π

60

101 π

60

43

3

4

√ 3

2

√ 32

π

6

Page 3 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 88: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 88/111

© Pearson Education Ltd 2008

Solutions set: x = , π − , π + , 2 π − = , , ,π

6

π

6

π

6

π

6

π

65π

67π

611 π

6

Page 4 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 89: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 89/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 5

© Pearson Education Ltd 2008

Question:

Given that 5 sin x cos y + 4 cos x sin y = 0, and that cot x = 2, find the value ofcot y .

Solution:

5 sin x cos y + 4 cos x sin y = 0

⇒ + = 0 (divide by sin x sin y)

⇒ + = 0

So 5 cot y + 4 cot x = 0As cot x = 25 cot y + 8 = 05 cot y = − 8

cot y = −

5 sin x cos y

sin x sin y

4 cos x sin y

sin x sin y

5 cos ysin y

4 cos xsin x

85

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 90: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 90/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 6

Question:

Show that:

(a) ( tan θ + cot θ ) ( sin θ + cos θ ) ≡ sec θ + cosec θ

(b) ≡ sec 2 x

(c) ( 1 − sin x ) ( 1 + cosec x ) ≡ cos x cot x

(d) −≡

2 tan x

(e) + ≡ 2 sec θ tan θ

(f) ≡ cos 2 θ

cosec x

cosec x − sin x

cot x

cosec x − 1

cos x

1 + sin x

1

cosec θ − 1

1

cosec θ + 1

( sec θ − tan θ ) ( sec θ + tan θ )

1 + tan 2 θ

Solution:

(a) L.H.S. ≡ ( tan θ + cot θ ) ( sin θ + cos θ )≡ + ( sin θ + cos θ )

≡ ( sin θ + cos θ )

≡ ( sin θ + cos θ )

≡ +

≡ +

≡ sec θ + cosec θ ≡ R.H.S.

(b)

sin θ

cos θ

cos θ

sin θ

sin 2 θ + cos 2 θ

cos θ sin θ

1

cos θ sin θ

sin θ

cos θ sin θ

cos θ

cos θ sin θ

1

cos θ

1

sin θ

Page 1 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 91: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 91/111

(c) L.H.S. ≡ ( 1 − sin x ) ( 1 + cosec x )≡ 1 − sin x + cosec x − sin x cosec x

≡ 1 − sin x + cosec x − 1 as cosec x =

≡ cosec x − sin x

≡ − sin x

≡ × cos x

≡ cos x cot x ≡ R.H.S.

(d)

1

sin x

1

sin x

1 − sin 2 x

sin x

cos 2 x

sin x

cos x

sin x

Page 2 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 92: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 92/111

© Pearson Education Ltd 2008

(e) L.H.S. ≡ +

≡ ( 1 + cot 2 θ ≡ cosec 2 θ )

≡ ×

≡ 2 × ×

≡ 2 sec θ tan θ ≡ R.H.S.

(f) L.H.S. ≡

≡ cos 2 θ ≡ R.H.S.

1

cosec θ − 1

1

cosec θ + 1

( cosec θ + 1 ) + ( cosec θ − 1 )

( cosec θ − 1 ) ( cosec θ + 1 )

2 cosec θ

cosec 2 θ − 1

2 cosec θ

cot 2 θ

2

sin θ

sin 2 θ

cos 2 θ

1

cos θ

sin θ

cos θ

( sec θ − tan θ ) ( sec θ + tan θ )

1 + tan 2 θ

sec 2 θ − tan 2 θ

sec 2 θ

( 1 + tan 2 θ ) − tan 2 θ

sec 2 θ

1

sec2 θ

Page 3 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 93: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 93/111

Page 4 of 4Heinemann Solutionbank: Core Maths 3 C3

Page 94: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 94/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 7

Question:

(a) Show that + ≡ 2 cosec x .

(b) Hence solve, in the interval − 2 π ≤ x ≤ 2π , +

= − .

sin x

1 + cos x

1 + cos x

sin x

sin x

1 + cos x

1 + cos x

sin x

4√ 3

Solution:

(a) L.H.S. ≡ +

≡ sin 2 x + cos 2 x ≡ 1

≡ 2 cosec x ≡ R.H.S.

(b) Solve 2 cosec x = − , − 2 π ≤ x ≤ 2π

⇒ cosec x = −

⇒ sin x = −

Calculator value is −

sin x

1 + cos x

1 + cos x

sin x

sin2 x + ( 1 + cos x ) 2

( 1 + cos x ) sin x

sin2 x + 1 + 2 cos x + cos 2 x

( 1 + cos x ) sin x

2 + 2 cos x

( 1 + cos x ) sin x

2 ( 1 + cos x )

( 1 + cos x ) sin x

2

sin x

4√ 3

2√ 3

√ 32

π

3

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 95: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 95/111

© Pearson Education Ltd 2008

Solutions in − 2 π ≤ x ≤ 2 π are

− , − π + , π + , 2 π − ,

i.e. − , − , ,

π

3

π

3

π

3

π

3

π

3

3

3

3

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 96: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 96/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 8

© Pearson Education Ltd 2008

Question:

Prove that ≡ ( cosec θ + cot θ ) 2.

1 + cos θ

1 − cos θ

Solution:

R.H.S. ≡ ( cosec θ + cot θ ) 2

≡ + 2

≡ ≡ L.H.S.

1sin θ

cos θ

sin θ

( 1 + cos θ ) 2

sin2 θ

( 1 + cos θ ) 2

1 − cos 2 θ

( 1 + cos θ ) ( 1 + cos θ )( 1 + cos θ ) ( 1 − cos θ )

1 + cos θ

1 − cos θ

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 97: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 97/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 9

© Pearson Education Ltd 2008

Question:

Given that sec A = − 3, where < A < π ,

(a) calculate the exact value of tan A .

(b) Show that cosec A = .

π

2

3 √ 2

4

Solution:

(a) sec A = − 3, < A < π , i.e. A is in 2nd quadrant.

As 1 + tan 2 A = sec 2 A

1 + tan 2 A = 9

tan 2 A = 8 tan A = ± √ 8 = ± 2 √ 2As A is in 2nd quadrant, tan A is − ve.So tan A = − 2 √ 2

(b) sec A = − 3, so cos A = −

As tan A =

sin A = cos A × tan A = − × − 2 √ 2 =

So cosec A = = =

π

2

1

3

sin A

cos A

13

2 √ 23

32 √ 2

3 √ 22 × 2

3 √ 24

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 98: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 98/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 10

© Pearson Education Ltd 2008

Question:

Given that sec θ = k , | k | ≥ 1 , and that θ is obtuse, express in terms of k :

(a) cos θ

(b) tan 2 θ

(c) cot θ

(d) cosec θ

Solution:

sec θ = k , | k | ≥ |θ is in the 2nd quadrant ⇒ k is negative

(a) cos θ = =

(b) Using 1 + tan 2 θ = sec 2 θ

tan2 θ

= k 2

− 1

(c) tan θ = ± \ k 2 − 1

In the 2nd quadrant, tan θ is − ve.So tan θ = − \ k 2 − 1

cot θ = = = −

(d) Using 1 + cot 2 θ = cosec 2 θ

cosec 2 θ = 1 + = =

So cosec θ = ±

In the 2nd quadrant, cosec θ is +ve.

As k is − ve, cosec θ =

1

sec θ

1k

1

tan θ 1

− \ k 2 − 1

1

\ k 2 − 1

1k 2 − 1

k 2 − 1 + 1

k 2 − 1

k 2

k 2 − 1

k

\ k 2 − 1

− k

\ k 2 − 1

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 99: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 99/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 11

© Pearson Education Ltd 2008

Question:

Solve, in the interval 0 ≤ x ≤ 2π , the equation sec x + = 2 ,

giving your answers in terms of π .

π

4

Solution:

sec x + = 2 , 0 ≤ x ≤ 2π

⇒ cos x + = , 0 ≤ x ≤ 2 π

⇒ x + = cos − 1 , 2 π − cos − 1 = , 2 π −

So x = − , − = , = ,

π

4

π

4

12

π

4

1

2

1

2

π

3

π

3

π

3

π

4

3

π

4

4π − 3 π

12

20 π − 3 π

12

π

12

17 π

12

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 100: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 100/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 12

© Pearson Education Ltd 2008

Question:

Find, in terms of π , the value of arcsin − arcsin − .

1

2

1

2

Solution:

arcsin is the angle in the interval − ≤ angle ≤ whose

sine is .

So arcsin =

Similarly, arcsin − = −

So arcsin − arcsin − = − − =

1

2

π

2

π

2

1

2

1

2

π

6

12

π

6

12

12

π

6

π

6

π

3

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 101: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 101/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 13

© Pearson Education Ltd 2008

Question:

Solve, in the interval 0 ≤ x ≤ 2π , the equation sec 2 x −

tan x − 2 = 0, giving your answers in terms of π . 2 √ 3

3

Solution:

sec 2 x − tan x − 2 = 0, 0 ≤ x ≤ 2 π

⇒ ( 1 + tan 2 x ) − tan x − 2 = 0

tan 2 x − tan x − 1 = 0

(This does factorise but you may not have noticed!)

tan x + ( tan x − √ 3 ) = 0

⇒ tan x = − or tan x = √ 3

Calculator values are − and .

Solution set: , , ,

2 √ 33

2 √ 33

2 √ 3

3

√ 33

√ 3

6

π

3

π

3

6

3

11 π

6

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 102: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 102/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 14

© Pearson Education Ltd 2008

Question:

(a) Factorise sec x cosec x − 2 sec x − cosec x + 2.

(b) Hence solve sec x cosec x − 2 sec x − cosec x + 2 = 0, in the interval0 ≤ x ≤ 360 ° .

Solution:

(a) sec x cosec x − 2 sec x − cosec x + 2= sec x ( cosec x − 2 ) − ( cosec x − 2 )= ( cosec x − 2 ) ( sec x − 1 )

(b) So sec x cosec x − 2 sec x − cosec x + 2 = 0⇒ ( cosec x − 2 ) ( sec x − 1 ) = 0⇒ cosec x = 2 or sec x = 1

⇒ sin x = or cos x = 1

sin x = , 0 ≤ x ≤ 360 °

⇒ x = 30 ° , ( 180 − 30 ) °cos x = 1 , 0 ≤ x ≤ 360 ° ,

⇒ x = 0 ° , 360 ° (from the graph)Full set of solutions: 0°, 30°, 150°, 360°

1

2

1

2

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 103: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 103/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 15

© Pearson Education Ltd 2008

Question:

Given that arctan ( x − 2 ) = − , find the value of x .

π

3

Solution:

arctan x − 2 = −

⇒ x − 2 = tan −

⇒ x − 2 = − √ 3⇒ x = 2 − √ 3

π

3

π

3

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 104: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 104/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 16

© Pearson Education Ltd 2008

Question:

On the same set of axes sketch the graphs of y = cos x , 0 ≤ x ≤ π , and y = arccos x , − 1 ≤ x ≤ 1, showing the coordinates of points in which thecurves meet the axes.

Solution:

...

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 105: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 105/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 17

Question:

(a) Given that sec x + tan x = − 3, use the identity 1 + tan 2 x ≡ sec2 x to find thevalue of sec x − tan x .

(b) Deduce the value of(i) sec x (ii) tan x

(c) Hence solve, in the interval

− 180 ° ≤ x ≤ 180 ° , sec x + tan x = − 3. (Give answer to 1 decimalplace).

Solution:

(a) As 1 + tan 2 x ≡ sec 2 x

sec 2 x − tan 2 x ≡ 1 ⇒ ( sec x − tan x ) ( sec x + tan x ) ≡ 1 (difference of two squares)

As tan x + sec x = − 3 is given,so − 3 ( sec x − tan x ) = 1

⇒ sec x − tan x = −

(b) sec x + tan x = − 3

and sec x − tan x = −

(i) Add the equations ⇒ 2 sec x = − ⇒ sec x = −

(ii) Subtract the equation ⇒ 2 tan x = − 3 + = − ⇒ tan x = −

(c) As sec x and tan x are both −ve, cos x and tan x are both −ve.So x must be in the 2nd quadrant.

1

3

1

3

103

53

13

83

4

3

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 106: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 106/111

Page 107: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 107/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 18

© Pearson Education Ltd 2008

Question:

Given that p = sec θ − tan θ and q = sec θ + tan θ , show that p = .

1

q

Solution:

= sec θ − tan θ , q = sec θ + tan θ Multiply together:pq = ( sec θ − tan θ ) ( sec θ + tan θ ) = sec 2 θ − tan 2 θ = 1 (since

1 + tan 2 θ = sec 2 θ ) ⇒ p =

(There are several ways of solving this problem).

1

q

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

Page 108: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 108/111

SolutionbankEdexcel AS and A Level Modular Mathematics

Exercise F, Question 19

Question:

(a) Prove that sec 4 θ − tan 4 θ ≡ sec 2 θ + tan 2 θ .

(b) Hence solve, in the interval− 180 ° ≤ θ ≤ 180 ° , sec 4 θ = tan 4 θ + 3 tan θ . (Give answers to 1

decimal place).

Solution:

(a) L.H.S. ≡ sec 4 θ − tan 4 θ

≡ ( sec 2 θ + tan 2 θ ) ( sec 2 θ − tan 2 θ )≡ ( sec 2 θ + tan 2 θ ) ( 1 )≡ sec 2 θ + tan 2 θ ≡ R.H.S.

(b) sec 4 θ = tan 4 θ + 3 tan θ

⇒ sec 4 θ − tan 4 θ = 3 tan θ

⇒ sec 2 θ + tan 2 θ = 3 tan θ [using part (a)]

⇒ ( 1 + tan 2 θ ) + tan 2 θ = 3 tan θ

⇒ 2 tan 2 θ − 3 tan θ + 1 = 0

⇒ ( 2 tan θ − 1 ) ( tan θ − 1 ) = 0

⇒ tan θ = or tan θ = 1

In the interval − 180 ° ≤ θ ≤ 180 °tan θ = ⇒ θ = tan − 1 , − 180 ° + tan − 1

12

1

2

1

2

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 109: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 109/111

© Pearson Education Ltd 2008

= 26.6 ° , − 153.4 °

tan θ = 1 ⇒ θ = tan − 1 1 , − 180 ° + tan − 1 1 = 45 ° , − 135 °

Set of solutions: − 153.4 ° , − 135 ° , 26.6°, 45° (3 s.f.)

12

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

Page 110: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 110/111

Page 111: C3 CH6 Solutions

8/10/2019 C3 CH6 Solutions

http://slidepdf.com/reader/full/c3-ch6-solutions 111/111

∫0

1 arcsin x d x represents the area between the curve, x-axis and x = 1.

(c) The curves are the same with the axes interchanged.The shaded area in (b) could be added to the graph in (a) to form a rectangle

with sides 1 and , as in the diagram. π

2

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3