(c) denis alan leahy, 1976

68
c-1 A STEADY STATE SELF-CONSISTENT MODEL FOR PULSAR MAGNETOSPHERES by DENIS ALAN LEAHY B.A.Sc., University of Waterloo, 1975 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS tROR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OR GRADUATE STUDIES Department of Physics We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September,1976 (c) Denis Alan Leahy, 1976

Upload: others

Post on 17-Oct-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: (c) Denis Alan Leahy, 1976

c-1

A STEADY STATE SELF-CONSISTENT MODEL

FOR PULSAR MAGNETOSPHERES

by

DENIS ALAN LEAHY

B.A.Sc., U n i v e r s i t y of Waterloo, 1975

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS tROR THE DEGREE OF

MASTER OF SCIENCE

i n

THE FACULTY OR GRADUATE STUDIES

Department of Physics

We accept t h i s t h e s i s as conforming

to the r e q u i r e d standard

THE UNIVERSITY OF BRITISH COLUMBIA

September,1976

(c) Denis Alan Leahy, 1976

Page 2: (c) Denis Alan Leahy, 1976

In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t of the requirements for

an advanced degree at the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I agree that

the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study.

I f u r t h e r ag ree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g of t h i s t h e s i s

f o r s c h o l a r l y pu rpo se s may be g r a n t e d by the Head of my Department or

by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t copying or pub l i ca t ion

of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my

w r i t t e n p e r m i s s i o n .

Depa r tment

The U n i v e r s i t y o f B r i t i s h Co l umb i a 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5

Date O C T . -6 , r37<b

Page 3: (c) Denis Alan Leahy, 1976

ABSTRACT

A steady s t a t e s e l f - c o n s i s t e n t model f o r a p u l s a r magnetosphere

i s developed. I t i s shown that the c e n t r a l neutron s t a r o f a p u l s a r

should possess a magnetosphere. In the f i r s t approximation, the

i n e r t i a of the magnetospheric p a r t i c l e s i s n e g l e c t e d . Steady s t a t e

c o r o t a t i n g models are developed t o c a l c u l a t e the s t r u c t u r e of the

magnetosphere f o r the axisymmetric case and the case of the a r b i ­

t r a r i l y o r i e n t e d d i p o l e . Two r e s u l t s are t h a t charge d e n s i t y i s

p r o p o r t i o n a l t o the z component of the magnetic f i e l d and t h a t

the z component of the magnetic f i e l d vanishes at the l i g h t c y l i n d e r .

The l i g h t c y l i n d e r i s where the c o r o t a t i o n v e l o c i t y reaches the

speed of l i g h t . The p u l s a r s p i n a x i s i s a l i g n e d w i t h the z a x i s .

I l l u s t r a t i o n s o f the f i e l d s are presented f o r the cases of magnetic

d i p o l e a x i s p a r a l l e l and p e r p e n d i c u l a r t o the s p i n a x i s .

Next these models are a l t e r e d t o take i n t o account the non­

zero mass of the p a r t i c l e s i n the magnetosphere. An e x t r a e l e c t r i c

f i e l d i s r e q u i r e d t o h o l d the p a r t i c l e s i n c o r o t a t i o n . Charge

se p a r a t i o n i s assumed. The f o l l o w i n g r e s u l t s are found: 1) F i e l d

l i n e s which p r e v i o u s l y were h o r i z o n t a l i n s i d e the l i g h t c y l i n d e r ,

now have a cusp i n them where they were h o r i z o n t a l . T his cusp

inc r e a s e s i n s i z e as i t s l o c a t i o n approaches the l i g h t c y l i n d e r .

2) F i e l d l i n e s no longer are h o r i z o n t a l at the l i g h t c y l i n d e r but

e r t i c a l , and d i v i d e i n t o two groups those w i t h p o s i t i v e B^

Page 4: (c) Denis Alan Leahy, 1976

( c a r r y i n g negative charge) and those w i t h negative ( c a r r y i n g

p o s i t i v e charge).

We next cease t o r e q u i r e t h a t the p a r t i c l e s be f i x e d i n the

c o r o t a t i n g frame. F i r s t the s i n g l e p a r t i c l e motion i s c a l c u l a t e d

f o r a r b i t r a r y f i e l d s assuming small v e l o c i t i e s i n the r o t a t i n g

frame. We f i n d that the motion can be separated i n t o a slow d r i f t

along streamlines(which very n e a r l y f o l l o w magnetic f i e l d l i n e s )

and a s p i r a l i n g about these s t r e a m l i n e s . The energy i s conserved,

and can be separated i n t o a l o n g i t u d i n a l and a t r a n s v e r s e energy

a s s o c i a t e d w i t h the two types of motion. The t r a n s v e r s e energy

d i v i d e d by the frequency of s p i r a l i n g i s an a d i a b a t i c i n v a r i a n t .

For the axisymmetric case, a model i s developed from which the

f i e l d s , charge d e n s i t y , and v e l o c i t i e s can be computed. With

a r e s t r i c t i o n on the boundary c o n d i t i o n s , an a n a l y t i c a l model i s

o u t l i n e d f o r the case of a r b i t r a r y magnetic m u l t i p o l e s .

Page 5: (c) Denis Alan Leahy, 1976

TABLE OF CONTENTS i i i .

page

L i s t of Tables i v .

L i s t of Figures v.

Acknowledgement v i .

I n t r o d u c t i o n 1.

Magnetosphere Ex i s t e n c e 3.

The Force Free Assumption 6.

The Axisymmetric ForceFree Magnetosphere 7.

Covariant Formulation 12.

The Force Free Magnetic P o t e n t i a l 14.

R e l a x a t i o n of the Force Free Assumption 23.

R e l a x a t i o n of C o r o t a t i o n 28.

S i n g l e P a r t i c l e Motion 29.

C o l l e c t i v e Motion 31.

Axisymmetric Case 34.

The General Case 37.

D i s c u s s i o n 42.

B i b l i o g r a p h y . 44.

Appendix 1 46.

Appendix 2 49.

Appendix 3 51.

Appendix 4 56.

Page 6: (c) Denis Alan Leahy, 1976

LIST OF TABLES

page *

lO.Table I. Numerical E v a l u a t i o n of V ( x , y ) , Where

V(x,y)=(u/Tft (n/c)V(x,y)

* 18.Table 2. Numerical E v a l u a t i o n of x (x,y), Where

2 * <XC x>y) = 0J/7r) (n/<0 X Cx,y) coscb

Page 7: (c) Denis Alan Leahy, 1976

V . LIST OF FIGURES

page •

10. F i g . 1. Magnetic F i e l d L i n e s , Axisymmetric Force Free Case

11. F i g . 2. E l e c t r i c F i e l d L i n e s , Axisymmetric Force Free Case

11.Fig. 3. Charge Density, Axisymmetric Force Free Case

18. F i g . 4. Lines of Constant Magnetic P o t e n t i a l , x , Axisymmetric .

_ Force Free Case

19. F i g . 5. Lines o f Constant Magnetic P o t e n t i a l ^ , m=l Force Free Case

20. F i g . 6. E l e c t r i c F i e l d L i n e s , m=l Force Free Case

21. F i g . 7. Magnetic F i e l d L i n e s , m=l Force Free Case

22. F i g . 8. Charge D e n s i t y , m=l Force Free Case

27.Fig. 9. Magnetic F i e l d Lines For The Axisymmetric C o r o t a t i o n Case

With I n e r t i a

33.Fig. 10. Streaming and C o r o t a t i n g 'Dead' Zones: Axisymmetric Case

Page 8: (c) Denis Alan Leahy, 1976

v i . ACKNOWLEDGEMENT

I am indebted t o Dr. M. H. L. Pryce, who has supervised my

t h e s i s work. In a d d i t i o n to p r o v i d i n g the t o p i c of t h i s t h e s i s ,

he has guided my research to enable me to produce t h i s work. I

would l i k e to thank Dr. Pryce f o r h i s h e l p , f o r many u s e f u l

d i s c u s s i o n s , and e s p e c i a l l y '"-''.for appendix 4 , which i s based

on h i s work.

Page 9: (c) Denis Alan Leahy, 1976

1. INTRODUCTION

Pulsars are astronomical objects which r e g u l a r l y give put

r a d i o pulses w i t h a p e r i o d , which v a r i e s from p u l s a r t o p u l s a r ,

of about a second. The pulses have v a r i a b l e amplitude but a p r e c i s e

p e r i o d . Over 100 p u l s a r s are now catalogued, w i t h p e r i o d s ranging

from 33 m i l l i s e c o n d s to 4 seconds. D. t e r Haar* summarizes the

o b s e r v a t i o n a l r e s u l t s . «

The f i r s t p u l s a r was discovered l a t e i n 1967 by Hewisti et a l

at Cambridge. They used a new r a d i o telescope b u i l t to study

s c i n t i l l a t i o n s , c a u s e d by plasma clouds i n the s o l a r wind,of r a d i o

sources of small angular size.>-Since.-the--time -scale of the s c i n ­

t i l l a t i o n s i s a f r a c t i o n of a second, the instrument was i d e a l

f o r r e c o r d i n g p u l s a r s i g n a l s .

Some ideas about p u l s a r s are f i r m l y e s t a b l i s h e d . Because o f

the short p e r i o d and i t s slow increase w i t h the passage of time

due to l o s s of energy, a r o t a t i n g neutron s t a r i s most c e r t a i n l y

the c e n t r a l o b j e c t . I t s rotational energy i s coupled to i t s sur­

roundings by a huge magnetic f i e l d , having a value at the surface of

12

Bs - 10 Gauss. The reason f o r the p u l s a t i o n i s the asymmetry

introduced by non-alignment of the magnetic d i p o l e and s p i n axes.

A coherent emission process i s necessary f o r the intense r a d i o

emission. However, the emission mechanism and the s t r u c t u r e o f

the magnetic f i e l d s and of matter surrounding the neutron s t a r

i s p o o r l y understood. Many d i f f e r e n t t h e o r e t i c a l models have

been proposed but no c o n c l u s i v e model has yet emerged.

Page 10: (c) Denis Alan Leahy, 1976

In the f o l l o w i n g work, a p a r t i c u l a r , s e l f - c o n s i s t e n t , steady-

s t a t e model f o r the p u l s a r magnetosphere i s presented. The emission

mechanism i s not considered here.

Page 11: (c) Denis Alan Leahy, 1976

3. MAGNETOSPHERE EXISTENCE

.The neutron s t a r i s a r o t a t i n g , conducting body and thus w i l l

have an i n t e r i o r e l e c t r i c f i e l d :

(1) FT=-V7C x if

where V<=PJ-<$ i n c y l i n d r i c a l p o l a r c o o r d i n a t e s u n i t v e c t o r s )

centred on the neutron s t a r , w i t h the z-axis along the r o t a t i o n a x i s •

Q i s ' the angular frequency of r o t a t i o n . For an e x t e r i o r

d i p o l e magnetic f i e l d , an i n t e r i o r f i e l d i s 2" w i t h B q a

constant. Thus from (1) one ob t a i n s :

(2) E*=-(arB_/c) £

Th i s can be obtained from the i n t e r i o r e l e c t r o s t a t i c p o t e n t i a l

(3) -$ =ftr 2B o/2c + $ Q

$o a constant, by E=-V$ . For a t y p i c a l p u l s a r B q i s of the order 12

of 10 gauss, the r a d i u s R i s approximately 7 to 10 k i l o m e t e r s and ft i s of the order of 20 sec *. This gives a p o t e n t i a l d i f f e r e n c e

2 17

between poles and equator of A$ =fi R Bq/2C- 10 v o l t s . More

preciselyA<J> = 3.1K10 B 1 2 R 6 /P v o l t s , where B 1 2 = B q /10 gauss,

R^=R/10^cm and P-2v/Q i s the p e r i o d of r o t a t i o n .

E a r l y p u l s a r models assumed a vacuum surrounding the magnetic

neutron s t a r . The e x t e r i o r f i e l d i n t h i s case is' given by s o l v i n g 2

Laplace's equation: V $=0, and f i t t i n g t h i s s o l u t i o n to the boundary

c o n d i t i o n s a t the neutron s t a r s u r f a c e . The t a n g e n t i a l component of

E i s continuous across the su r f a c e . In s p h e r i c a l p o l a r coordinates i t i s , from (2) :

-+ (4) = -(ffcB /c) s i n 6 cos 9 9 ' tan v o . One obtains f o r the e x t e r i o r e l e c t r o s t a t i c p o t e n t i a l (5) _(B_m 5/3cr 3) P 2(cos9)+ (C QR+W 3B Q/3c) 1/r

Page 12: (c) Denis Alan Leahy, 1976

where ^ s t n e second Legendre polynomial and C Q i s a constant.

T h i s r e s u l t s i n a s u r f a c e charge on the neutron s t a r ^ due-to the

d i s c o n t i n u i t y i n the normal component of the e l e c t r i c f i e l d , o f :

(6) a =-(B « R/4uc)(5cos 26 -3)/2 +(C 0R +^R 3B q/3C)/4^R 2

The second term vanishes i f the net charge on the neutron s t a r i s .

zero( Q= C QR+QR B o/3c ). The r e s u l t i n g e l e c t r i c field(Q=0) i s :

(7) £=-v$ = - ( B o ^ 5 / c r 4 ) P (cos6) r -(B o«t^/2cr 4) sin26 6

The magnitude of the surface component p a r a l l e l to the magnetic

f i e l d B i s 10

(8) R/c- 6x10 B 1 2 R 6 / P volts/cm

To understand what e f f e c t t h i s enormous e l e c t r i c f i e l d would

have on the surface m a t e r i a l of the neutron s t a r , one must examine

other f a c t o r s . The g r a v i t a t i o n a l f i e l d on a neutron s t a r i s l a r g e .

The- a t t r a c t i v e f o r c e at the surface i s :

(9) F g= 1 . 6 x l 0 " 1 3 M/R 62 dynes

f o r an e l e c t r o n mass(M i s the neutron s t a r mass i n s o l a r mass

u n i t s ) and correspondingly greater f o r i o n s ( about 10^ times,

assuming n u c l e i near Fe*'*'). The r a t i o of electromagnetic to g r a v i ­

t a t i o n a l f o r c e i s :

(10) eE/F = 7 . 5 X 1 0 1 1 B 1 0R. 3/PM g 12. 6

4 Thus g r a v i t a t i o n a l b i n d i n g i s i n s i g n i f i c a n t . I t has been shown

56 12 that Fe n u c l e i i n a magnetic f i e l d of 2*10 Gauss w i l l form an

a n i s o t r o p i c , very t i g h t l y - b o u n d l a t t i c e w i t h a b i n d i n g energy of

14 kev per i o n and e =750 eV per e l e c t r o n . L a t t i c e spacing i s

of the order of 10 cm. To remove ions r e q u i r e s a f i e l d o f

(11) E * e j / Z e l = 5 x l O 1 1 v o l t s / c m

Page 13: (c) Denis Alan Leahy, 1976

The nuclear charge,Z, of F e i > b i s 2 6 ,and 1 i s the l a t t i c e spacing.

Compare t h i s t o the maximum e l e c t r i c f i e l d a v a i l a b l e , c a l c u l a t e d

f o r vacuum i n equation (3). Probably only the f a s t e s t p u l s a r

(the Crab p u l s a r , w i t h P=.033 sec) w i l l be able to p u l l ions from

i t s s u r f a ce. E l e c t r o n s are removed more e a s i l y than ions but the

d e t a i l s have not yet been c a l c u l a t e d . In any case, i t i s assumed

tha t a source of charged p a r t i c l e s f o r the magnetosphere e x i s t s

and serves to reduce the huge value of i n (8) .A p o s s i b l e source

i s the r e g i o n oivtside the magnetosphere. More l i k e l y , p a r t i c l e s

trapped i n the magnetosphere during the formation of the p u l s a r i n

a supernova e x p l o s i o n , so t h a t a huge E«S never develops.

Page 14: (c) Denis Alan Leahy, 1976

THE FORCE FREE ASSUMPTION 6.

Another ' f o r c e ' enters the problem. Due to the enormous

r o t a t i n g magnetic f i e l d and the p r o p e n s i t y of charged p a r t i c l e s

to f o l l o w f i e l d l i n e s , an i n e r t i a l f o r c e due to the a c c e l e r a t i o n

of the p a r t i c l e s a r i s e s . For a p a r t i c l e i n c o r o t a t i o n w i t h the

c e n t r a l neutron s t a r at d i s t a n c e from the a x i s r , the energy i s

v.mc , wi t h :

(12) Y ( j ) = ( l - n 2 r 2 / c 2 ) - J s

T h i s becomes s i n g u l a r at the ' l i g h t c y l i n d e r ' where the c o r o t a t i o n

v e l o c i t y i l r i s the speed o f l i g h t c. The magnetic energy d e n s i t y i s 2 2 2 much grea t e r than J^THC : .-•> B /8ir >>Y^mc , except f o r very c l o s e

2 2 to r. =c/H . For an e l e c t r o n these are equal f o r B /8ffmc =

5 2 6 2x10 B, , where B, i s B i n u n i t s of 10 gauss. Thus fir i s very D O

n e a r l y c at t h i s p o i n t . Estimates f o r B at the l i g h t c y l i n d e r ( f r o m

energy l o s s by a r a d i a t i o n d i p o l e ) vary from lO^gauss f o r the

Crab p u l s a r downwards.

The f o r c e f r e e assumption i s :

(13) E+v/c XB =0

i . e . that the electromagnetic f o r c e s on a p a r t i c l e v a n i s h . We

neglect non-electromagnetic f o r c e s and assume zero mass p a r t i c l e s .

T h i s i s a good approximation everywhere i n the magnetosphere (

which i s here considered as being l i m i t e d to the r e g i o n between

the neutron s t a r and the l i g h t c y l i n d e r ) except very near the

l i g h t c y l i n d e r .

t

Page 15: (c) Denis Alan Leahy, 1976

7. THE AXISYMMETRIC FORCE FREE MAGNETOSPHERE

The b a s i c equations are t h e f o r c e f r e e assumption (13), and Maxwell's equations:

(14) V- t=0 Vx £=0 VX&=4IT/C J V»l:=4irp

Note t h a t because o n l y steady s t a t e (3/3t - -fi3/3<{> i n the s t a t i o n a r y

. r e f e r e n c e frame) i s being c o n s i d e r e d , i n combination w i t h a x i a l

symmetry (3/3<j>=0) , Maxwell's equations take the form ( 1 4 ) , i . e .

3/3t=0. In a d d i t i o n we assume o n l y t o r o i d a l p a r t i c l e v e l o c i t i e s

and t h a t the v e l o c i t t a o f a l l p a r t i c l e s at one p o i n t are the same

(15) v=w(r,z)r <j>

The c u r r e n t i s g i v e n by

(16) j=pv .

C y l i n d r i c a l c o o r d i n a t e s are used. Since VxE=0,one w r i t e s E=-W o r :

(17) E r=-8V/3r E z=-3V/3z

V«B=0 gi v e s 3 ( r B z ) / 3 z +3 ( r B r ) / 3 r =D . Thus one can d e f i n e i> by:

(18) B =l/r 3*/3z Bz

= ~ 1 / r ^ / 9 r

The f l u x through a c i r c l e p e r p e n d i c u l a r t o , and cen t r e d on

the z-axis i s t*it = B z 2irr dr = -2ir f^dii /3r d r =-2n^(R,z)-\|>(0,z

The f l u x through the s i d e s o f a c y l i n d e r about the z- a x i s from

z=0 t o z=Z i s f'0;• B 2irr dz = 2n^)(r,Z)-if) ( r , 0 ) ) . Thus the stream f u n c t i o n

ty i s d i r e c t l y r e l a t e d t o the magnetic f l u x .

Using(17)§(18)i .equation(13)has'components -3V/3r -(cor/c}|l/r^i|//3r)=0

and -3V/3z 4>r/c)(-|/r)(3'|»/3z) =0 . Therefore one has:

(19) . 3V/3r = (-co/c) 3*/3r 3V/3z = (-to/c) 3^/3z

Page 16: (c) Denis Alan Leahy, 1976

8.

From (19) one gets -3 2V/3r3z =3/3z(w/c 3ijj/3r) =3/3r(w/c 3*/3z)

or ato/az 3ij./3r - 3co/3r3if)/3z =0 . But t h i s i s j u s t the Jacobian

J(u)>tjO;r,z) = 0 J so that w i s a f u n c t i o n of-ty . Now, one has:

(20) vi|> 't = 3^/3r (1/r) 8i(;/3z + 3tj,/3z (-1/r) 3i^/3r =0

so t h a t i|> and thus toa re constants along f i e l d l i n e s . S i n c e the f i e l d l i n e s

o r i g i n a t e iri the neutron s t a r which i s - r i g i d l y r o t a t i n g at angular

frequency ft, we must have to=ft everywhere. I.e. the magnetosphere

r i g i d l y corotates with the neutron s t a r .

From (19) we have:

(21) V=(-ft/c) *

From the inhomogeneous Maxwell's equations (14) one gets:

(22) Vx $ = (3B r /8 z -3Bz/6 r)= - <£/ft)(l/r)( 32V/ 3z 2 + 3/3r((l/r)3 V/3r))

= (4TT/C) j = (4 ir/c) pQrdJ

(23) v-E -A^ (-1/r) 3/3r(r3V/3r) -3 2V/3z 2 = 4irp

E l i m i n a t i n g p gives a d i f f e r e n t i a l equation f o r V:

(24) ( l - Q 2 r 2 / c 2 ) ( 3 2 V ^ r 2 + 3 2 V / 9 z 2 ) - g / r ) ( l + f ? r 2 / c 2 ) &V/3r =0

The s o l u t i o n of t h i s equation i s obtained • i n appendix 1. The r e s u l t i s :

(25) V(r,z) = ( o / c ) V u ) _ " x ( l - f t 2 r 2 / c 2 ) / X ( l ) e i a r f e / c dx

wherep i s the magnetic d i p o l e moment of.the neutron s t a r and

r*/c ) i s given i n appendix 1. The boundary conditions

assumed were a d i p o l e magnetic f i e l d at. the o r i g i n , and" f i n i t e

f i e l d s at the l i g h t c y l i n d e r .

For each value of ( r , z ) , the s e r i e s s o l u t i o n f o r x.was'evaluated

using a hand c a l c u l a t o r and p e n c i l , to 3 f i g u r e s o f accuracy, f o r

5 values of a. The i n t e g r a t i o n i n (25) was then c a r r i e d out using

Simpson's Rule f o r numerical i n t e g r a t i o n . The c a l c u l a t i o n r e s u l t s

Page 17: (c) Denis Alan Leahy, 1976

a r e presented i n t a b l e 1. Magnetic f i e l d l i n e s are p a r a l l e l to l i n e s

o f constant V and e l e c t r i c f i e l d l i n e s p e r p e n d i c u l a r t o l i n e s o f constant

V. F i g u r e s 1,2 and 3 i l l u s t r a t e the magnetic and e l e c t r i c f i e l d s

•and the charge d e n s i t y . As x>1 i . e . as one approaches the l i g h t

c y l i n d e r ^ v ^ l - f l r /c- approaches zero so t h a t X(v) approaches a constant

p l u s terms of second degree and higher i n v (see appendix 1 ) . Thus:

B z=-(l/r)3i{)/9r =-(1/r)(dv/dr)3^/3v approaches zero. I.e. f i e l d

l i n e s approach the l i g h t c y l i n d e r h o r i z o n t a l l y . A l s o from the f a c t

t h a t X(v) i n v o l v e s o n l y even powers of a, one sees t h a t B = l / r 3v^ z

i s zero at z=0. T h i s r e s u l t s i n a n u l l p o i n t i n the magnetic f i e l d '

at z=0,r=c/Q (see f i g u r e 1 ) .

The charge d e n s i t y can be computed from (23)^using (24)to e l i m i n a t e

the second d e r i v a t i v e o f V, Using the d e f i n i t i o n o f ikf.18), the r e s u l t i s :

(26) 4 up — (-2 jD/c) Y2 B z

Thus p j the charge d e n s i t y ^ i s d i r e c t l y p r o p o r t i o n a l t o the z component

of the magnetic f i e l d .

Page 18: (c) Denis Alan Leahy, 1976

10.

TABLE I NUMERICAL EVALUATION OF V*(x,y) ,WHERE

V(x,y)=M/« V (:

?\ 0 0.25 0.5 O.75 1.0

0 singular 6.0 h.3' 3-2 2.9

0.25 0 6.0 2.9 2.5 1.8

0.5 0 - 0 . 2 0.8 1.2 1-7

1.0 o- 0.5 0.1 -0.1 . -0.1

FIGURE 1 MAGNETIC FIELD LINES ; AXISYMMETRIC

FORCE FREE CASE

y

Page 19: (c) Denis Alan Leahy, 1976

1.0—4

0.75«*

0.25

f 9 ' i r-" 0 0.25 0.5 0.75

FIGURE 2: ELECTRIC FIELD LI-NES, AXISYIMBTRIC FORCE FREB CASS y •

I.

•2*, x I 1.0

0.75-

0.5—

0.25—

0—

/

locus of zero charges^

(B z =0)

- A •

^++ + +

/

! 0

8 I • f .0.25 . 0.5 O.75

FIGURE 3: CHARGE DENSITY, MISYt-METRIC FCRCE FREE CASE

fi 1.0

Page 20: (c) Denis Alan Leahy, 1976

12.

COVARIANT FORMULATION

So f a r we have considered only the axisymmetric s i t u a t i o n .

In t h a t case a l l f i e l d q u a n t i t i e s are time independent. For the

more general case of non-aligned s p i n and magnetic d i p o l e axes,

or the existence of higher order m u l t i p o l e s , time independence

i s i n v a l i d a t e d , except i n the re f e r e n c e frame c o r o t a t i n g w i t h the

neutron s t a r . However t h i s frame i s n o n - i n e r t i a l and even becomes

s i n g u l a r at the l i g h t c y l i n d e r . In order t o express the equations

i n t h e i r c o r r e c t form we use the c o v a r i a n t formalism of general

r e l a t i v i t y .

'We work i n the coordinate system r o t a t i n g at the angular fx

v e l o c i t y of the p u l s a r u s i n g c y l i n d r i c a l coordinates x = ( t , z , r , <f>) .

The no n - r o t a t i n g coordinates are: c a r t e s i a n x =(f,x,y,z) ; and

c y l i n d r i c a l x - ( t , z , r , <f^). Thus <j)= <H-ftt • The met r i c i s then

=c 2 (dt) 2 -(dx) 2 -(dy) 2 -

5 % e d x

(dz)2

a, 3 dx

=c 2 (dt) 2 -(d z) 2 - (dr) 2 - (rd*. ) 2

= (c 2-n 2 r 2 ) (dt ) 2 - (dz) 2 -(dr) 2 (rd<j>)2- 'flrclMt

Thus o n e has: c 2 - f t V 0 0 -ft r 2

(27) g = ag

0

0

-1

0

0

-1

0

0

-ftr2 0 0 - r 2

Page 21: (c) Denis Alan Leahy, 1976

and i t s inverse:

(28) _a3

g

o o -n/c'

- 1 0 0

1/c

0

0 0 - 1 0

-pVc 2 0 0 fi2/c2-l/r2=-l/^2r2) J

The Einstein summation convention has been used.

Greek indices range from 0 to 3, Latin indices from 1 to.3.

The f i e l d variables F^ v are expressed i n terms of the f i e l d

E and B i n the stationary frame, in appendix 2. The covariant **a

current density has the components, in an i n e r t i a l frame, J:=

(p,^) and satisfies the equation of continuity (conservation of

charge):

(29)

The comma(semicolon) denotes ordinary(covariant) differentiation

Maxwell's equations are then:

(30) F ^ J ^ T T / C ) ^

J a ; =0 a

e a y v X F ,=0 uv X (31)

(30) can also be written: (32) (WcX-gljV =((-g)V),v

2 2

where g=determinant g = -c r for the metric (27). aB

Page 22: (c) Denis Alan Leahy, 1976

14. THE FORCE FREE MAGNETIC POTENTIAL 1 3

We now assume c o r o t a t i o n so that the current i n . t h e r o t a t i n g ' f r a m e

i s zero: J =0. This assumption has some j u s t i f i c a t i o n : 1) i t

holds i n the axisymmetric case, of which t h i s i s a g e n e r a l i z a t i o n t

2) A h i g h l y conducting magnetosphere w i l l have the magnetic f l u x

f r o z e n i n t o i t , thus w i l l be dragged by the f i e l d . The f i e l d i s so

lar g e that i t w i l l be locked i n t o c o r o t a t i o n .

Since;we have time independence i n the r o t a t i n g frame (the

steady s t a t e assumption), (32) reads:

(33) ( r F k l ) 5 1 =0 k l klm

Since F i s an antisymmetric t e n s o r , w r i t e rF = E A m- Then (33)becomes A ,,-A,, =0 so th a t A i s d e r i v a b l e from a p o t e n t i a l : A =X,m Thus we have: m 1 1 m • r m . 111

(34) F k l = ^ l m ( l / r ) X , m

X i s c a l l e d the magnetic p o t e n t i a l .

Now we use the f o r c e f r e e assumption, i . e . the LOrentz f o r c e a

f on each p a r t i c l e vanishes: f =^/cj F v au v=0 where u i s the p a r t i c l e ' s

v e l o c i t y . As pu i s J t h i s g i v e s : v v 6

. ctv (35) F J v =0

We use t h e metric (27) to r e l a t e J to J v : J ^ r g v ^ 0 , so th a t we have: v °

(36) J _ = ( c 2 - f t 2 r 2 ) J 0 J x=J 2=0 J 3=-Or 2J°

One gets from (35): ( F a 0 ( c 2 - ^ 2 r 2 ) -P0^ r 2)J°=0 or s i n c e J°= p(in

the r e s t frame) • i s not i d e n t i c a l l y zero, we have: r-zi-i caOro 2,, 2 2 2 ^ c

a 3 u 2 , 2-. 2_«3

(37) F u = pr / ( c -QT ) J F =\ftr /c JY^F

The c o v a r i a n t form of (35): F j V J V =0 g i v e s :

(38) F ^ O

Page 23: (c) Denis Alan Leahy, 1976

Thus the homogeneous Maxwell's equations are just:

<39> • F 1 2 ' 3 + F 2 3 ' l + F 3 r 2= 0

ct 3 We know F in terms of x from (34) and (37). To get the

desired equation for X from (39) use:

W V g i « g j s F a B

The results are:

(41) f1 2

= f 1 2

o 2^10 2^13 -ff.2 2, 2» 2 ... 2r13 2 2r13 F = ^ r F +r F =l(fi r /c )y, +l)r F = r y. F. „ 2„20 2„23 r„2 2.2-, 2 2^23 2 2r23 F 2 3=^r F + r. F =[(fi r /c JY^ +l)r F = r F

Thus (39) becomes ( ( / r ) x , 3 ) , 3 + ( n ^ X ) 1), 1+(r Y J X . ^ . J ^ or:

(42) ' S^/a? 2 +r 2Y ( ) )2(9 2x/3z 2 +8 2

X/3r 2) +y 2 (2y 2 - l ) 3 X /3 r =0

The solution to this equation is obtained in appendix 3 for

a dipole magnetic f i e l d ,with axis oriented at angle 9 Q with respect

to the rotation axis(z-axis) , at the neutron star. The second

boundary condition was the requirement of f i n i t e fields at the light

cylinder. No attempt was made in matching the solution within the

magnetosphere to an outgoing wave solution in the region outside

the magnetosphere. This is a p e s s i b i l i t y for further study. The

magnetic potential obtained for the stated boundary conditions i s :

(43) X (z,r,9)<„R o(v)e i a>* * ( e * + e " * O ^ e ^ d x

= - ^ ( P / c ) 2 { c o s V " > / ^ b ) ) % /a V ^ e ^ d x

.' + sin ecosfr/"Jj/(~c )\zk J9. ^ v n + 2 e i x y d a }

where R Q(v) and R^(v) are given e x p l i c i t l y in appendix 3: by equations

(23)5(31) and (23)5(36) respectively, where v=l-fi 2 r 2 / c 2 , y=« z/c •

Vi is the magnetic dipole moment of the neutron star.

Page 24: (c) Denis Alan Leahy, 1976

16.

From F U V , i n terms of E andB i n the s t a t i o n a r y frame from

appendix 2, we have: •

(44) E ^ r / c ^ 2 3x/ 9r r/c) y^ 2 3 X/ & =0

(45) B = Y^ 23x / a z B =Y^ 23x/3r B 4/rJ3x/3*

(44)gives E"*Vx=0 : l i n e s of constant X are e l e c t r i c f i e l d l i n e s .

A lso i n the r,z plane^B i s p r o p o r t i o n a l to V x . The charge d e n s i t y

p can be c a l c u l a t e d u s i n g : d / d r ( r 2 y ^ 2 ) = 2ry^ to get:

(46) 4up=V-E= (-l/r]3/3r{(f2r 2/c)Y ( j )23 X/3z)+3/3z((f2r/c) Y ( ) )

23x/3r)

= (-2fi/c) Y43 X/3z .= -(2Q/c)y^hz

Thus the r e l a t i o n betweenp and B found f o r the axisymmetric case(26)

i s s t i l l v a l i d i n the more general case.

In f i g u r e 4 are shown l i n e s of constant X f o r the a x i ­

symmetric case . Note t h a t these are orthogonal to l i n e s of constant

if), the stream f u n c t i o n , as given i n f i g u r e 2.

For the m=l case, a d i p o l e o r i e n t e d at 90° w i t h respect to the

r o t a t i o n a x i s , see f i g u r e 5. The e l e c t r i c and magnetic f i e l d s and

charge d e n s i t y i n the plane c o n t a i n i n g both;:rotation and d i p o l e axes,

are shown i n f i g u r e s 6,7 and 8. The e l e c t r i c f i e l d i s b a s i c a l l y

a quadrupole f i e l d . :.As one approaches the l i g h t c y l i n d e r ,v approaches 0.

Thus from (43) we have:

(47) X+ ( - y / ^ ( n / c ) 2 v 2 c o s < i . r j ^ i a y / ( Z cj) da

Using (40) and r3/3r=2(v-l) 3/3v : one o b t a i n s :

(48) E+ -fr/Mc)5 4 ( v - l ) c o s 9 / 0 ° i e : L a y / ( i : c )) da

-(u/TTXoyc)3(r-v)\ c o s 9 / 1 | a 9 i a y / ( I c j da

Also from (44)5(45) ,as v-*0, one has B ->--E and B -*E . E and B ' v ' z .. r r z r z

. t

Page 25: (c) Denis Alan Leahy, 1976

are zero at the l i j h t cylinder. Thus at the light cylinder where

Ezchanges sign (see figure 6), there i s a null in the electric and

magnetic fi e l d s . The null follows two circles parallel to the

equatorial plane, since the dependence i s contained entirely in

the coscb term of (47) .

Some estimates of the order of magnitude of the various quantities

can now be given. The magnetic dipole moment of the neutron star i s

roughly BS

R ~ 10 esu for Bj= 10 gauss, R=10 cm. From (44J $ (45)

we have , for regions intermediate between the neutron star and

the light cylinder: E= (QAO^lO^su* 10 5volts/cm forft=30 sec'}

Then we have B= E= 10 Gauss, and p= (ft/c)B- 10 esu- 10 electronic

charges per cm3.

Page 26: (c) Denis Alan Leahy, 1976

TABLE I I : NUMERICAL EVALUATION OF 'X(x,y), WHERE

X ( x , y ) ^ A ) W c ) 2 X ( x , y ) cos*

c 0 0.25 0.5 0.75 1.0

0 s i n g u l a r -50 -11 -1.8 0

jt/8 0 -11 -5.2 -1.2 0

«/h 0 6.0 -0.1 -0.2 p"

it/2 0 25 k.o 0.6 0

Page 27: (c) Denis Alan Leahy, 1976

I I 1 I •• I 0 0.25 0.5 0.75 1-0

FIGURE 5 : LINES OF CONSTANT X. FORCE FREE m=l CASE

Page 28: (c) Denis Alan Leahy, 1976

FIGURE 6: ELECTRIC FIELD LINES, FORCE FREE m=l CASE

Page 29: (c) Denis Alan Leahy, 1976
Page 30: (c) Denis Alan Leahy, 1976

22.

l'.O

1.0

+ + + • +

+ + + + + 0 1.0

+

-1.0

FIGURE 8: CHARGE DSIISITY, FORCE FREE m=l CASE

Page 31: (c) Denis Alan Leahy, 1976

23.

RELAXATION OF THE FORCE FREE ASSUMPTION

Up u n t i l now a l l e f f e c t s of a f i n i t e p a r t i c l e mass have been

ignored because of the presence of huge electromagnetic f i e l d s .

To maintain c o r o t a t i o n net electromagnetic f o r c e on the p a r t i c l e s

i s necessary. This means the charge to mass r a t i o of a l l p a r t i c l e s

i n any a r b i t r a r i l y small volume must be the same. Thus we assume

charge s e p a r a t i o n and the i d e n t i t y of a l l p a r t i c l e s at a given

p o i n t i n the magnetosphere.

In r o t a t i n g c y l i n d r i c a l coordinates the Lagrangian f o r s i n g l e

p a r t i c l e motion i s :

(49) L=-mc2/y . - (q/c) (A^+A^+A3<p +A Q)

where *=d/dt- m and q are the mass and charge of the p a r t i c l e . We d e f i n e

(50) y = c ( c 2 - r i r 2 - z 2 - f 2 - 2ftr 2cp- r 2<p 2 )~^ 2

Since L does not e x p l i c i t l y depend on time(assuming t h a t the c o v a r i a n t

f o u r p o t e n t i a l A^ i s time independent i n the r o t a t i n g frame), the

energy H i s conserved:

(51) H= (3L/3 x 1 ) x 1 - L = m ( ( c 2 - f t 2 r 2 ) - n r 2 < f )+ti/c) A Q

The Lagrangian equations of motion are:

(52) d/dt (Ymz) = ( q / c ) F l a x a

2 ct * d/dt (ymf) -• ymr(Q+$) =(q/c)F2 ax

d/dt ( Ymr 2(<£+n)). = ( q / c ) F 3 a x a

3 ct *

C o r o t a t i o n has: z=f=<£=0. Using F = 9A /9x - 9A„/9x .(52) reads

0= 3A Q/9z -Ymrft2= (-q/c) 9A Q/9r 0= 3A /3<f>

Thus apart from a t r i v i a l ' c o n s t a n t we have: (53) A q= (-mc2/q) ( c 2 - ^ ^ 2 ) ^ = C-c/q) m c 2 ^ .

This provides the • necessary electromagnetic f i e l d to h o l d

the p a r t i c l e s i n c o r o t a t i o n .

Page 32: (c) Denis Alan Leahy, 1976

4

24,

The previous force free models involving the stream function

^(axisymmetric case) and the magnetic potential x c a n n o w be modified.

For the former case write:

(54) A = ((-c/q)mc 2/ Y,, 0,0,^.1 y <p

so that B is given by (18) and E by (17) when m=0 (see appendix 2 Ci R

for the relation between F and E § B). Using g from (28) one exp

gets:

(55) F 0 1= ( - l / c 2 ) F 0 1 + ^ / c 2 ) F 3 1 <Q / c 2 ) 9 ^ / o Z

F 0 2=(-l/c 2)F 0 2 +Cn/c^ 3 2 = ( . c / q ^ j i 2r / c 2 ) Y ^ / c 2 ) 8 * / 3 r

03 12 F =0 F = F 1 2=0

F 2 3 = ( f i / c 2 ) F 2 0 + C l / r 2 Y ( j )2 ) F 2 3 = C-mcfi/q^ 2r/c 2) Y ^ Y ^ r 2 ) 3,J,/3r

F 3 1= ( o y c 2 ) F 0 ± + ( l / r 2

Y ^ 3 1 =(l/r 2Y #

2)3*/3z

Thus Maxwell's equations:

v (56) (4T!r/c)jy=(r F y v ) , .

with J^=p and J*=0 (corotation) read:

(57) y =0: (4Trr/c)p=3/3z((ox/c2) 3i|)/3z) + 3/3r(fnr/c2) 3IJJ/3r-<c/q)fmft2r2/c2) Y )

p=3: 0=3/3z((l/ Y^ 2r) 31i)/3z) + 3/3r((mcoy q)(fi 2r2/c 2) Y^/ Y^ 2r) 3^/3r)

These give, respectively, the equations for \JJ and p when inertia

is included. When the mass m is zero, these reduce to (23) and

(24), using (21).. To find the solution to (57) write:

(58) ty =tyh + ty^

where ty^ is the solution to the homogeneous equation(m=0) as given

by (21)and (25). Since the inhomogeneous term is a function of r 2 2 2 2t alone, we have: d/dr((l/ Y r) d ty^/dr +(mc9/q^fl r /c^Y^O . Setting

the constant of integration to 0,we get; 4JjP={-mcfyqXfi2r2/c2)rY,3

Page 33: (c) Denis Alan Leahy, 1976

25.

=(-mcfi/q)r( YJ-Y^). With d/dr( y^)=ny^n+2ii2?:/c2 we o b t a i n :

(59) V(-m cVq)(Y^l/Y^) For the magnetic p o t e n t i a l , F1-1 are known from (34) i n terms

of X but F ^ are not. Wc c a l c u l a t e F ^ as f o l l o w s :

F 0 1 4 l / c 2 ) F ( ) 1 < n / c 2 ) F 3 1 = 0 ^ / c 2 j ( n r 2 F 0 1+ r 2 F 3 1 ) g i v e s F 0 1 = Y fcr/c2j 3 X / 8 r

S i m i l a r l y F 0 2= - Y ^ c / q ^ m ^ r / c 2 ) Y ^ frr/c2) 3 X/9z) and F° 3=0 are found.

The only Maxwell's equation that.changes i s f o r u=0, i n (56):

(4Trr/c)p=-mn 2(r/qc)Y ( i )3(Y (j )

2-l) - (P/c2) 2 r Y ( ( )4 3 X/3z

The equation f o r x g i v e n by the V=3 equation o f (56) i s unchanged

so t h a t F1-* are unchanged. Thus o n l y P and F^ 1 are m o d i f i e d .

However, r e f e r i n g to appendix 2, one sees that both E and B are •

a l t e r e d .

In both cases, f o r and X , one has the r e s u l t :

(60) . 4Trp(qc/ft)Y^ - m c ^ (Y^ 2 + l ) -2qB z

•'The l e f t hand s i d e of (60) i s never negative (Pq>Q) . Thus we have 2

2qB^ <-mcftY(j) (Y^ +1) < 0 so tha t q and B^ are always of op p o s i t e sign.Thus one

has |B z >(mcft/2| q|) Y^ ( Y ^ + l ) . In t h i s model q may have d i f f e r e n t

v a l u e s i n d i f f e r e n t r e g i o n s . F i e l d l i n e s along which q does not

change s i g n clo not have a change i n the s i g n o f IV . I f

q changes s i g n , B^ must change d i s c o n t i n u o u s l y , r e s u l t i n g i n a

cusp i n the f i e l d l i n e . Since P=0 at the p o i n t o f change o f q , ( 6 0 ) y i e l d s

(61) LZz= cft(m 2/2q 2 - m ^ q ^ ( Y ^ 2+ l )

For a change from e l e c t r o n s t o protons i n the i n t e r m e d i a t e magneto­

sphere, one'has : AB^~ cft(m p+m e)/e~ 2* 10~ 3gauss ( f o r ft-20 s e c " 1 ) .

Page 34: (c) Denis Alan Leahy, 1976

26.

Thus the cusp i n the f i e l d l i n e s i s n e g l i g i b l e u n t i l one gets

c l o s e to the l i g h t c y l i n d e r . From (61) and the estimate of B - - 3 3 3

on page 17 : B^/B^ 10 y /10 . This i s of the order o f u n i t y 6 2 wheny^-10 . At t h i s p o i n t the p a r t i c l e energy,Y^roc > exceeds

the magnetic energy d e n s i t y . C o r o t a t i o n i s no longer v a l i d , so

t h i s model i s no longer v a l i d . N e g l e c t i n g the f a c t t h a t the mode

i s no longer p h y s i c a l f o r such l a r g e values of y ^ j t h e change i n

f i e l d l i n e s . i s i l l u s t r a t e d i n f i g u r e 9 f o r the axisymmetric case.

Compare t h i s : t o f i g u r e 1. Now the f i e l d l i n e s are not h o r i z o n t a l

at the l i g h t c y l i n d e r but v e r t i c a l and thus do not penetrate the

l i g h t c y l i n d e r .

Page 35: (c) Denis Alan Leahy, 1976

27.

FIGURE 9: MAGNETIC FIELD LITISS FCR MISTOMETRIC CCROTATION

CASE WITH INERTIA

Page 36: (c) Denis Alan Leahy, 1976

RELAXATION OF COROTATION 28.

I f one no longer assumes c o r o t a t i o n , what p a r t i c l e motions

can occur and how w i l l the f i e l d s be a l t e r e d ? To answer t h i s

question one procedes as f o l l o w s : C a l c u l a t e the s i n g l e p a r t i c l e

motion i n an a r b i t r a r i l y given f i e l d assuming small departures

from c o r o t a t i o n . I.e. p a r t i c l e v e l o c i t i e s i n the r o t a t i n g frame

are assumed to be of order e where e<<l. Next make assumptions

which give the c o l l e c t i v e motion i n terms of the s i n g l e p a r t i c l e

motion and use t h i s to c a l c u l a t e a l t e r e d f i e l d s . The a l t e r e d

f i e l d s can be used to r e c a l c u l a t e the s i n g l e p a r t i c l e motion. '

One repeats t h i s procedure u n t i l the d e s i r e d accuracy of r e s u l t s

i n orders of e i s a t t a i n e d . The model i s then s e l f - c o n s i s t e n t

to that order.

Page 37: (c) Denis Alan Leahy, 1976

29. SINGLE PARTICLE MOTION

For s i n g l e p a r t i c l e motion we assume the f i e l d s are such that

c o r o t a t i o n i s p o s s i b l e .I.e. we imagine that a l l the p a r t i c l e s

except the t e s t p a r t i c l e i n question are i n c o r o t a t i o n . Then by 2

(53) we have (q/c)A Q= -mc /y^ s i n c e a l l p a r t i c l e s at any p a r t i c u l a r p l a c e i n the magnetosphere are i d e n t i c a l , w i t h mass m and charge q.

We now w r i t e the s i n g l e p a r t i c l e Lagrangian (49):

2 2 (62) L= -mc ly +mc /y -(q/c) (A 1 z+ A 2f+ A^)

= (m/2XY 9(z 2+ * V Y ^ r V ^ q / c ) A ^ q / c j A ^ 2

-((q/c) A^- my^1- ft)<J>+ terms cubic i n the v e l o c i t i e s

Since we are assuming the v e l o c i t i e s are of order e, e<<l, we

keep terms t o second order and w r i t e L . i n the form:

(63) L=%( Ax 2+ By 2+ C z 2 ) - S^x- <J>2y- * z 3 2

where (x,y,z) = (z ,r ,<j>), A=B=mY(j), C=mY^ r , $ 1=^/c)A ] L, $ 2=^/c)A 2, 2

and $3=^/c) A^- my^r Lagrangians of t h i s form are t r e a t e d i n

appendix 4. The main r e s u l t s a r e :

1) The motion c o n s i s t s of a slow d r i f t tangent to s t r e a m l i n e s ,

s p e c i f i e d by dx/X = dy/Y. = dz/Z where:

(64) X= Cq/c)rBz ^ Y ^ Y ^ l )

Y=(q/c\rB r Z ^ q / c ^

and a s p i r a l i n g motion around these s t r e a m l i n e s .

2) The energy E i s conserved.

3) The energy can be separated i n t o a l o n g i t u d i n a l energy 2

a s s o c i a t e d w i t h the d r i f t — % P J l ' , and a t r a n s v e r s e energy assoc-

Page 38: (c) Denis Alan Leahy, 1976

30.

i a t e d w i t h the s p i r a l i n g — Noo .

4) An a d i a b a t i c i n v a r i a n t e x i s t s f o r the motion, namely M= *

N a a /IM> the t r a n s v e r s e energy d i v i d e d by the angular frequency

of the s p i r a l i n g .

t P, J2jN and a are d e f i n e d by equations (8), (9), (10), and (16)

2 o f appendix 4. E s s e n t i a l l y , %P£ i s the l o n g i t u d i n a l k i n e t i c

* 2 * 2 2 2*2 ^ energy- h^Y^t z H+ r u+ r <£M ) and Naa i s the t r a n s v e r s e k i n e t i c . 2 • 2 2 2 • 2

energy- ^ Y ^ t ZjJ- r A+ r y^ <J>) . The s u b s c r i p t s r e f e r t o motion

p a r a l l e l t o , and p e r p e n d i c u l a r to s t r e a m l i n e s .

Page 39: (c) Denis Alan Leahy, 1976

•I

COLLECTIVE MOTION 3 1 *

If,instead of allowing just one particle to move,one allows a l l to

move,then the fields will be altered. In the formalism of the

single particle treatment this can be taken into account since

the four potential, except for A q , was- not assumed to be of a

particular form. Thus one on l y needs t o all o w f o r a different A o.

We write:

(65) A q= (-c/q>c 2/Y 9 + A Q

This modifies the Lagrangian L and thus the energy, which becomes:

(66) E = %P*2 + Cq/c) A Q (for M=0)

2 Thus one sees that A is second order in e since both E and 1

o 2

are of order e (see (67) below).

To determine the fields we must make assumptions about how

the currents derive from the single particle motion. Since we

have steady state*all particles which move along a given streamline

must be of the same type. The Coulomb interaction between streaming

particles results in no spiraling motion (M=0) and ensures that

a l l particles along the same streamline have the same energy E.

If M were not zero, collisions would occur between particles on

neighboring streamlines which damp out the transverse motion.

Thus we have convection current only: j=pv or: (67) J =p(l,x,y,z) = p(l, JtX, £Y, 11 )

using (16) of appendix 4(with c=0). X,Y,Z are given by (64). The equation

of continuity (yJ^),^ =0 reads:

(68) y(P*X),x + (yP*Y),y + y (p£Z) , z = 0

Page 40: (c) Denis Alan Leahy, 1976

32.

From the d e f i n i t i o n (2) o f appendix 4,one has the i d e n t i t y

(corresponding to v-ko) : x y + Z = 0., thus (68) becomes:

(69) X(p£y), x + Y(P£y), y + Z ( P * / ) , Z = 0

Therefore P£y i s constant along the streamlines s p e c i f i e d by

dx/X = dy/Y = dz/Z . We w r i t e :

(70) p£y =(c 2/4Ttq) K

where K i s constant along a s t r e a m l i n e , the v a l u e of which i s

determined by the boundary c o n d i t i o n s . Write p = P Q + P J where

PQ i s zero order ..in e and p ^ i n c l u d e s a l l higher orders. (70)

•gives £ t o f i r s t order i n e as a f u n c t i o n of p o s i t i o n along a

s t r e a m l i n e s i n c e p ^ i s known from the c o r o t a t i o n case as given

by (60). Maxwell's equations(56) w r i t t e n out are:

(71) ( r F ? 1 ) ^ =(4Trr/c) J V = (4Trrp/c)(l, *X, £Y, IZ)

= (4Trrp/c, Cc/q)KX, fc/q) KY, Cc/q) KZ)

Equation (70) r e q u i r e s t h a t K and £ be zero along a s t r e a m l i n e

where p changes s i g n . In steady s t a t e , and w i t h charge s e p a r a t i o n ,

no streaming can occur along any s t r e a m l i n e along which the charge

changes s i g n . From (60) p Q changes s i g n , to a good approx­

imation except very near the l i g h t c y l i n d e r , when B z changes s i g n .

Thus the p u l s a r must have a c o r o t a t i n g 'dead' zone, where no streaming

occurs, which very n e a r l y c o i n c i d e s w i t h the r e g i o n c o n t a i n i n g

f i e l d l i n e s which go h o r i z o n t a l i n s i d e the l i g h t c y l i n d e r . This

s i t u a t i o n i s i l l u s t r a t e d f o r the axisymmetric case i n f i g u r e 10.

Page 41: (c) Denis Alan Leahy, 1976

33.

FIGURE 10. Streaming and C o r o t a t i n g 'Dead' Zones

Axisymmetric Case

LEGEND -

- C o r o t a t i o n Region

1 Streaming Region

v

0 1 Note: the s i g n of charge i s i n d i c a t e d by + and - above.

Page 42: (c) Denis Alan Leahy, 1976

34. AX I: SYMMETRIC CASE

Write (72): A^= (fc-c/ql mc2/y^, 0, 0,* ) + ( A Q, A j , A 2 , Ap

so t h a t the zero order p a r t i s i d e n t i c a l t o (54) . The • terms

higher order i n e are contained i n the second set o f b r a c k e t s .

For a x i a l symmetry the p a r t i a l d e r i v a t i v e of any q u a n t i t y , w i t h r e s p e c t

t o 9 , i s zero. Thus A 1 and A 2 always appear i n the

combination 8A ] L/3r - 3A 2/3z = F j 2 = . Now from (64) we have:

(73) X= Q-q/c) (3A 3/3r +3i|//3r ) + nSlry ( Y ^ + l ) "

Y=(q/c)(3A 3/3z +3i|>/3z) Z= Cq/c) B^

F a 3=3A a/3x 3 -3A e/3x a i s c a l c u l a t e d from (72) and F a 3 c a n be found

u s i n g g from (28). The r e s u l t i s :

(74) F 0 1 = ( - l / c 2 ) 3 A 0 / 3 z + (Q/c 2) (3<J//3 z + 3A 3/3z) . 02 ? 9 9 9 F = ( - l / c ) 3 A Q / 3 r - (c/q^mQ r/ c .) y +(«/c ) (3^/3r + 3A 3/3r)

F 2 3 = (-mcA/q^r/c^Y - ( ^ / c 2 j 3 A Q / 3 r 4/Y^ V ^ ^ r +3A 3/3r)

F 3 1=(fi/c 2)3A 0/3z + ( l / Y ( J )2 r 2 ) ( 3 ^ / 3 z + 3A 3/3z)

The zero order p a r t s o f (74) are i d e n t i c a l t o (55), as necessary

f o r c o n s i s t e n c y .

Maxwell's equations equations (56) w i t h JV g i v e n by (67) a r e :

(75) y = 0: (4irr/c> (pQ+p j)=3/3 z (C-r/c 2) 3A Q/3 z^r/c2) (3^/3 z+9A 3/3 z))

+9 /3 r ((-r/c 2) 9 A Q/3 r - t / q X m f 2 2 r 2 / c 2 ) Y^ - ^ r / c ^ / S r+3 A 3/3r ) )

(76) v=l: (4irr/t) (pQ+P^ftX = 9/9r (rB^)

(77) p=2: (4irr/c) (P Q + P J R Y = -3/3z (rB^)

(78) u =3: (4rrr/c) (p Q+p ^ = 3 /3 z(C2r/c 2) 3A Q/3 Z-^/Y^ 2r) (3^/3 z+3 Aj/3 z) )

+3 /3 i ( ( c m n / q ) ^ 2 r 2 / c 2 J Y^ -$r'/c 2) 9 A Q/9 r+fr/y^ 2 i ) ( 3 * / 3 r+9 Aj/3 z) )

Page 43: (c) Denis Alan Leahy, 1976

35.

The zero order p a r t s o f (75) and (78) are the same as (57) and

g i v e ^and p Q . "

Using (70) and (73), (76) and (77) have f i r s t order p a r t s :

( c / q U 3/3r ( ( - q / c ) * + n t f r ^ ) = 3/3 r (rB^)

(c/q)K 3/3r ((q/c) = -3/3 z (r B^)

.We d e f i n e :

(79 ) = ty-(c™n/q)r2Y^

so t h a t these equations become:

(80) K 3/3x X t|>' = -3/3X 1 (rB^) w i t h ( x 1 ,x 2) = ( r , z ) . .

Thus we have the f o l l o w i n g r e l a t i o n among K,^1, and B^:

(81 j K = -d(rB^Vd*«

Note t h a t K,^', andrB^ are a l l constant along s t r e a m l i n e s ( a c t u a l l y

the s u r f a c e s dx/X = dy/Y f o r t h i s case o f a x i a l symmetry). From

(81) i t i s seen t h a t i n r e g i o n s where streaming does not occur

(K=0), rB^ i s constant .everywhere.^/

A Q i s known from the energy equation (66) t o second order s i n c e

A i s known to f i r s t order i n e f r o m (70). From (78) we'can c a l c u l a t

t o second order:

(82) l l / v f o 3 2 / 3 z 2 A 3 + 3 / 3 r ( ( l / Y 4 )2 r ) 3 A 3 / 9 r ) = K B ( { ) ^ / c 2 ) V 2 A 0

2 where V i s the L a p l a c i a n operator i n c y l i n d r i c a l c o o r d i n a t e s .

(75 ) g i v e s t o second o r d e r :

Page 44: (c) Denis Alan Leahy, 1976

36.

(83) (4Trr/c)p1=«:/c2)V2(nA3-A{))

In summary:The zero order q u a n t i t i e s ^and are given by

(57). The f i r s t order q u a n t i t i e s K,£,.and are given by boundary

c o n d i t i o n s , (70), and (81) r e s p e c t i v e l y . . The second order

q u a n t i t i e s A n,A_, and p 1 are given by (66),(82), and (83).

Page 45: (c) Denis Alan Leahy, 1976

THE GENERAL CASE 37.

The magnetic p o t e n t i a l x cannot be used i n the case where

streaming c u r r e n t s occur s i n c e the d e f i n i t i o n (34), when i n s e r t e d

i n Maxwell's equations (56), i m p l i e s zero current J 1 .

However t h i s problem can be handled i n the f o l l o w i n g manner.

We assume a z,<\> dependence of the form e 1 U , where u=kz+mc|> (m an

i n t e g e r , k a r e a l number). From Maxwell's equations(71) we have:

(84) K ( r F 1 J ) = (c/q)K(K X+ K , Y + K Z)

Thi s i s i d e n t i c a l l y zero, from (69). We have,from the assumption

concerning the z,<j> dependence : 3/3z=k3/3u and 3/3<j>=m3/3u so t h a t

(84) becomes:

(85) 0=K, i(rF 1 ; i) ,j=3K/3u 3/3r ( k r F 1 2 - m r F 2 3 )

-3K/3r 3/3u ( k r F 1 2 - m r F 2 3 )

= J(K, k r F 1 2 - m r F 2 3 5 r,u ) 1 2 - 2 3

I.e.. the Jacobian of K and krF -mrF w i t h respect t o the v a r i a b l e s

r a n d u vanishes. Thus the Jacobian of the general stream f u n c t i o n

A a l s o vanishes, where A i s defined by:

(86) KkA= n i r F 2 3 - k r F 1 2

Since K i s constant along streamlines dx/X = dy/Y = dz/Z , A i s

a l s o constant along streamlir.es.

With a z,9 dependence of e 1 U the s o l u t i o n s w i l l be h e l i c a l

waves. To get a p h y s i c a l l y acceptable s o l u t i o n , s o l u t i o n s of d i f f e r e n t

k and ni must be superposable through F o u r i e r a n a l y s i s . In t h i s way the

t o t a l s o l u t i o n can f i t the boundary c o n d i t i o n s . Thus Maxwell's equations

(71) must be l i n e a r . This i s t u r n r e q u i r e s K to be constant or at

Page 46: (c) Denis Alan Leahy, 1976

38.

l e a s t piecewise constant i n d i f f e r e n t regions of the p u l s a r mag-

netosphere.e.g. K=0 f o r the c o r o t a t i n g dead zone and K = K q (a constant)

o u t s i d e the c o r o t a t i n g dead zone. We r e s t r i c t K to be piecewise

constant f o r the c a l c u l a t i o n o f A. In the f o l l o w i n g the lower

case l e t t e r s r e f e r to Fourier components of the f i e l d s :

(87) F a e(z,r,<(,) = z c o s ^ c j , ) / 0 0 C-(k) f a 3 ( r ) e l k z d k

Note that (86) i s no longer v a l i d but i n s t e a d we have:

(88) K k X = m r f 2 3 - k r f 1 2

ct 8 ot 8 Now f and f . ., us i n g A Afrom (65) and g from (28),, a r e : Ctp u (89) f 0 1 = i k i 0 f 0 2 = d a Q / d r -tfncft 2r/q} y ^ ( k ) f

o z

= i ^ 0

(90) £ =b f 2 3 = r b z f 3 1 = r b r

r u l _ / ; i , /„2N - ./ n /_2 >^ ,-03 .-- , 2 2 (91) f U H ^ / O v ( f t / c ) f 3 1 •• f = " i m i 0 / c 2 r ^

f too 4/c 2;. 2 3 f 0 2<-l/c 2;d£ 0/dr -(mft 2r/cq)Y d )5(k) -$/c2)fr

(92) f l 2 = f1 2

f 3 1 4 f i k / c 2 ) a 0 ^ / r 2 Y ( { )2 ) f 3 1

f 2 3= ( . f j / c 2 ; d a 0 / d r - ^ f t 3 r / c q ) Y ( { ) 6 ( k ) 4/r2y*)f23

where 6(k) i s the D i r a c d e l t a f u n c t i o n . W r i t i n g out the components

o f Maxwell's equations (71) ,using (64) , we get:

(93) u=l: d / d r ( r f 1 2 ) + imrf 1 3=K(f 2 3<cmft/q)d/dr(r 2Y ( j )) «(k)) 21 23 u=2 i k r f +imrf = K f 3 ^

u=3 i k r f 3 1 + d / d r ( r f 2 3 ) = K f J 2

From the y=2 equation one has:

(94) f 3 1 = i k X

Combining.the u=l and u =3 equ a t i o n s , one o b t a i n s :

K(mf 1 2+kf 2 3)+Kk(cmfyq >)d/dr(r 2Y (j 1) <$(k)=d/dr ( k r f 1 2 + m r f 3 2 ) = -Kkd X/dr . «• ,

From (88) and (91) one f i n d s :

Kk^=(m/Y^ 2r)f 2 3-<mrft/c 2)di 0/dr-<mma 3r 2/cq)Y ( j )5(k) - k r f 1 2

Page 47: (c) Denis Alan Leahy, 1976

39.

Using the previous two r e l a t i o n s , one o b t a i n s :

(95) f =(-Kk 2Mmk/Y 62r)dA/dr-(mknr/c 2)da /dr^cm^mk/q)Y, 6 (k) )

(96) f 2 3-(Kkm X - k 2 r d X / d r ^ n 2 f t r / c 2 ) da 0 /dr-^irfVq) (m 2(Y ( j ) + l / Y ( j ) )

- k 2 r 2 Y ( j ) ( Y ( j )2 + l ) ) 6 ( k ) ) H k 2 r + m 2 / ( Y ^ r ) )

Thus (94), (95) , and (96) g i v e f „ i n terms o f Xand a^.

To o b t a i n the d i f f e r e n t i a l equation f o r X, take the u = 3 component

i n (93) and s u b s t i t u t e f o r f , f , and f 1 0 . We d e f i n e :

(97) t, =k2r\2+m2

The d i f f e r e n t i a l equation f o r X i s :

'(98) k 2 d/di((r/S) dX/dr)+k 2((Kr/C) Y ^ i U k / C ) Y^*+K)-1/Y^ 2 r ) '

=-d/dr ( ( fJr/c 2 Xk 2r 2 Y 4 )2/C)d£ 0/dr) -{Cmkr/Cj vfar/c2) d a Q / d r

. - ^ r / c 2 ) S 0 + ^ / q ) 6 ( k ) ( d / d < ( m 2 / ^ ) ( Y ^ - l / Y ^ V / O Y ^ f Y ^ + l ) )

J$2x/c2)y^(y2+l)^Y^T/K)y*)

For the f o r c e f r e e case(aQ=0,m=0) the r i g h t hand s i d e o f (98)

vanishes to g i v e the e c u a t i o n f o r the f o r c e f r e e stream f u n c t i o n .

Write ^ - ^ o + ^ i where i s zero order i n the streaming v e l o c i t i e s

and ^ i n c l u d e s a l l other o r d e r s . The zero order p a r t o f (98) i s :

(99) d/dr((k 2r/ c ) dX Q/dr ) - $ < 2 /Y ( | )2r)X 0 =

cmfi Y ( { )46(k ) (5c 2r 2/qrC 2J (iH% ( l ^ 2 ) ^ 2 ^ ( 1 - Y ^ 2 ) )

For the axisymmetric case(m=0) (99) becomes:

(100) d/di((l/ rY ( j ) V x ( )/dr)--k 2X 0 /Y ( j )2r^cmn/qr)2Y ( { )(l - Y ( { )

2)6(k)

The F o u r i e r transform of t h i s i s not the same as the equation

. f o r i|> (57), but i s the same as the equation f o r i> ' = (-cm^/q) r Y^+S'

(from ( 7 9 ) ) . . We have: d / d i { ( l / r 2 Y ^ 2 ) d/dr ((-cm^/q) r 2 Y ^ y ) = 3 3

•: (-m /cq) rY^ (Y 9 - 1 ) . When t h i s i s added t o the r i g h t hand s i d e

of (57) one gets the equation f o r 4": (101) V ^ C l/rY^ 2) W'/tW/yfo 9V/9z2<cm^/q) 2Y<f| (1-Y^ 2)

Page 48: (c) Denis Alan Leahy, 1976

40.

T h i s i s j u s t the F o u r i e r transform of (100). This r e s u l t i s c o n s i s ­

t e n t s i n c e i t i s and not ij>which i s constant along s t r e a m l i n e s .

The f i r s t order p a r t of (98) i s :

(102) d / d r f t k ^ / O d A j d r ^ - O ^ / Y ^ r ) A 1 =

(-2KkirY^ 2/0((crafi/q) <5(k) Y <^ k^^/cV

This gives X=AQ+ X l U P t o s e c o n c ^ order i n the streaming v e l o c i t i e s ,

The u=0 equation o f (71) can be w r i t t e n , u s i n g (91), as:

(4irr/c) (p0+p 1)=(c/c 2r)£ ( f(Y 4 )2/c 2)d/dr(r d^ / d r ) - ( m a 2 r / c q ) y^ 3 ( Y ^ + l ) 6 (k)

2 2 2 2 - _ •*§x /c Kf 1 2 - ^ Q / c ) y ( j ) f 2 3 where p Q and p j are the F o u r i e r com­ponents o f p Q.andpj. The zero order p a r t of t h i s equation i s :

(103) 4T r rp 0/c=(-ft/c) T ( f )2r((mcft/q)Y ( ( )( Y^ 2+l)6(k) + 2b z) •

The F o u r i e r transform of t h i s i s i d e n t i c a l t o (60) ,as necessary

f o r consistency. The remainder i s :

(104) 4 1 r r p 1/c=(l/c 2;((?a 0/r ) - Y ( j )2d/dr(r d i Q / d r ) Hft/e2) Y ^ r 2 ^

T h i s has f i r s t order and second order order p a r t s , i n c o n t r a s t

to the axisymmetric case. This i s because b^ now has a zero order

p a r t , a^ i s s t i l l second order ,as given by the F o u r i e r transform

of (66).

The f i e l d components given by (94), (95),(96) have zero order

p a r t s :

(105) h w = f u 0 .4mk/c)(dX0/dr ^ m f y q^Y ^ C k ) )

r b r 0 = f 3 1 0 = i k X 0 r b z 0 = f 2 3 0 ^ -k^^OY^dXQ /dr^mJVq^Y^raCk) . ( m ^ - l / Y ^ )

2 2 2 -k r Y^(Y^ +1))

Page 49: (c) Denis Alan Leahy, 1976

41.

The f i r s t order p a r t s o f the F o u r i e r components of the f i e l d s

are given by:

(106) b + 1= - K k ^ Y ^ / C - t m k / ^ d A j / d r

r b r l = i k X x

r b z l = ia£ry2XQ/^ - ( k ^ V / ^ d X ^ d r

One can c a l c u l a t e the magnetic f l u x through a v e r t i c a l s l i c e ,

width rA<j>, o f a c y l i n d e r w i t h a x i s c o i n c i d i n g w i t h the s p i n a x i s

( z - a x i s ) , extending from z=0 t o Z = Z Q . - : . T h i s i s : z z

(107) rA<j>/00 B rdz =A<|,/0

0 F 3 1 d z =A(f»(A(z0,r,<j»)-A(0,r,<|)))

-a simple r e s u l t . I f one i n t e g r a t e s over <j>, t h i s w i l l v a n i s h except

f o r the m=0 case, f o r which one obtains the same r e s u l t as f o r the

stream f u n c t i o n if>: 2iTjfi ( z Q , r ) - A (0,r))

From the F o u r i e r transform (87) and the formulae f o r f „ i n Ctp

terms of Xand a^ i t i s p o s s i b l e t o c a l c u l a t e a l l the f i e l d s . To

c a l c u l a t e X^ f o r a s p e c i f i c set of boundary c o n d i t i o n s there

are two approaches: i ) C a l c u l a t e the s e r i e s s o l u t i o n to (100), and

compute s e r i e s f o r ^°ZQ>^TQ>^^Q• Match these to the F o u r i e r transforms

of the f i e l d s at the neutron s t a r t o get C-(k) . i i ) Use the r e s u l t

(107) and c a l c u l a t e the c y l i n d r i c a l s l i c e f l u x near the neutron

s t a r ( e . g . f o r an obli q u e d i p o l e f i e l d ) . Then d i f f e r e n t i a t e w i t h

respect to <f> t o get A(z,r,<f>) at the boundary, Inverse F o u r i e r t r a n s ­

form to get X at the boundary. Match t h i s to the s e r i e s s o l u t i o n

t o (100) to determine C^(k). The f i r s t procedure i s s i m i l a r t o

tha t used i n s o l v i n g e x p l i c i t l y the axisymmetric f o r c e f r e e c o r o t a t i o n

case f o r a d i p o l e f i e l d at the neutron, s t a r , i n appendix 1.

Page 50: (c) Denis Alan Leahy, 1976

42. D I S C U S S I O N

A f t e r arguing f o r the existence o f a magnetosphere we s t a r t e d

h i t h a simple but r e s t r i c t i v e model u t i l i z i n g the stream f u n c t i o n

IJJ. T h i s was generalized t o f i t any boundary f i e l d at the neutron

s t a r v i a the magnetic p o t e n t i a l x Next the f o r c e f r e e

assumption was r e l a x e d , ivjVich had the e f f e c t of a l t e r i n g the f i e l d s

to hold the p a r t i c l e s in c o r o t a t i o n . F i n a l l y the p a r t i c l e s were

allowed to move. The type o f motion th a t occurs was c a l c u l a t e d 'as1.was

i t s r e s u l t i n g e f f e c t on the f i e l d s .

The two major assumptions are: 1) the model i s steady

state(time independence i n the r o t a t i n g frame); 2) p a r t i c l e motions

are small departures from c o r o t a t i o n . .The f i r s t assumption seems .

q u i t e reasonable. However some p u l s a r models, most notably those

i n v o l v i n g some type of r e l a x a t i o n o s c i l l a t i o n to explain the emissions,

such as the spark gap model of Ruderman and Sutherland 4, abandon assumption

1) e n t i r e l y . In any case, keeping 1) i s reasonable i n order to

c a l c u l a t e the conditions under which non-steady processes occur.

The second assumption i s on l e s s s o l i d f o o t i n g . I t i s q u i t e reason­

able well within the l i g h t c y l i n d e r , but as one approaches regions where

i s very large, the p h y s i c a l s i t u a t i o n i s ' u n c l e a r . Many other

processes become important. Others have proposed a shock f r o n t

near the l i g h t c y l i n d e r . Associated with 2 ) i s the assumption

of charge separation, which follows n a t u r a l l y from the steady

9 s t a t e c o r o t a t i o n case. Again some authors assume countering views.

Page 51: (c) Denis Alan Leahy, 1976

43.

The l a s t models presented here, a l l o w slow p a r t i c l e

motions. The c o n t i n u i t y equation gives r i s e to the parameter K

which i s constant along a s t r e a m l i n e . Except f o r the axisym­

metric case; K i s f u r t h e r r e s t r i c t e d t o be piecewise constant.

K must be known before one can proceed w i t h the c a l c u l a t i o n o f a

model. It i s determined by the c o n d i t i o n s at the neutron s t a r sur­

f a c e . Since one knows the p o s t i o n of the streamlines from the

zero order c a l c u l a t i o n , K i s - then known everywhere i n s i d e the

l i g h t c y l i n d e r . From (64),(67) and(70) we have:

KCB^cmn/q^CY^.+l), B r, B ^ ^ P / O (z,*,*)

The zero order charge d e n s i t y and f i e l d s are known. The physi c s

of the emission process enters the problem i n determining the

i n i t i a l v e l o c i t i e s and thus K. If the neutron s t a r has a uniform

surface and a pure d i p o l e f i e l d , the surface p r o p e r t i e s and thus

K should be a function only of the angle from the d i p o l e a x i s .

P r e c i s e l y what t h i s f u n c t i o n i s depends on a knowledge of the phy s i c

of the s u r f a c e , which i s outside the scope of t h i s i n v e s t i g a t i o n .

The r e s t r i c t i o n f o ttatise a, piecewise constant K f o r the case of

the general stream f u n c t i o n A ,may or may not be an unreasonable

approximation to the a c t u a l p h y s i c a l s i t u a t i o n .

Page 52: (c) Denis Alan Leahy, 1976

44.

BIBLIOGRAPHY

1. t e r Haar D, Pulsars,'Phys .Rep .3_, no . 2,57-126, (1972)

2. Ruderman M, P u l s a r s : S t r u c t u r e S Dynamics,A.R.A.A., 427-476(1972)

3. G o l d r e i c h P § J u l i a n PulsarEiectrodynamics,Ap.J,157_,869-880(1969

4. Ruderman M § Sutherland P,Theory of P u l s a r s : P o l a r Gaps, Sparks

and Coherent Microwave Radiation,Ap.J.,196,51-72,(1975)

5. Arfken G, Mathematical Methods f o r P h y s i c i s t s , Academic Press

1970 (2nd e d i t i o n )

6. G o l d s t e i n H, C l a s s i c a l Mechanics, Addison Wesley 1965(7th p r i n t i n g )

7. P r o t t e r M § Morrey C, Modern Mathematical A n a l y s i s , Addison

Wesley 1970

8. Ardavan H, Magnetosphere Shock D i s c o n t i n u i t i e s i n Pu l s a r s . I . '

A n a l y s i s of the I n e r t i a l E f f e c t s at the Lig h t Cylinder,Ap.J,203,226-232(1976)

9. Henriksen R § Rayburn D, Hot Pu l s a r Magnetospheres, M.N.R.A.S.,

166, 409-424,(1974)

10. Henriksen R § Norton J , Obiique R o t a t i n g P u l s a r Magnetospheres

With Wave Zones, Ap.J,201,719-728,(1975) •

11.. Mestel L, P u l s a r Magnetosphere, Nat .Phys.Sci. ,233,149-152, (1971)

12. M i c h e l F, Ro t a t i n g Magnetosphere: A Simple R e l a t i v i . s t i c

Model, Ap.J,180, 207-225,(1973)

13. Cohen J § Rosenblum A, Pu l s a r Magnetosphere, Astr.SSpace S c i . ,

6,130-136,(1972)

Page 53: (c) Denis Alan Leahy, 1976

45.

14. Mestel L, Force-Free P u l s a r Magnetospheres, Astr.§Space S c i . ,

24,289-298,(1973)

15. Okamoto I, Force-Free P u l s a r Magnetosphere I,M.N.R.A.S.,167,

457-474, (1974)

16. Scharlemann E 5 Wagoner R, A l i g n e d R o t a t i n g Magnetospheres I

General A n a l y s i s , Ap.J,182, 951-960,(1973)

Page 54: (c) Denis Alan Leahy, 1976

APPENDIX 1

( l - n 2 r 2 / C 2 ) 0 2V / 8 r 2 + 9

2 V / 9 z2 ) - ( 1 / r ) ( l + n 2 r 2 / c 2 ) 9 V / 9 r = 0

(1)

Since t h i s equation i s separable i n r and

V(r,z)=X(x) Y(y)

we write:

where x=9x/c, y=ftz/c. Separation of va r i a b l e s gives:

(2) (l/Y)d 2Y/dy 2= -a= (1/X)((1/x)(1+x 2)/(1-x 2) dX/dx -d 2X/dx 2)

(3) v= e i o r y •

Writing d/dx = ', one has

(4) X " -(1/x) ( l + x 2 ) / ( l - x 2 ) . X' - a 2 X= 0

•(4) has regular singular points at x=0,l, and" ..

The boundary conditions we use are: 1) The magnetic f i e l d

at the neutron star i s a dipole f i e l d aligned with the spin axis.

2) The f i e l d s at the l i g h t c y l i n d e r are f i n i t e .

From(21)of the main text we have V(x,z) = -(n/c)i|j(x,z)

has the same behaviour as x,z-+0,as the stream function f o r a

dipole f i e l d . In c y l i n d r i c a l coordinates the dip o l e f i e l d i s :

C5). B r = 3 y r z / ( r 2+ z 2 ) 3 / 2 ^ = y ( 2 z 2 - r 2 ) / ( r 2

+ z 2 ) 5 / 2

can be obtained from the stream function:

^dipole= V / C r 2+ z 2 ) 3 / 2

= . ( f i M / c ) x 2 / ( x 2 + y 2 ) 3 / 2

Thus we have:

dipole as x,y-K). We

Page 55: (c) Denis Alan Leahy, 1976

47.

We need the Fourier transform:

F ( ( 1 i / 2 ) } s x / ( x 2+ y 2 ) 3 / 2 ) = -d/dx ( K Q (<*)) = a K ^ C K )

Here KQ, K 1 are the f i r s t and second Hankel functions. Thus we have:

(j/c) 2vpc (2 7 r )^ F ( x / ( x 2 + y 2 ) 3 / 2 ) = ( f/c) 22 ux aKj ( CK)

We have: Kj+Cl/cx) + (c*/2) log(c#:/2)as x-*0. Thus one obtains:

C o / c ) 2 ( u ^ ( l + ( o 2 x 2 / 2 ) l o g ( a x / 2 ) +• ••) + (£/C)VTT as x*0.

The series f o r the two independent solutions to (4) were

computed:

(7) X(x)=A(cOX 0(x) +B( a)X 1(x)

At the o r i g i n these series.have the values:

X0(0)=0, X1(0)=1

From (7) we then have:

08) B= ( f/c) 2 y/ TT

A i s l e f t undetermined. Both solutions diverge as one approaches

the l i g h t c y l i n d e r , so the requirement of f i n i t e f i e l d s at x=l

cannot be applied i n any simple manner.

We consider the behaviour of X(x) near the l i g h t c y l i n d e r using

the v a r i a b l e v: .

(9) v=l-x 2

We have the r e l a t i o n s :

(JO) dv=-2xdx l+x2=2-v d/dx = -2x d/dv

d 2/dx 2 = -2d/dv + 4(l-v) d 2 / d v 2

With these (4) becomes (with d/dv='):

(11) (v-v 2)X +(l-v)X -(a /2) 2vX =0

We writeX(v) =E a v n + ^ .(il") then becomes:

( 1 2 ) • 1 v n + B - 1 ( ( n + 3 ) 2 a n - ( n ^ - l ) 2 a n _ 1 - ( a / 2 ) 2 a n _ 2 ) =0

Page 56: (c) Denis Alan Leahy, 1976

48.

The i n J i c i a l equation(n=0) i s 3^=0. Since i t has a double root

the second s o l u t i o n i s (9X/38) _ = X ( v ) l o g ( v ) + r e g u l a r s e r i e s , 3-u

where X(v) i s the s o l u t i o n f o r 6=0. T h i s second s o l u t i o n i s

divergent at the l i g h t cylinder(v->0) . Thus we only need to consider

the. •Mie s o l u t i o n , X ( v ) . The r e c u r s i o n r e l a t i o n f o r the c o e f f i c i e n t s

a^, from (16), i s :

(13) a n = ( ( n - l ) 2 a n _ r ( a / 2 ) 2 a n _ 2 ) / n 2

Taking a^=l we have:

V ( r , z) = A: (a )X (v) e i a y d a =/" (A(a ) X Q (x) + (ft/c) 2 (y /TT ) X j (x) ) e i a y d a

By F o u r i e r transforming t h i s r e l a t i o n , we o b t a i n :

(14) C(a)X(v)= A ( a ) X 0 ( x ) + (ft/c) 2(M / i T)X 1(x)

f o r a l l a and x. For x=0 (v=l),(18) g i v e s :

(15) C(a) = (n/c) 2(y /TT ) 1/X(1)

Thus • the e x p l i c i t s o l u t i o n f o r V ( r , z ) i s :

(16) V ( r , z ) = (n/c ) 2 ( y/7r)/^(X(l-Q 2r 2/c 2)/X(l)) ei a f i z / c da

Note t h a t we could have set x to zero i n the equation f o l l o w i n g

(13), then performed the F o u r i e r transform to get (15) d i r e c t l y ,

without any refe r e n c e to the s o l u t i o n s Xn(.x) and X 1 (x) .

Page 57: (c) Denis Alan Leahy, 1976

49.

APPENDIX 2 The Physical Meaning of F yv

In non-rotating cartesian coordinates xa=(t,x,y,z) ,

the f i e l d quantities , for Gaussian units, are:

0 E /c X

E /c y

E /c z

(1) ? y v = -E /c X

0 B z

-B y

-E /c y

-B z

• 0 i

B X

-E /c z

B y

-B X

0

In transforming to cylindrical(stationary) coordinates:

x^(t,z,r,9 0) , $ a B = £ a / # ^ 6/35c V F y V is used

have We

«. -0 A0 t=x =x

-3 A l z=x =x

-1 A2 ,A3. KI . ,A3, x=x =x. cos(x ) y=x sm(x )

and

x =(x +x ) 2

9r/ 9^=x/r=cos 9,

A3 ^ x = tan (x /x )

0 3r/ Sy=y/r=sin9 0 99 0/Sx=9/9x(tan" 1(y/x)) = -y/(x2+y2)= - s i n 9 Q /r

9 < f ,0 / 9 y = COSI^Q /r :

Thus one has:

(2) 5 x a / 3 x y =

1

0

0

0

0

0

COS 9n

0

0

s i n 9 n

0

1

0

-sin9 Q/r -cOS9 Q/r 0

Using (2) one can now calculate 1^ in cylindrical coordinat

from (1). The result i s : . es

(3)

0 E /c z E r/c V c

-E /c z 0 - B r / r

-E r/c 0 B /r z B r/r -B /r z 0 .

Page 58: (c) Denis Alan Leahy, 1976

50.

where:

E =E cos<J> +E sind> r x y B =B cosd> +B s i n * r x y r

The change to r o t a t i n g c y l i n d r i c a l coordinates i s simply ac

complished by u s i n g : d>=d>0-ftt t o o b t a i n the d e r i v a t i v e s :

E =-E sind) +E cosi> <p x r y Y

B( j )

= - Bxsin<{. +EycosiJ>

1 0 0 0

14) 3 x ^ 3 ^ = 0 1- 0 0

0 . 0 1 0

-n 0 0 1

Using (3) and (4) we c a l c u l a t e F y v : F ^ V = ( 3 x y / 3 r ) ( 3 x V / 3 ^ ) r

0 E /c z E /c r y c r

(5) F a p= -E /c z 0 \ UE /c-B / r z r -E r/c " B* 0 ftE /c+B / r r' z'

- ~Vcr B -QE — r - z r c -B -HE -z — r r c 0

Note that E and B are q u a n t i t i e s as measured i n the s t a t i o n a r y

frame. Using g ^ from(27) 0 f the main t e x t , one gets:

0 -cE +ftrB z r -cE -ftrB r z -crE,

cE -ftrB z r 0 N -rB„ A.

cE +ftrB r z 0 rB z

crE^ L *

rB r

-rB z

0

Page 59: (c) Denis Alan Leahy, 1976

51 APPENDIX 3 S e r i e s S o l u t i o n of:

3 V 3 9 2 + r 2Y ^ 2 ( 3 2 x / 9 r 2

+ 3 2 x / ? z 2 ) + Y ( J )2(2Y ( j )

2-l) 9x/9r = 0

The 9 and z dependences caf* be separated by w r i t i n g x a s :

(1) X (z,r,9) = e i a y e i m * R ( x )

•with x=fir/c, y=Qz/c. m i s an i n t e g e r , anda i s . a r e a l number.

For R , w i t h d/dx= 1 , one obtains the equation:

(2) x 2 ( l - x 2 ) R " + x ( l + x 2 ) R , - C m 2 ( l - x 2 ) + a 2 x 2 ) ( l - x 2 ) R = 0 2 2 2 where 2y^ -l=(l=x ) / ( l - x ) has been used.

Before s o l v i n g (2) f o r R(x),.w e c o n s i d e r t h e problem of matching

t o an o b l i q u e magnetic d i p o l e f i e l d at the o r i g i n . As z,r-K) 'X.

approaches To c a l c u l a t e X ^ ^ p o l e w e must know what F

i s - i n the r o t a t i n g c o o r d i n a t e s . From appendix 2. we have:

F 1 ^ ( l / r ) X , 3 = B F " = C l / r ) x , 1 = f i E r / c + B z / r

F 3 1 = ( l / r ) X , 2 = - f i E z / c + B r / r

As r+0 we have:

(3) X ) 1 - B z X , 2 - B r x, 3=rB^

The f i e l d o f a d i p o l e , i n coordinates z ^ r ' , ^ ' w i t h z' a l i g n e d

w i t h the magnetic a x i s , i s given by -the equations:

B z I = p ( 2 z . 2 - r . 2 ) / ( z . 2+ r . 2 ) 5 / 2 = 9 X d . p o l e / 3 z '

B r . = 3 u r ' z ' / C z - 2+ r ' 2 ) 5 / 2 = 3 X d i p o l e / 3 r '

These .are s a t i s f i e d by the magnetic p o t e n t i a l :

( 4 ) X d i p o l e = - y z , / ( r ' 2 + z , 2 ) 3 / 2

• The diagram next page, i l l u s t r a t e s the r e l a t i o n between

Page 60: (c) Denis Alan Leahy, 1976

52.

One has the r e l a t i o n s :

c a r t e s i a n coordinates (x,y,z) and

( x ^ y ' j Z ' ) , and c y l i n d r i c a l coord­

i n a t e s (z,r,<j>) and ( z ' , r ' , 9 ' } - T h e -

primed coordinates are r e l a t e d

t o the unprimed coordinates by

a r o t a t i o n of 6 Q about the y a x i s .

z' = z cos6 Q+r cos<j)Sine o

,2 ,2 2 2 r ' +z' =r +z 2 2 3/2

C 5 ) x d i p o l e = _ y ( : z c O s e 0 + r c o s < f ' s : L n 9 0 ) / ( : r + z J

From the s e p a r a t i o n of v a r i a b l e s " "(1) ,we have

(6) x(z,r , 9 ) = J e ^ / j c n r / c ) e i a Q z / c da

We i n v e r t t h i s to get: (7) R(x) = ( l / 4 ^ 2 ) / ^d^fjy e " 1 0 " ^ 0 ^ x(cy/n,cx/n,$)

As x.approaches zero, one has X + X d i p o l e . -Thus, from(5) , the

i n t e g r a l i n (7) i s non-zero only f o r m=0,l,-l.

m=0: R Q (x) + (y/2Tr) (R/c) 2cos0 o£dy e~iay(-y/ ( x 2+ y 2 ) 3 / 2 )

Here we use i n t e g r a t i o n by p a r t s The i n t e g r a l i s . t h e n :

/y i a ydci/CxV)%> = iaAxV)-* e'lay dy

This i s j u s t ia(2*)h times the F o u r i e r transform of (x 2+y 2)

which i s (2/7r^K Q(ax) . Thus we have:

(8) R 0(x)-^CM/TT)Cfi/c) 2cos0 0 i a K 0 ( a x ) " l as x->-0

•-(v/ir) (ft/c) icxlog(ax) ) where K (ax)+-log(ax) as x-K) has been used.

Page 61: (c) Denis Alan Leahy, 1976

53.

Now, the i n t e g r a l ' i n a>is j u s t TT . The i n t e g r a l i n y i s found

d i r e c t l y from appendix 1 tc; be 2 ^ (ax). As x+0 , we have

K 1( ax)->(l/ax) + (ax/2)log(ax/2) Thus one demands that

(9) R ± 1 ( X H - ( v / 2 T T ) ( f t / c ) 2 s i n e 0 ( l / x + (ax 2/2) log (ax/2) ) as x-*0

The so l u t i o n s R(x) were found as s e r i e s about x=0 (two f o r 2 2

m =0, two f o r m =1). However, as i n appendix 1, the boundary

condition at the neutron star determines the c o e f f i c i e n t of only

one s o l u t i o n of each p a i r .

We s h a l l now consider the behaviour near t h e " l i g h t c y l i n d e r 2

using the v a r i a b l e v=l-x (see appendix 1,equations (9 )5(10) ) .

Writing d/dv=* ,(2) becomes: (10) v(l-v) 2R+(v-l)R-((m/2) 2+(a/2) 2(l-v))vR=0

0 0 n+3 Writing R(v)=£a v .(18) becomes: rv n f

(11) f v n + 6 ~ 1 ( ( a / 2 ) 2 a T i _ + ((n +3-2)(n +3-3)-(a/2) 2-(m/2) 2)a r» 1 1 - 0

-(n+S-1) (2n+2B-5)a j+Cn+6) (n+3-2)a n)=0

The i n d i c i a l equation i s B(8-2)=0 , so that 8=0,2.. For 8=0 a l = 0 ' a 2 , a 3 e t c ' d i v e r 8 e - Thus we set a Q=3b so that (9R/8B)^

i s a l s o a s o l u t i o n . But we have: co n

(.12) ( 3V3B ) B = 0 = : R m ( v ) log(v) + E b n v "

Here R. (v) i s the solution.for.3=2, as fol l o w s : m

(13) R (v)=fa v n + 2

m ' 5 nm

With a n m = ( ( n + l ) ( 2 n - l ) a n l + ( ( a / 2 ) 2+ ( m / 2 ) 2 - n ( n - l ) ) a n 2

- ( a / 2 ) 2 a n 3 )*/n.(n + 2))

n-2

Page 62: (c) Denis Alan Leahy, 1976

54,

Both s e r i e s are f i n i t e as v goes to zero. From appendix 2, we have:

F =E /c r Using t h i s and (37) from the main t e x t , we have:

E r=- (f2r 2/e 2) Y (j )

2F 23=--(«r/c) Y ^ x / 3z = - (Or/c) Y ^ i a W c ) x

Since we assume th a t E^ i s w e l l behaved as ftr/c approaches u n i t y ,

X must approach zero as one approaches the l i g h t c y l i n d e r ( v = 0 ) .

Thus the s o l u t i o n (12) i s r e j e c t e d . We are l e f t w i t h , f o r m=0:

(14) R 0 ( v ) = a 0 0 ( v 2 + ( 2 / 3 ) v 3 + ( l / 8 ) ( ( a / 2 ) 2 + 4 ) v 4 + • • • )

and, f o r m=±l:

(15) R 1 ( v ) = a 0 1 ( v 2+ ( 2 / 3 ) v 3

+ ( l / 8 ) ( ( a / 2 ) 2+ ( 1 7 / 4 ) ) v 4 + - - - )

da

The magnetic p o t e n t i a l x i s given by:

(16) X ( v , y ) = / ; R 0 ( v ) e ^ d a + ( e i * + e - i * ) £ R ^ e 1 ^

w i t h RQ and R^ from (13) as given i n ( 1 4 ) 5 ( 1 5 ) . A l s o we have

X"*Xj • i - as x,y ->0 A d i p o l e " , • •, • i_ - i a u .. , - i a u +i<j> , . . . . , , By m u l t i p l y i n g by e , -Uand e e .. a n d - i n t e g r a t i n g over y and <f>

one ge t s , f o r x->-0(v->-l) :

(17) R Q(v+l)+ - ( y / T r ) ( f 2 / c ) 2 c o s 6 o i a l o g ( x )

(18>:Rj(v*l>»- - ( y A ) ( R / c ) 2 s i n 9 o (1/x)

R e c a l l x d/dx=2(v-l)d/dv ((10) i n appendix 1) so th a t (17) i s :

(19) 2(v-l)d/dv R 0 ( v + 1 > - (y /TT) (fl/c) 2cos6 i a

Write the q u a n t i t y on the l e f t hand s i d e as the s e r i e s :

a n r Z b v" with h ~2(n+l)a </ann -2(n+2)a /ann a are the 00$ n n v ' n-1 00 v 1 n 00 n c o e f f i c i e n t s of RQ(V) as given by ( 1 3 ) . Then as v * l , we have:

(20) a 0 ( )|b n= - ( y / 7 r ) ( f i / c ) 2 c o s 6 Q i a

Thi s determines the c o e f f i c i e n t of R r t ( v ) , s i n c e b are known. 0 1 ' n

Page 63: (c) Denis Alan Leahy, 1976

55.

To determine the c o e f f i c i e n t of Rj(v) from (18), we solve the

d i f f e r e n t i a l equation f o r W(v). We d e f i n e :

(21) W(v)=xR 1(v) = ( l - v ) i s R ( v )

W(v) w i l l be f i n i t e as x-K). With R 1(v) = ( l - v ) 2W(v), we have:

Rj =(1-V)_5SW + JS(1-V)" 3 / 2 W

RJ =(l-v) _ J 2W + ( l - v ) " 3 / 2 W +(3/4) ( l - v ) " 5 / 2 W

Thus (10) (With m=l) becomes,upon m u l t i p l y i n g by (1-v) 2:

(22) v(l-v)W-(l-v)W-(V(a 2/4)v)W=0 0 0 n+8 W r i t i n g W=ar.1Ec v , c n = l , (22) becomes: 01 » n 0

(23) v n + 6 " 1 ( - ( a 2 / 4 ) c N _ 2 - ( J S + ( n + e - ^ ( n + 6 - 3 ) ) c n _ 1 + ( n + 6 ) ( n + 8 - 2 ) c n ) = 0

The i n d i c i a l equation i s 6(B-2)=0. The 8=0 s o l u t i o n i s r e j e c t e d

s i n c e as v-*-0, R (and thus W) must; approach zero.' We are l e f t w i t h :

(24) W(v)=a 0 1Zc nv n w i t h c n = ( ( ( n + l ) ( n - l . ) + % ) c n _ 1 + ( a V 4 ) c n _ 2 )

T((n+2)n) and CQ=1

As x->0, from (18) and (21) we get:

( 2 5 ) a 0 l K =-^/ i r)Cn/c) 2sin8 0

Here a m i s the c o e f f i c i e n t of R 1 ( v ) .

Now x>as given i n (16) , i s completely determined :

Page 64: (c) Denis Alan Leahy, 1976

S i . APPENDIX 4

»

We consider the Lagrangian:

(1) L=^(Ax 2+By 2+Cz 2) + 01x+$2y+<I>3z

Here A,B,C/!^ >*2»*3 a r e f u n c t i o n s o f x,y,z but not e x p l i c i t l y

o f t or the v e l o c i t i e s . We .define:

(2) X=8*3/Dy -9$ 2/8z and c y c l i c a l l y f o r Y and Z.

Then the Lagrange equations o f motion a r e : (3) d/dt(Ax)=Zy-Yz + i i ( A , x x 2 + B , x y 2

+ C , x z 2 ) d/dt(By)=Xz-Z* + l 2 ( A , y x 2

+ B , y y 2+ C , y z 2 )

d/dt(Cz)=Yx-Xy +3i(A, zx 2+B, zy 2+C, zz 2)

w i t h A,x=8A/8x e t c . The Hamiltonian energy f u n c t i o n i s constant:

(4) E=MAx 2+By 2+Cz 2)

s i n c e L i s not e x p l i c i t l y a f u n c t i o n o f time.

The equations (3) have x=y=z=0 as a p o s s i b l e s o l u t i o n , f o r

a r b i t r a r y x,y,z. We are l o o k i n g f o r sm a l l d e v i a t i o n s from these

p a r t i c u l a r motions. I f the q u a n t i t i e s A,B,C,X,Y and Z were

constant, then the motion would be a s u p e r p o s i t i o n of

s o l u t i o n s of normal mode type, each o f which has a time dependence

o f the form e~ l t 0 t. The c h a r a c t e r i s t i c f r e q uencies are given by

itoA Z -Y

(5) determinant -Z iuB X ' = 0

Y -X iwC

or (6) w(ABCu)2-AX2- 2 2 BY -CZ )=0

The root w=0 corresponds to uniform motion w i t h the v e l o c i t i e s

(x,y,z) • p r o p o r t i o n a l t o (X,Y,Z) . The other r o o t s correspond to

tr a n s v e r s e e l l i p t i c a l motion.

Page 65: (c) Denis Alan Leahy, 1976

57,

to= ( (AX 2+BY 2+CZ 2)/AEC) J 5

One sees that A,B,C,X,Y and Z, which are functions of •:

p o s i t i o n , w i l l vary to f i r s t order i n the v e l o c i t i e s . They vary

slowly, due to the uniform motion, and rapi.dly.with frequency

w , due to the o s c i l l a t i n g motion. We d e f i n e :

(7)

Thus the roo t s o f (6) are 0,± w. With t h i s value f o r u, we

wr i t e the matrix equation f o r the amplitudes o f the transvei-se motion

K Z -Y (8) -Z . iwB X

Y -X iwC

=0

T h i s has n o n - t r i v i a l s o l u t i o n s (£,n>c) which are determined up to

a n - a r b i t r a r y complex m u l t i p l y i n g f a c t o r .

We s h a l l use the v e c t o r s : (X,Y,Z), (£ ,n ,0 and (£*,ri*^ , as a

ba s i s f o r d e s c r i b i n g the general motion. We introduce the d e f i n i t i o n s

(9) AX 2+BY 2+CZ 2=P •k *k *

(10) AU +Bnri =N

(11) 7 u dt = X

M u l t i p l y i n g (8) on the l e f t by (X,Y,Z) and (£,n,r.), we have:

(12) AX5+BYn+CZC=0

(13) 2 2 2 A£ +Bn +CC =0

From (8) , we can express any one of£,n,r, i n terms of another:

C=-A((XZ-itoBY)/(BY 2+CZ 2)) 5 and c y c l i c r e l a t i o n s

Thus we can express N, from (10), as a f u n c t i o n of only one of

£,n>C and one complex conjugate quantity £,n,r.. Inverting these

r e l a t i o n s g i v e s :

Page 66: (c) Denis Alan Leahy, 1976

St.

(14) «*=(1/A -X2/P)N/2 and cyclic relations

(15) £*n=(-iwCZ-XY)N/2P and cyclic relations

We now express the velocity vectors as a superposition of

the instantaneous normal modes. These have a real amplitude SL describi

the longitudinal component and a complex amplitude amplitude o*

representing the e l l i p t i c a l component, as follows:

(16) x=£X+o5e~ l x+o*£*e l x " . —iv * * iv y=£Y+ane A+a n e A

z=£Z+a!;e"lx+a*?*e:LX

The factor e~ Aincorporates the rapid time dependence of the traiisvers

e l l i p t i c a l motion.

These equations can be inverted to give £ and ain terms of the •

velocity components. The results are:

(17) ?l= AXx+BYy+CZz

(18) Nae-1*=Ac;*x+Bn*y+(:c*z

Using (16), the energy (4) is given by:

(19) . E=%P£2+Noa*

This shows that the particle energy i s unambiguously expressible

as the sum of a longitudinal partf^PJi') and a transverse part(Noo ).

We can obtain the equation of motion for £ anda by different­

iating (17) and (IP.), using the equations of motion (3),and then

using (16) to express the results in terms of % and o. The results

are expressions for I and 6 which contain slowly varying terms,

plus oscillating terms proportional to e ~ l x , e " 2 l x . In considering

Page 67: (c) Denis Alan Leahy, 1976

59.

the " a d i a b a t i c " aspects of the motion the o s c i l l a t i n g terms can

be ne g l e c t e d , to second order i n the v e l o c i t i e s . When one i n t e g r a t e s

over many c y c l e s the f i r s t order p a r t s of the o s c i l l a t i n g terms

v a n i s h , whereas the f i r s t order p a r t s o f the s l o w l y v a r y i n g terms

do not. The s l o w l y va'rying terms o n l y c o n t a i n £,n, orC as a product * * *

w i t h one of £ ,n , or X, . (14)5(15) are used to e l i m i n a t e these terms.

The r e s u l t of the c a l c u l a t i o n f o r & i s w r i t t e n : (20) PJ--Js.i 2(X3/8x +Y3/3y +Z3/3z)P

*

-Noa (X3/3x +Y3/3y +Z3/3z)logu) + o s c i l l a t i n g terms

The r a t e of change of any f i e l d q u a n t i t y , a l o n g the path o f a

p a r t i c l e , i s gi v e n by a p p l y i n g the operator:

d/dt = x3/3x + y3/3y + z3/3z

The p a r t i c l e ' s v e l o c i t i e s , x,y,z, are given e x p l i c i t l y by (16).

When we average over s e v e r a l c y c l e s , t h i s operator becomes, t o

f i r s t order:

*(X3/3x + Y3/3y + Z3/3z )

Thus from (20), we can w r i t e , f o r a p a r t i c l e moving along a stream­

l i n e : P£d£ +%l2dP +No*od(logu>) =0 or

(21) d(%P£ 2) + Nac*d(logu>) = 0

Page 68: (c) Denis Alan Leahy, 1976

From (19) and the constancy o f E, t h i s y i e i d s : * * *

d(No o)=Na od(logu) o r d(log(No o/u))=0 , i . e . *

(22) Na a/w =M M i s a constant.

T h i s r e s u l t i s a g e n e r a l i z a t i o n of a r e s u l t f a m i l i a r i n many asp e c t s ,

of p a r t i c l e motions i n a magnetic f i e l d . Namely , the magnetic

moment i s an a d i a b a t i c i n v a r i a n t . Combining (19) and (20) g i v e s :

(23) P42=2(E-Mw)

in the a d i a b a t i c l i m i t . . •