by: john den engelse date: 19 – 6 - 2013

57
1 Challenge the future Master Thesis at SKF: Lateral force estimation acting at a vehicle wheel using a hub bearing unit equipped with strain gauges and Eddy-current sensors By: John den Engelse Date: 19 – 6 - 2013

Upload: makaio

Post on 24-Feb-2016

28 views

Category:

Documents


0 download

DESCRIPTION

Master Thesis at SKF: Lateral force estimation acting at a vehicle wheel using a hub bearing unit equipped with strain gauges and Eddy-current sensors. By: John den Engelse Date: 19 – 6 - 2013. Presentation overview. Introduction Research goals Strain gauge measurements - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: By: John den  Engelse Date: 19 – 6 - 2013

1Challenge the future

Master Thesis at SKF:Lateral force estimation acting at a vehicle wheel using a hub bearing unit equipped with strain gauges and Eddy-current sensorsBy: John den EngelseDate: 19 – 6 - 2013

Page 2: By: John den  Engelse Date: 19 – 6 - 2013

2Challenge the future

Presentation overview• Introduction

• Research goals

• Strain gauge measurements

• Eddy-current sensor measurements

• Field- / validation measurements

• BETSY calibration method

• Conclusions

Page 3: By: John den  Engelse Date: 19 – 6 - 2013

3Challenge the future

Introduction1

Page 4: By: John den  Engelse Date: 19 – 6 - 2013

4Challenge the future

Introduction: Load Sensing Bearing (LSB)

• Why would we like to measure forces?

• Monitoring the mechanical loads of a bearing.

• Control the active safety systems in vehicles like the ABS (longitudinal force) and ESC (lateral force).

• Measure the vertical load in, for instance, trucks.

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

Page 5: By: John den  Engelse Date: 19 – 6 - 2013

5Challenge the future

Introduction: Load Sensing Bearing (LSB)

• How? A load sensing hub bearing unit instrumented with:

• 6 strain gauges: deformation of the bearing outer ring.

• 2 Eddy-current sensors: tilting movement of the ABS-ring.

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

Page 6: By: John den  Engelse Date: 19 – 6 - 2013

6Challenge the future

Research goals2

Page 7: By: John den  Engelse Date: 19 – 6 - 2013

7Challenge the future

Research goals1) Lateral force estimation, acting at a vehicle wheel,

using strain gauges and Eddy-current sensors.

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

2) Calibration of the load sensing bearing using the Bearing Test System (BETSY)

Page 8: By: John den  Engelse Date: 19 – 6 - 2013

8Challenge the future

Strain gauge measurements3

Page 9: By: John den  Engelse Date: 19 – 6 - 2013

9Challenge the future

Strain gauge measurements

• The strain gauges measure the deformation of the bearing outer ring at six places along the circumference.

• The deformation provides information about the loads acting on the bearing.

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

Page 10: By: John den  Engelse Date: 19 – 6 - 2013

10Challenge the future

Strain gauge measurements

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

• So what happens?

Page 11: By: John den  Engelse Date: 19 – 6 - 2013

WarningThe following slide features a mathematical

trickperformed by a professional

and under the supervision of a professional.Accordingly, the TU Delft and the students

must insist that no one attempt torecreate of re-enact any trick oractivity performed on this slide.

Page 12: By: John den  Engelse Date: 19 – 6 - 2013

12Challenge the future

Strain gauge measurements: MLRA

The entries of F have dimensions [1 x ] with N the number of samplesThe entries of have dimensions [1 x (6 1)] with the order the polynomialThe entries of have dimensions [(6 1) x N] with t

Nn n

n n

he order the polynomial

2

1

...

y

z

Fy

Fz

n

F

F

1( )T TF

• Multivariate Linear Regression Analysis (MLRA): The output is assumed to be a linear combination of the input and higher order terms of the input.

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

20 1 0 ... n

y nF

• For one single dimension:

• For multi input multi output

Page 13: By: John den  Engelse Date: 19 – 6 - 2013

13Challenge the future

1) Absolute value problem2) Difference in sensitivity for Fy < 0 N and Fy > 0 N

3) Difference in response for 0 Hz < f < 1 Hz and 1 Hz < f < 10 Hz

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

Strain gauge measurements: MLRA

Page 14: By: John den  Engelse Date: 19 – 6 - 2013

14Challenge the future

Strain gauge measurements: Fy estimation block diagram

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

Page 15: By: John den  Engelse Date: 19 – 6 - 2013

15Challenge the future

Eddy-current sensormeasurements

4

Page 16: By: John den  Engelse Date: 19 – 6 - 2013

16Challenge the future

Eddy-current sensor measurement

• Why (inductive) Eddy-current sensor measurements?

• The strain gauges are subject to the absolute value problem.

• Strain measurements are subject to low frequent thermal influences.

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

Page 17: By: John den  Engelse Date: 19 – 6 - 2013

17Challenge the future

• ABS-ring integrated in the seal of the bearing. 48 holes and

48 spokes.

• The tilting movement of the ABS-ring gives an estimate of the

lateral force Fy acting on the bearing.

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

Eddy-current sensor measurement

Page 18: By: John den  Engelse Date: 19 – 6 - 2013

18Challenge the future

• Two Eddy-current sensors are mounted into the knuckle.

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

Eddy-current sensor measurement

Page 19: By: John den  Engelse Date: 19 – 6 - 2013

19Challenge the future

Eddy-current sensor measurement: Signal

• The change in the lower values provides the information

about Fy

35 35.005 35.01 35.015 35.02 35.0250

1

2

3

4

5

6

7

8Eddy-current sensor signals BETSY: BMW+0005

Time [s]

Sig

nal [

V]

Bottom sensorTop sensor

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

Page 20: By: John den  Engelse Date: 19 – 6 - 2013

20Challenge the future

Eddy-current measurement: Low value algorithm

• Algorithm to retrieve these lower values.• Based signal derivative • Maximum change per time sample ∆ymax • An initial condition y0 (the equilibrium value)• The wheel speed

35 35.005 35.01 35.015 35.02 35.0250

2

4

6

8

Time [s]S

enso

r sig

nal [

V]

Eddy-current sensor - low value algorithm

Algorithm inputUnfiltered algorithm output

35 35.005 35.01 35.015 35.02 35.0250

2

4

6

8

Time [s]

Sen

sor s

igna

l [V

]

Eddy-current sensor - low value algorithm

Algorithm inputFiltered algorithm output

Discontinious output

Continuous output

Introduction – Research goals – Strain gauge measurements – Eddy-current sensors measurements – Field- / validation measurements - …

Page 21: By: John den  Engelse Date: 19 – 6 - 2013

21Challenge the future

Field measurements5

Page 22: By: John den  Engelse Date: 19 – 6 - 2013

22Challenge the future

Field measurements

• The LSB equipment has been built in a BMW E60 and tests have been performed at the test track at SKF

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Page 23: By: John den  Engelse Date: 19 – 6 - 2013

23Challenge the future

Field measurements

• Movie: Circle run at 30 km/h

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Page 24: By: John den  Engelse Date: 19 – 6 - 2013

24Challenge the future

Field measurements

• A Kistler VELOS force measuring wheel is used as reference

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Page 25: By: John den  Engelse Date: 19 – 6 - 2013

25Challenge the future

Field measurements: Tilt vs Fy

• Eddy-current sensor measurement.

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

-100 -50 0 50 100

-3000

-2000

-1000

0

1000

2000

Order fit = 1, RMS error = 261.2115

Tilt [m]

Fy [N

]

Total track 3 Total track 4 Total track 5 left 20 kmph left 30 kmph right 20 kmph right 30 kmph left 10, 20 and 30 kmph right 10, 20 and 30 kmph

-100 -50 0 50 100

-3000

-2000

-1000

0

1000

2000

Order fit = 2, RMS error = 260.8957

Tilt [m]

Fy [N

]

-100 -50 0 50 100

-3000

-2000

-1000

0

1000

2000

Order fit = 3, RMS error = 192.1875

Tilt [m]

Fy [N

]

-100 -50 0 50 100

-3000

-2000

-1000

0

1000

2000

Order fit = 4, RMS error = 186.6831

Tilt [m]

Fy [N

]

-100 -50 0 50 100

-3000

-2000

-1000

0

1000

2000

Order fit = 5, RMS error = 171.4631

Tilt [m]

Fy [N

]

Tilt versus lateral force approximated by nth order polynomials

-100 -50 0 50 100

-3000

-2000

-1000

0

1000

2000

Order fit = 6, RMS error = 161.7996

Tilt [m]

Fy [N

]

N

-100 -50 0 50 100

-3000

-2000

-1000

0

1000

2000

Order fit = 1, RMS error = 261.2115

Tilt [m]

Fy [N

]

Total track 3 Total track 4 Total track 5 left 20 kmph left 30 kmph right 20 kmph right 30 kmph left 10, 20 and 30 kmph right 10, 20 and 30 kmph

-100 -50 0 50 100

-3000

-2000

-1000

0

1000

2000

Order fit = 2, RMS error = 260.8957

Tilt [m]

Fy [N

]

-100 -50 0 50 100

-3000

-2000

-1000

0

1000

2000

Order fit = 3, RMS error = 192.1875

Tilt [m]

Fy [N

]

-100 -50 0 50 100

-3000

-2000

-1000

0

1000

2000

Order fit = 4, RMS error = 186.6831

Tilt [m]

Fy [N

]

-100 -50 0 50 100

-3000

-2000

-1000

0

1000

2000

Order fit = 5, RMS error = 171.4631

Tilt [m]

Fy [N

]

Tilt versus lateral force approximated by nth order polynomials

-100 -50 0 50 100

-3000

-2000

-1000

0

1000

2000

Order fit = 6, RMS error = 161.7996

Tilt [m]

Fy [N

]

N

• Data is approximated by a 2nd and a 6th order polynomial:

Accuracy vs extrapolation characteristics

Page 26: By: John den  Engelse Date: 19 – 6 - 2013

26Challenge the future

Field measurements

• Strain measurement

-4000 -3000 -2000 -1000 0 1000 2000 3000

0

100

200

300

400

Lateral force [N]

Stra

in [

m/m

]

Fy vs straingauge 1

Test 1Test 2Test 3Test 4

-4000 -3000 -2000 -1000 0 1000 2000 3000

0

100

200

300

400

Fy vs straingauge 2

Lateral force [N]

Stra

in [

m/m

]

-4000 -3000 -2000 -1000 0 1000 2000 3000

0

100

200

300

400

Fy vs straingauge 3

Lateral force [N]

Stra

in [

m/m

]

-4000 -3000 -2000 -1000 0 1000 2000 3000

0

100

200

300

400

Fy vs straingauge 4

Lateral force [N]

Stra

in [

m/m

]

-4000 -3000 -2000 -1000 0 1000 2000 3000

0

100

200

300

400

Fy vs straingauge 5

Lateral force [N]

Stra

in [

m/m

]

-4000 -3000 -2000 -1000 0 1000 2000 3000

0

100

200

300

400

Fy vs straingauge 6

Lateral force [N]

Stra

in [

m/m

]

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Page 27: By: John den  Engelse Date: 19 – 6 - 2013

27Challenge the future

Field measurements : Fy estimation

• Two force estimation algorithms. Both for an in-situ calibration and a BETSY calibration.

1) Using 4 MLRA on the strain gauges and use the Eddy-current sensors for the determination of the direction.

2) Using both the Eddy-current sensors and the strain gauges for the force estimation.

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Page 28: By: John den  Engelse Date: 19 – 6 - 2013

28Challenge the future

Field measurements : Algorithm 1

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

• Using 4 MLRA on the strain gauges and use the Eddy-current

sensors for the determination of the direction.

Page 29: By: John den  Engelse Date: 19 – 6 - 2013

29Challenge the future

Field measurements: Algorithm 2

• Using both the Eddy-current sensors and the strain gauges

for the force estimation

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Page 30: By: John den  Engelse Date: 19 – 6 - 2013

30Challenge the future

Field measurements : Fy estimation, result

• Estimated force vs time for both algorithms.

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

0 10 20 30 40 50 60-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000Lateral force estimation: In-situ calibration

Time [s]

Fy [N

]

Measured forceEstimated force by 2 LMRAs and tiltEstimated force by four LMRAs

Page 31: By: John den  Engelse Date: 19 – 6 - 2013

31Challenge the future

Field measurements : Fy estimation, result

• Estimated force vs measured force for both algorithms.

-3000 -2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000Lateral force estimation: in situ calibration

Measured force [N]

Est

imat

ed fo

rce

[N]

Estimated force by 2 LMRAs and tiltEstimated force by four LMRAsIdeal

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Page 32: By: John den  Engelse Date: 19 – 6 - 2013

32Challenge the future

Field measurements : Fy estimation, result

• Estimation errors

Frequency content Method RMS Error [N] Error [%]

0 Hz - 1 Hz 

MLRA 188,82 16,46Tilt 2nd order 229,84 20,04Tilt 6th order 174,47 15,21

In-situ calibration

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Frequency content Method RMS Error [N] Error [%]1 Hz - 10 Hz MLRA 130,89 141,82

Frequency content Method RMS Error [N] Error [%]0 Hz - 10 Hz Algorithm 1 232,00 20,090 Hz - 10 Hz Algorithm 2 216,82 18,78

Page 33: By: John den  Engelse Date: 19 – 6 - 2013

33Challenge the future

BETSY calibration6

Page 34: By: John den  Engelse Date: 19 – 6 - 2013

34Challenge the future

Strain gauge measurements: BETSY

• What is BETSY and why do we want to use it?

• The Bearing Test System is a 5 Degree of Freedom (DoF)

system, where forces and moments are applied in 5 DoF by hydraulic actuators.

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Page 35: By: John den  Engelse Date: 19 – 6 - 2013

35Challenge the future

BETSY calibration: strain

εBETSY = c3 ∙ Fy + c4εvehicle = c1 ∙ Fy + c2

4 2,

3 1

- -BETSY vehicley test

c cF

c c

3 3 24

1

-vehicleBETSY A vehicle B

c c c c c cc

• •

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 1

Fy [N]

Stra

in [ m

/m]

Papenburg BETSY

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 2

Fy [N]

Stra

in [

m/m

]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 3

Fy [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 4

Fy [N]

Stra

in [

m/m

]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 5

Fy [N]

Stra

in [ m

/m]

Papenburg and BETSY: Lateral force Fy versus strain

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 6

Fy [N]

Stra

in [

m/m

]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 1

Fy [N]

Stra

in [ m

/m]

Papenburg BETSY

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 2

Fy [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 3

Fy [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 4

Fy [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 5

Fy [N]

Stra

in [ m

/m]

Papenburg and BETSY: Lateral force Fy versus strain

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 6

Fy [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 1

Lateral force [N]

Stra

in [ m

/m]

Left cornering Right cornering Linear fitlines

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 2

Lateral force [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 3

Lateral force [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 4

Lateral force [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 5

Lateral force [N]

Stra

in [ m

/m]

Papenburg: Lateral force Fy versus strain including linear fits

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 6

Lateral force [N]S

train

[ m/m

]

Page 36: By: John den  Engelse Date: 19 – 6 - 2013

36Challenge the future

BETSY calibration: Eddy-current sensors

-100 -80 -60 -40 -20 0 20 40 60 80 100-4000

-3000

-2000

-1000

0

1000

2000

Tilt [m]

Fy [N

]

Tilt versus Fy for BETSY and field measurements at SKF: 2nd order

BETSYField measurements SKF

Good!

Page 37: By: John den  Engelse Date: 19 – 6 - 2013

37Challenge the future

Field measurements : Fy estimation, result

• Estimated Fy vs time for both algorithms

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

0 10 20 30 40 50 60-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000Lateral force estimation: In-situ calibration

Time [s]

Fy [N

]

Estimated force by four LMRAsEstimated force by 2 LMRAs and tiltMeasured force

Page 38: By: John den  Engelse Date: 19 – 6 - 2013

38Challenge the future

Field measurements : Fy estimation, result

• Estimated Fy vs measured Fy for both algorithms.

-3000 -2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000Lateral force estimation: in situ calibration

Measured force [N]

Est

imat

ed fo

rce

[N]

Estimated force by four LMRAsEstimated force by 2 LMRAs and tiltIdeal

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Page 39: By: John den  Engelse Date: 19 – 6 - 2013

39Challenge the future

Field measurements : Fy estimation, result

• Estimation errors using a BETSY calibration

• So we can use BETSY for calibration?

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Frequency content Method RMS Error [N] Error [%]0 Hz - 10 Hz Algorithm 1 335,29 29,040 Hz - 10 Hz Algorithm 2 374,55 32,44

Frequency content Method RMS Error [N] Error [%]

0 Hz - 1 Hz 

MLRA 191,44 16,69Tilt 2nd order 261,23 22,78Tilt 6th order 342,64 29,88

Frequency content Method RMS Error [N] Error [%]1 Hz - 10 Hz MLRA 265,34 287,49

Page 40: By: John den  Engelse Date: 19 – 6 - 2013

40Challenge the future

Reproducibility: strain

• Reproducibility is necessary for calibration of a whole

production line of LSB

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Test run 1 Test run 2 Test run 3 Linear fitlines

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

0

100

200

300

400

Fy vs straingauge 2

Lateral force [N]

Stra

in [

m

/m]

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

0

100

200

300

400

Fy vs straingauge 3

Lateral force [N]

Stra

in [

m

/m]

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

0

100

200

300

400

Fy vs straingauge 4

Lateral force [N]

Stra

in [

m

/m]

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

0

100

200

300

400

Fy vs straingauge 5

Lateral force [N]

Stra

in [

m

/m]

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

0

100

200

300

400

Fy vs straingauge 6

Lateral force [N]

Stra

in [

m

/m]

BETSY: Reproducibility

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

0

100

200

300

400

Fy vs straingauge 1

Lateral force [N]

Stra

in [

m

/m]

Not good!

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

Lateral force [N]

Stra

in [ m

/m]

Fy vs straingauge 1

Papenburg SKF Linear fitlines

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600Fy vs straingauge 2

Lateral force [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600Fy vs straingauge 3

Lateral force [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600Fy vs straingauge 4

Lateral force [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600Fy vs straingauge 5

Lateral force [N]

Stra

in [ m

/m]

Fy vs strain for the field measurements performed at SKF and Papenburg

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600Fy vs straingauge 6

Lateral force [N]

Stra

in [ m

/m]

Page 41: By: John den  Engelse Date: 19 – 6 - 2013

41Challenge the future

Reproducibility: Eddy-current sensors

• Reproducibility is necessary for calibration of a whole

production line of LSB

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Good!

-150 -100 -50 0 50 100 150 200 250-8000

-6000

-4000

-2000

0

2000

4000

Tilt [m]

Fy [N

]

Tilt versus Fy for BETSY

BETSY NEWBETSY OLD

20112012

Page 42: By: John den  Engelse Date: 19 – 6 - 2013

42Challenge the future

Conclusions7

Page 43: By: John den  Engelse Date: 19 – 6 - 2013

43Challenge the future

Conclusions: lateral force estimation

• In the semi-static frequency range the strain gauges as well as the

Eddy-current sensors can be used for force estimation with errors ranging from 15 % - 20 %.

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

• In the dynamic frequency range the lateral force is not correlated with

the strain and ABS-ring deflection.• Regarding the Eddy-current sensors BETSY can be used for

calibration.• Regarding the strain gauges sensors BETSY cannot be

used for calibration.

Page 44: By: John den  Engelse Date: 19 – 6 - 2013

44Challenge the future

Questions?

Thank you for your attention !

Page 45: By: John den  Engelse Date: 19 – 6 - 2013

45Challenge the future

Backup slides

Page 46: By: John den  Engelse Date: 19 – 6 - 2013

46Challenge the future

Introduction: Load Sensing Bearing

• What forces act on a vehicle?

• 3 forces:• Fx = longitudinal force • Fy = lateral force• Fz = vertical force

• 3 moments:• Mx = moment around the x-axis• My = moment around the y-axis• Mz = moment around the z-axis

Page 47: By: John den  Engelse Date: 19 – 6 - 2013

47Challenge the future

Strain gauge measurements: Applied loads

• Cycle consisting of 24 load steps.• Load steps with 10 seconds of duration.

• Between each load step a 10 seconds interval of running without load is inserted.

• Combinations of static and dynamic forces are applied.

0 100 200 300 400 500 600 700-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1x 10

4

Time [s]

Forc

e [N

], M

omen

t [N

m]

Betsy: 24 load cases with superpositioned noise

Fy [N]Fz [N]Mx [Nm]

Page 48: By: John den  Engelse Date: 19 – 6 - 2013

48Challenge the future

Strain gauge measurements: Signal conditioning process

• Filtering• Static offset and drift• Inverted signal strain gauge 3• No-load intervals• Scaling to physical dimensions

0 1 2 3 4 5 6 7 8 9 10

x 104

0

50

100

150

200

250

300

350

400Conditioned strain signals

Time [samples]

Stra

in [

m/m

]

Strain 1Strain 2Strain 3Strain 4Strain 5Strain 5

0 100 200 300 400 500 600-1

-0.5

0

0.5

1

1.5

2Unconditioned strain signals

Time [s]

Stra

in s

igna

l [V

]

Strain 1Strain 2Strain 3Strain 4Strain 5Strain 5

Page 49: By: John den  Engelse Date: 19 – 6 - 2013

49Challenge the future

BETSY calibration• BETSY-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

0

100

200

300

400

Fy vs straingauge 1

Lateral force [N]

Stra

in [m

/m]

Left cornering Right cornering Linear fitlines

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

0

100

200

300

400

Fy vs straingauge 2

Lateral force [N]

Stra

in [m

/m]

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

0

100

200

300

400

Fy vs straingauge 3

Lateral force [N]

Stra

in [ m

/m]

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

0

100

200

300

400

Fy vs straingauge 4

Lateral force [N]

Stra

in [ m

/m]

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

0

100

200

300

400

Fy vs straingauge 5

Lateral force [N]

Stra

in [m

/m]

BETSY: Lateral force Fy versus strain including linear fits

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

0

100

200

300

400

Fy vs straingauge 6

Lateral force [N]

Stra

in [m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 1

Lateral force [N]

Stra

in [ m

/m]

Left cornering Right cornering Linear fitlines

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 2

Lateral force [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 3

Lateral force [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 4

Lateral force [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 5

Lateral force [N]

Stra

in [ m

/m]

Papenburg: Lateral force Fy versus strain including linear fits

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 6

Lateral force [N]

Stra

in [ m

/m]-8000 -6000 -4000 -2000 0 2000

-200

0

200

400

600Fy vs straingauge 1

Fy [N]

Stra

in [ m

/m]

Papenburg BETSY

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 2

Fy [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 3

Fy [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 4

Fy [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 5

Fy [N]

Stra

in [ m

/m]

Papenburg and BETSY: Lateral force Fy versus strain

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 6

Fy [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 1

Fy [N]

Stra

in [ m

/m]

Papenburg BETSY

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 2

Fy [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 3

Fy [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 4

Fy [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 5

Fy [N]

Stra

in [ m

/m]

Papenburg and BETSY: Lateral force Fy versus strain

-8000 -6000 -4000 -2000 0 2000-200

0

200

400

600Fy vs straingauge 6

Fy [N]

Stra

in [ m

/m]

• Some differences are present

• How can we compensate for those differences.

• Field

• BETSY and field

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

Page 50: By: John den  Engelse Date: 19 – 6 - 2013

50Challenge the future

BETSY calibration

By describing both sides of the V-shape by a 1st order polynomial two coefficients, Ca and Cb, can be derived for both positive and negative Fy to transform te one to the other. (So 4 coefficients in total).

Εleft,BETSY = c1,left ∙ Fy,left + c2,leftεright,BETSY = c1,right ∙ Fy,right + c2,right

Εleft,field = c3,left ∙ Fy,left + c4,leftεright,Field = c3,right ∙ Fy,right + c4,right

BETSYField

, 2 , 4,

1 3

- -right BETSY right fieldy right

c cF

c c

1 4 1 1 42 2 , ,

3 3

- -vehicle vehicleBETSY A right vehicle B right

c c c c cc c c cc c

Page 51: By: John den  Engelse Date: 19 – 6 - 2013

51Challenge the future

BETSY calibration

• By describing both sides of the V-shape by a 1st order polynomial two coefficients, Ca and Cb, can be derived for both positive and negative Fy to transform te one to the other. (So 4 coefficients in total).

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 1

Lateral force [N]

Stra

in [ m

/m]

Left cornering Right cornering Linear fitlines

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 2

Lateral force [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 3

Lateral force [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 4

Lateral force [N]

Stra

in [ m

/m]

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 5

Lateral force [N]

Stra

in [ m

/m]

Papenburg: Lateral force Fy versus strain including linear fits

-8000 -6000 -4000 -2000 0 2000 4000-200

0

200

400

600

800Fy vs straingauge 6

Lateral force [N]

Stra

in [ m

/m]

εleft = c1,left ∙ Fy,left + c2,left

εright = c1,right ∙ Fy,right + c2,right

2 4,

1 3

- -BETSY vehicley test

c cF

c c

1 4 1 1 42 2 , ,

3 3

- -vehicle vehicleBETSY A right vehicle B right

c c c c cc c c cc c

Page 52: By: John den  Engelse Date: 19 – 6 - 2013

52Challenge the future

BETSY calibration: Eddy-current sensors

-100 -80 -60 -40 -20 0 20 40 60 80 100-4000

-3000

-2000

-1000

0

1000

2000

Tilt [m]

Fy [N

]

Tilt versus Fy for BETSY and field measurements at SKF: 6th order

BETSYField measurements SKF

Page 53: By: John den  Engelse Date: 19 – 6 - 2013

53Challenge the future

Estimation errors distributions

-2000 -1500 -1000 -500 0 500 10000

0.005

0.01

0.015

0.02

0.025

0.03Probability density distribution error: 2 LMRAs and tilt

Pro

babi

lity

Error [N]-2000 -1500 -1000 -500 0 500 1000

0

0.005

0.01

0.015

0.02

0.025

0.03Probability density distribution error: 4 LMRAs

Pro

babi

lity

Error [N]-2000 -1500 -1000 -500 0 500 1000

0

0.005

0.01

0.015

0.02

0.025

0.03Probability density distribution error: 2 LMRAs and tilt

Pro

babi

lity

Error [N]-2000 -1500 -1000 -500 0 500 1000

0

0.005

0.01

0.015

0.02

0.025

0.03Probability density distribution error: 4 LMRAs

Pro

babi

lity

Error [N]

Page 54: By: John den  Engelse Date: 19 – 6 - 2013

54Challenge the future

Summary: lateral force estimation

…– Eddy-current sensors measurements – Field- / validation measurements – BETSY calibration method - Conclusions

0 Hz – 1 HzCalibration Strain Tilt 2nd order fit Tilt 6th order fitIn-situ 16.5 % 20.0 % 15.2 %BETSY 16.7 %* 22.8 % 29.9 %

• Fy estimation summary:

Page 55: By: John den  Engelse Date: 19 – 6 - 2013

55Challenge the future

Recommendations

• Errors obtained with estimation using the Eddy-current sensor are mainly caused by the rubber seal and low value algorithm.

• This research focused on Fy. Next: Fx, Fz

• Online testing

• Excite with higher amount of dynamic forces

Page 56: By: John den  Engelse Date: 19 – 6 - 2013

56Challenge the future

Questions?

Thank you for your attention !

Page 57: By: John den  Engelse Date: 19 – 6 - 2013

57Challenge the future

Questions?

Thank you for your attention !