by jacqui m. mcraeacqui m. mcrae - swinburne … that he always had time for a chat and was ready to...

419
The Elucidation and Evaluation of The Elucidation and Evaluation of The Elucidation and Evaluation of The Elucidation and Evaluation of Antibacterial Compounds from the Antibacterial Compounds from the Antibacterial Compounds from the Antibacterial Compounds from the Australian Traditional Medicinal Plant, Australian Traditional Medicinal Plant, Australian Traditional Medicinal Plant, Australian Traditional Medicinal Plant, Planchonia careya Planchonia careya Planchonia careya Planchonia careya Submitted in total fulfillment of the requirements for the degree of Doctor of Philosophy Doctor of Philosophy Doctor of Philosophy Doctor of Philosophy By Jacqui M. McRae Jacqui M. McRae Jacqui M. McRae Jacqui M. McRae BSc. (Hons.) BSc. (Hons.) BSc. (Hons.) BSc. (Hons.) Environment and Biotechnology Centre Faculty of Life and Social Sciences Swinburne University of Technology Hawthorn, Victoria Australia July 2008

Upload: buimien

Post on 23-Mar-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • The Elucidation and Evaluation ofThe Elucidation and Evaluation ofThe Elucidation and Evaluation ofThe Elucidation and Evaluation of

    Antibacterial Compounds from the Antibacterial Compounds from the Antibacterial Compounds from the Antibacterial Compounds from the

    Australian Traditional Medicinal Plant,Australian Traditional Medicinal Plant,Australian Traditional Medicinal Plant,Australian Traditional Medicinal Plant,

    Planchonia careyaPlanchonia careyaPlanchonia careyaPlanchonia careya

    Submitted in total fulfillment of the requirements for the degree of

    Doctor of PhilosophyDoctor of PhilosophyDoctor of PhilosophyDoctor of Philosophy

    By

    Jacqui M. McRaeJacqui M. McRaeJacqui M. McRaeJacqui M. McRae

    BSc. (Hons.)BSc. (Hons.)BSc. (Hons.)BSc. (Hons.)

    Environment and Biotechnology Centre Faculty of Life and Social Sciences Swinburne University of Technology

    Hawthorn, Victoria Australia

    July 2008

  • i

    AbstractAbstractAbstractAbstract

    The leaves of the tropical tree, Planchonia careya (Lecythidaceae), are used

    traditionally in the treatment of wounds and ulcers by the indigenous people of northern

    Australia. The purpose of this investigation was to isolate and identify some

    antibacterial compounds from the leaves of P. careya to validate the use of this species

    as a wound healing remedy, and also to evaluate the isolated active compounds for

    potential use as chemotherapeutic or topical antibacterial agents. Some of the

    comprising flavonoid glycoside constituents were also investigated as potential

    chemotaxonomic markers, since morphological similarities of this species to other taxa

    has led to many changes in the classification of P. careya.

    The comprising compounds of the crude aqueous and methanol leaf extracts were

    separated using activity-guided fractionation and this involved the use of various

    chromatographic media in conjunction with plate hole diffusion assays. The structures

    of the isolated antibacterial compounds were elucidated principally using Nuclear

    Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS), and the

    antibacterial activity was assessed using Minimum Inhibitory Concentration (MIC)

    assays. The cytotoxicity of the isolated compounds was assessed using monkey kidney

    epithelial (MA104) cells, to determine the selectivity of the compounds for prokaryotic

    cells relative to eukaryotic cells, as well as with human ovarian carcinoma (HeLa) cells

    to determine any antitumour activity.

    Two known antibacterial compounds, gallocatechin-(48)-gallocatechin (prodel-

    phinidin) (1) and (+)-gallocatechin (2), were isolated from the aqueous extract and the

    latter exhibited a significant (p < 0.05) effect on the tumour cells relative to the MA104

    cells. The benzene triol, pyrogallol (S1) was also obtained from the aqueous extract and

    may have been present as a degradation product. Analysis of the comprising flavonol

    glycosides from the aqueous extract revealed the known kaempferol 3-O-gentibioside

    and quercetin 3-O-glucoside as well as two novel acylated kampferol polyglycosides.

  • ii

    The methanol extract yielded two fatty acids, 9(S)-hydroxyoctadeca-10E,12Z,15Z-

    trienoic acid (3), 9(S)-hydroxyoctadeca-10E,12Z-dienoic acid (-dimorphecolic acid)

    (4), the triterpene, 2,3,24-trihydroxyolean-12-en-28-oic acid (hyptatic acid-A) (5),

    and a mixture of two known acylated triterpenes, 3-O-cis-p-coumaroyl-2,19-

    dihydroxyurs-12-en-28-oic acid (3-O-cis-coumaroyl tormentic acid) as well as the trans

    isomer (6ab). Compound S2, a mixture of 2,3,19,24-tetrahydroxyurs-12-en-28-oic

    acid (24-hydroxyl tormentic acid) and an oleane-type triterpene was also obtained from

    the methanol extract. The mixture of 6ab demonstrated the greatest antibacterial activity

    and prokaryotic selectivity of the isolated compounds with a MIC against vancomycin-

    resistant enterococci (VRE) of 59 g/mL.

    The isolation of known antibacterial compounds 1-5 as well as 6ab, S1 and S2 from the

    crude leaf extracts of P. careya validates the use of this species as a treatment for sores

    and ulcers. Further, the activity of 6ab against the antibiotic-resistant strain, VRE, and

    the antitumour activity of 2, 4 and 5, suggests that there is still great potential for the

    discovery of potential therapeutic agents from plants. Finally, the presence of novel

    acylated kaempferol polyglycosides may assist in taxonomic classification of this and

    other Planchonia species.

  • iii

    AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

    This research would not have been possible without the guidance and support of my

    supervisors, Enzo Palombo, Qi Yang, and Russell Crawford. Enzos open door policy

    meant that he always had time for a chat and was ready to help whenever it was needed.

    Qi was always there with a smile and a word of encouragement. Her attention to detail

    always led me in the right direction and I genuinely appreciate the many times that she

    went out of her way to help solve a problem. Russell was always willing to assist in any

    way that he could and was quick with a kind word and a joke. His support and

    encouragement are greatly appreciated. I also gratefully acknowledge time and

    assistance provided by my mentor, Noel Hart. Noel generously went out of his way on

    many occasions to assist with problems and to teach me many different aspects of

    chromatography. His continued friendship is greatly appreciated.

    I would also like to express my appreciation for the assistance and advice provided by

    the CSIRO instrument specialists, Stuart Littler, Jo Cosgriff, Carl Braybrook and Roger

    Mulder. Stuart was eternally patient with my many questions and HPLC demands, and

    Jo and Carl were always helpful with my NMR or MS samples. I am especially grateful

    for Rogers assistance with my NMR samples, as well as providing me with invaluable

    resources, and for the time, patience and guidance that he has generously provided.

    Many thanks are also given to the research staff at CSIRO and Swinburne University,

    Ngoc Le, Ngan Nguyen, Sheila Curtis, Savitri Galappathie, and Soula Mougos, who

    would always point me in the right direction.

    The inspiration for this project came from the advice offered by Victoria Gordon of

    Ecobiotics and this project would not have been possible without her assistance. I also

    acknowledge the assistance of Rebel Eleck and Andrew Ford of the CSIRO Tropical

    Forest Research Centre in coordinating and collecting the required plant samples. The

    friendship of my fellow postgrads has been invaluable and I greatly appreciate their

    moral support. Finally I would like to express my gratitude to my family and friends,

    particularly Bogdan Zisu and Rebecca Wise, whose support and encouragement has

    been greatly appreciated, especially over the past few years.

  • iv

    DeclarationDeclarationDeclarationDeclaration

    I hereby declare, to the best of my knowledge, that the material contained in this thesis

    has not been accepted for the award of any other degree or diploma, and has not been

    previously published or written by another person, except where due reference is made

    in the text. I also declare that where the work is based on joint research or publications,

    the relative contributions of the respective workers or authors is disclosed.

    ---------------------------------------

    Jacqui M. McRae

  • v

    List of PublicationsList of PublicationsList of PublicationsList of Publications

    Book Chapter

    - McRae, J.M., Yang, Q., Crawford, R.J., Palombo, E.A., 2006. Traditional

    Knowledge and Indigenous Uses: Ethnobotanical Leads to Drug Discovery, In:

    Recent Progress in Medicinal Plants, Volume 13, Govil, J.N. (ed.), Stadium

    Press, Houston, pp. 195 -216.

    Refereed Journal Articles

    - McRae, J.M., Yang, Q., Crawford, R.J., Palombo, E.A., 2008. Acylated

    flavonoid tetraglycoside from Planchonia careya leaves, Phytochemistry

    Letters, 1 (2008), 99-102.

    - McRae, J.M., Yang, Q., Crawford, R.J., Palombo, E.A., 2008. Antibacterial

    compounds from Planchonia careya leaf extracts, Journal of

    Ethnopharmacology, 116 (2008) 554560.

    - McRae, J.M., Yang, Q., Crawford, R.J., Palombo, E.A., 2007. Review of the

    methods used for isolating pharmaceutical lead compounds from traditional

    medicinal plants, The Environmentalist, 27 (1), 165-174.

    Refereed Conference Abstract

    - McRae, J.M., Yang, Q., Crawford, R.J., Palombo, E.A., 2006. Antibacterial

    proanthocyanidins isolated from the Australian medicinal plant, Planchonia

    careya (F. Muell.) R. Knuth (Lecythidaceae), In: 54th Annual Congress for the

    Society for Medicinal Plant Research, Helsinki, Finland: Book of abstracts,

    Planta medica 2006; 72 (11), DOI: 10.1055/s-2006-949740.

  • vi

    Refereed Papers in Conference Proceedings

    - McRae, J.M., Yang, Q., Crawford, R.J., Palombo, E.A., 2005. Review of the

    methods used for isolating pharmaceutical lead compounds from traditional

    medicinal plants, In: Proceedings of the 9th Annual Environmental Research

    Event, Tasmania, December 2005, N. Khanna et al. (ed.), RMIT University, CD-

    ROM.

    - McRae, J.M., Yang, Q., Crawford, R.J., Palombo, E.A., 2004. Review of the

    current methods involved in extracting and evaluating the antibacterial

    compounds of traditional medicinal plants, In: Proceedings of the 8th Annual

    Environmental Research Event, New South Wales, December 2004, p. 208-218.

    Conference Abstracts

    - McRae, J.M., Yang, Q., Crawford, R.J., Palombo, E.A., 2007. Antibacterial

    constituents of the Australian traditional medicinal plant, Planchonia careya

    (Lecythidaceae), In: Proceedings of the 2007 Bioprocessing Network Annual

    Conference, Clayton, Victoria.

    - McRae, J.M., Yang, Q., Crawford, R.J., Palombo, E.A., 2007. Antibacterial

    constituents of the Australian traditional medicinal plant, Planchonia careya

    (Lecythidaceae), In: Proceedings of the 3rd International Congress on

    Traditional Medicine & Materia Medica, Kuala Lumpur, Malaysia.

    - McRae, J.M., Yang, Q., Crawford, R.J., Palombo, E.A., 2006. Drug discovery

    from plants: The limiting factors, In: Proceedings of the 25th Australian Colloid

    and Surface Science Student Conference, Beechworth, Victoria.

  • Table of Contents

    vii

    Table of ContentsTable of ContentsTable of ContentsTable of Contents

    Abstract .................................................................................................................... i

    Acknowledgements.................................................................................................. iii

    Declaration .............................................................................................................. iv

    List of publications .................................................................................................. v

    Table of contents ..................................................................................................... vii

    List of Tables ........................................................................................................... xvii

    List of Figures.......................................................................................................... xxiv

    List of Compound Structures................................................................................. xxxvi

    Abbreviations .......................................................................................................... xxxix

    Chapter 1: Plant Natural Products for Medicinal Applications and

    Chemotaxonomy ....................................................................................... 1

    1.1 Plants natural products for medicinal applications ........................................ 1

    1.1.1. Biodiscovery and the need for new medicines............................................ 1

    1.1.2. Infectious diseases ..................................................................................... 5

    1.1.3. Cancers ...................................................................................................... 9

    1.2 Plants as a source of novel pharmaceuticals ................................................... 11

    1.2.1. Secondary metabolites from plants ......................................................... 11

    1.2.2. Ethnobotanical leads in natural product discovery ................................ 18

    1.2.3. Pharmaceutical lead compounds from plants......................................... 21

    1.2.4. Antibacterial agents from plants .............................................................. 23

    1.2.5. Anticancer agents from plants ................................................................ 26

    1.3 Plant natural products as chemotaxomonic agents ...................................... 30

    1.3.1. Biochemical systematics .......................................................................... 30

    1.3.2. Biochemistry of flavonoids ..................................................................... 32

    1.3.3. Flavonol glycosides and conjugates as chemotaxonomic indicators .... 38

    1.4 Summary ........................................................................................................... 40

  • Table of Contents

    viii

    Chapter 2: Review of Planchonia careya ...............................................41

    2.1 Taxonomy and distribution of Planchonia careya ......................................... 41

    2.2 Ethnobotany and phytochemistry of Lecythidaceae species ........................ 45

    2.3 Ethnobotany and phytochemistry of Planchonia careya .............................. 47

    2.3.1. Traditional uses of Planchonia careya ................................................... 47

    2.3.2. Phytochemistry of Planchonia careya ..................................................... 48

    2.4 Project aims ....................................................................................................... 50

    Chapter 3: Planchonia careya: Small-Scale Optimization of

    Extraction Methodology .......................................................................52

    3.1 Introduction ...................................................................................................... 52

    3.2 Sample processing and extraction .................................................................. 53

    3.2.1. Leaf collection and processing ............................................................... 53

    3.2.2. Extraction of leaves ................................................................................. 53

    3.2.2.1. Trials of different extraction techniques ......................................... 53

    3.2.2.2. Optimization of the selected extraction technique .......................... 56

    3.3 Assessment of biological activity ..................................................................... 58

    3.3.1. Antibacterial assays ................................................................................. 58

    3.3.1.1. Investigation of different antibacterial assays ................................ 58

    3.3.1.2. Selection of the test organisms for activity-guided fractionation ... 63

    3.3.1.3. Assessment of antimycobacterial activity ........................................ 66

    3.4 Phytochemical investigations .......................................................................... 68

    3.4.1. Thin layer chromatography .................................................................... 68

    3.4.1.1. Preliminary investigation of the antibacterial constituents ............ 68

    3.4.1.2. Preliminary identification of active constituents using

    spray reagents .................................................................................. 69

    3.4.2. Column chromatography ........................................................................ 70

    3.4.2.1. Comparison of the different chromatographic media ..................... 70

    3.4.2.2. Preliminary investigation of the aqueous extract ............................ 72

  • Table of Contents

    ix

    3.4.2.2.1. Overview ............................................................................. 72

    3.4.2.2.2. Fractionation of the aqueous extract ................................... 73

    3.4.2.3. Preliminary investigation of the methanol extract .......................... 78

    3.4.2.3.1. Overview ............................................................................. 78

    3.4.2.3.2. Fractionation of the methanol extract ................................. 79

    3.5 Summary of the optimized methods ............................................................... 85

    Chapter 4: Planchonia careya: Large-scale Extraction Methodology ...86

    4.1 General experimental ...................................................................................... 86

    4.1.1. Chromatography ..................................................................................... 86

    4.1.1.1. High Pressure Liquid Chromatography ......................................... 86

    4.1.1.2. Preliminary analysis with Thin Layer Chromatography ................ 87

    4.1.2. Compound characterization with Nuclear Magnetic Resonance

    Spectroscopy ............................................................................................. 88

    4.1.2.1. Overview of selected experiments ................................................... 88

    4.1.2.2. NMR experimental conditions ......................................................... 89

    4.1.3. Further compound characterization ...................................................... 90

    4.1.3.1. Mass Spectrometry .......................................................................... 90

    4.1.3.2. Optical rotation ............................................................................... 90

    4.1.3.3. Melting point ................................................................................... 91

    4.1.3.4. IR spectroscopy ............................................................................... 91

    4.1.3.5. UV Spectroscopy ............................................................................. 91

    4.1.3.6. Calculated Log P ............................................................................ 92

    4.1.3.7. Acid hydrolysis of isolated glycosides.............................................. 92

    4.1.4. General calculations ................................................................................ 93

    4.1.4.1. Calculating the total mass of a sample ........................................... 93

    4.1.4.2. Calculating the percent yield .......................................................... 93

    4.1.4.3. Calculating the leaf mass per well .................................................. 94

    4.2 Plant material .................................................................................................... 95

    4.3 Extraction of plant material ............................................................................ 95

    4.3.1. Aqueous extraction .................................................................................. 95

    4.3.2. Methanol extraction ................................................................................ 96

  • Table of Contents

    x

    4.4 Compound isolation and purification ............................................................ 96

    4.4.1. General methodology .............................................................................. 96

    4.4.2. Investigation of bioactive compounds from the aqueous extract .......... 97

    4.4.2.1. Stage 1 Separation .......................................................................... 97

    4.4.2.2. Stage 2 Separation .......................................................................... 98

    4.4.2.3. Stage 3 Separation .......................................................................... 98

    4.4.2.4. Isolation of Compound 1 ................................................................. 98

    4.4.2.5. Isolation of Compound 2 ................................................................. 99

    4.4.2.6. Isolation of Compound S1 ............................................................... 99

    4.4.3. Investigation of the methanol extract ..................................................... 100

    4.4.3.1. Initial separation ............................................................................. 100

    4.4.3.2. Investigation of the DCM-soluble fraction ..................................... 100

    4.4.3.2.1. Stage 1 Separation of the DCM-soluble fraction ................ 100

    4.4.3.2.2. Stage 2 Separation and isolation of Compound 3 ............... 101

    4.4.3.2.3. Isolation of Compounds 4, 5 and 6 ab .................................. 101

    4.4.3.2.4. Isolation of Compound S2 ................................................. 102

    4.4.3.3. Investigation of the methanol water-soluble fraction ..................... 102

    4.4.3.3.1. Methanol Water Stage 1 Separation .................................... 102

    4.4.3.3.2. Methanol Water Stage 2 Separation .................................... 102

    4.4.3.3.3. Re-isolation of Compound 2 .............................................. 103

    4.4.4. Investigation of Aqueous Stage 2 Separation Fraction 16 .................... 103

    4.4.4.1. Initial separation ............................................................................. 103

    4.4.4.2. Isolation of Compound 7 ................................................................. 103

    4.4.4.3. Isolation of Compound 8 ................................................................ 104

    4.4.5. Investigation of Aqueous Stage 2 Separation Fraction 20 .................... 104

    4.4.5.1. Initial separation ............................................................................. 104

    4.4.5.2. Isolation of Compound 9 ................................................................. 104

    4.4.5.3. Isolation of S3 .................................................................................. 105

    4.4.5.4. Isolation of Compound 10 .............................................................. 105

    4.4.5.5. Isolation of S4 ................................................................................. 105

    4.5 Characterization of isolated compounds ........................................................ 106

    4.5.1. Compound 1 ............................................................................................. 106

    4.5.2. Compound 2 ............................................................................................ 106

    4.5.3. Compound 3 ............................................................................................ 106

  • Table of Contents

    xi

    4.5.4. Compound 4 ............................................................................................ 107

    4.5.5. Compound 5 ............................................................................................. 107

    4.5.6. Compound 6 ............................................................................................ 108

    4.5.7. Compound 7 ............................................................................................ 109

    4.5.8. Compound 8 ............................................................................................ 109

    4.5.9. Compound 9 ............................................................................................ 110

    4.5.10. Compound 10 ....................................................................................... 110

    4.5.3. Compound S1 .......................................................................................... 111

    4.5.3. Compound S2 .......................................................................................... 111

    4.6 Evaluation of antibacterial activity ................................................................ 112

    4.6.1. Bacteria and media ................................................................................. 112

    4.6.1.1. Bacteria ........................................................................................... 112

    4.6.1.2. Materials ......................................................................................... 113

    4.6.1.3. Standard media ............................................................................... 113

    4.6.1.4. Media for fastidious bacteria .......................................................... 113

    4.6.1.5. Media for mycobacteria .................................................................. 113

    4.6.2. Antibacterial assays ................................................................................. 114

    4.6.2.1. Broth culture preparation ............................................................... 114

    4.6.2.2. Plate-hole diffusion and minimum inhibitory concentration

    assays .................................................................................................. 114

    4.6.2.3. Broth dilution assays ....................................................................... 115

    4.6.2.4. Bioautography assays ..................................................................... 115

    4.7 Evaluation of cytotoxicity ............................................................................... 116

    4.7.1. Materials .................................................................................................. 116

    4.7.1.1. Cell lines ......................................................................................... 116

    4.7.1.2. Media and solutions ........................................................................ 116

    4.7.1.3. Equipment ....................................................................................... 116

    4.7.2. Cytotoxicity assays ................................................................................... 117

    4.7.2.1. Passaging of cell lines...................................................................... 117

    4.7.2.2. Determining the optimal cell seeding density for cytotoxicity

    assays .................................................................................................. 118

    4.7.2.3. Establishing the controls ................................................................. 119

    4.7.2.4. MTT cell viability assay .................................................................. 119

    4.7.3. Calculations used in the cytotoxicity assays............................................ 119

  • Table of Contents

    xii

    4.7.3.1. Calculating the IC50 ....................................................................... 119

    4.7.3.2. Calculating errors ........................................................................... 120

    4.7.3.3. Statistical analysis of cytotoxicity data ............................................ 121

    4.7.3.4. Calculating the therapeutic index .................................................... 121

    Chapter 5: Planchonia careya: Activity-guided fractionation ...............123

    5.1 Introduction....................................................................................................... 123

    5.2 Preparation and fractionation of the aqueous extract................................... 124

    5.2.1. Overview ................................................................................................... 124

    5.2.2. Preparation of the aqueous extract ......................................................... 125

    5.2.3. Fractionation of the aqueous extract ..................................................... 127

    5.2.3.1. Aqueous Stage 1 Separation: Separation with

    Amberlite XAD-16 resin .................................................................... 127

    5.2.3.2. Aqueous Stage 2 Separation: Separation with

    reverse-phase C18 media.................................................................. 130

    5.2.3.3. Aqueous Stage 3 Separation: Separation with

    Sephadex LH-20 gel .......................................................................... 139

    5.2.3.4. Isolation of Compound 1: Prodelphinidin ....................................... 142

    5.2.3.5. Isolation of Compound 2: Gallocatechin ......................................... 146

    5.2.3.6. Isolation of Compound S1: Pyrogallol ............................................ 149

    5.3 Preparation and fractionation of the methanol extract ................................ 152

    5.3.1. Overview .................................................................................................. 152

    5.3.2. Preparation of the methanol extract........................................................ 153

    5.3.3. Fractionation of the methanol extract .................................................... 153

    5.3.3.1. Separation using liquid-liquid partitioning ..................................... 153

    5.3.3.2. Investigation of the Methanol DCM-Soluble fraction...................... 155

    5.3.3.2.1. Methanol DCM Stage 1 Separation:

    Separation with silica gel ...................................................... 155

    5.3.3.2.2. Methanol DCM Stage 2 Separation and

    isolation of Compound 3....................................................... 158

    5.3.3.2.3. Isolation of Compounds 4, 5, and 6: -Dimorphecolic acid,

    Hyptatic acid-A, and 3-O-coumaroyl tormentic acid........... 162

    5.3.3.2.4. Isolation of Compound S2: 24-Hydroxy tormentic acid .... 165

  • Table of Contents

    xiii

    5.3.3.3. Investigation of the Methanol Water-soluble fraction ..................... 168

    5.3.3.3.1. Methanol Water Stage 1 Separation:

    Separation with C18 media ................................................... 168

    5.3.3.3.2. Methanol Water Stage 2 Separation:

    Separation with MPLC ........................................................ 170

    5.3.3.3.3. Re-isolation of Compound 2: Gallocatechin........................ 173

    5.4 Summary of compounds isolated from the leaf extracts ............................... 175

    Chapter 6: Structural Elucidation and Characterization of Bioactive

    Compounds Isolated from Planchonia careya ......................................177

    6.1 Introduction....................................................................................................... 177

    6.2 Structural elucidation ...................................................................................... 178

    6.2.1. Compounds 1 and 2: Proanthocyanidins ............................................... 178

    6.2.1.1. Overview ......................................................................................... 178

    6.2.1.2. Compound 1: Prodelphinidin........................................................... 178

    6.2.1.3 Compound 2: (+)-Gallocatechin ...................................................... 184

    6.2.2. Compounds 3 and 4: Hydroxylated fatty acids ...................................... 187

    6.2.2.1. Overview .......................................................................................... 187

    6.2.2.2. Compound 3: 9-HOTE ..................................................................... 188

    6.2.2.3. Compound 4: -Dimorphecolic acid ............................................... 193

    6.2.3. Compounds 5 and 6: Pentacyclic triterpenoids ...................................... 198

    6.2.3.1. Overview .......................................................................................... 198

    6.2.3.2. Compound 5: Hyptatic acid-A ......................................................... 198

    6.2.3.3. Compound 6: 3-O-Coumaroyl tormentic acid ................................. 205

    6.3 Structural characterization of additional bioactive compounds ................. 213

    6.3.1. Overview .................................................................................................. 213

    6.3.2 Compound S1: Pyrogallol ....................................................................... 213

    6.3.3. Compound S2: 24-Hydroxytormentic acid.............................................. 216

    6.4 Summary of the structural elucidation and characterization of

    bioactive compounds ......................................................................................... 220

  • Table of Contents

    xiv

    Chapter 7: Biological Evaluation of Bioactive Compounds Isolated

    from Planchonia careya..........................................................................221

    7.1 Introduction....................................................................................................... 221

    7.2 Compounds and crude extracts used in the biological evaluation assays.... 222

    7.3 Evaluation of antibacterial activity ................................................................. 223

    7.3.1. Minimum inhibitory concentration assays ............................................ 223

    7.3.2. Antibacterial activity of the crude extracts and isolated compounds..... 225

    7.3.3. Antibacterial activity of compounds isolated from the aqueous

    extract ........................................................................................................... 227

    7.3.4. Antibacterial activity of compounds isolated from the methanol

    extract ........................................................................................................... 229

    7.4 Evaluation of antitumour activity ................................................................... 231

    7.4.1 Optimization of the cytotoxicity assays..................................................... 231

    7.4.1.1. Optimal cell seeding density ............................................................ 231

    7.4.1.2. Assessing the potential reduction of MTT by the isolated

    compounds ........................................................................................... 234

    7.4.2. Cytotoxicity of the crude extracts and isolated compounds.................... 235

    7.4.3. Antitumour activity of compounds isolated from the aqueous extract .. 236

    7.4.4. Antitumour activity of compounds isolated from the methanol extract. 238

    7.5 Summary of the biological evaluation of the isolated bioactive

    compounds .................................................................................................. 239

    Chapter 8: Isolation of Some Chemotaxonomic Indicators in

    Planchonia careya ..................................................................................241

    8.1 Introduction....................................................................................................... 241

    8.2 HPLC-piloted isolation of flavonol glycosides................................................ 242

    8.2.1. Overview .................................................................................................. 242

    8.2.2. Separation of fraction AS2:16 with Sephadex LH-20 gel ...................... 243

    8.2.3. Isolation of Compound 7: Kaempferol gentiobioside ............................. 245

    8.2.4. Isolation of Compound 8: Quercetin glucoside ...................................... 246

    8.2.5. Re-isolation of Compound 2: Gallocatechin ......................................... 249

  • Table of Contents

    xv

    8.3 HPLC-piloted investigation of flavonol conjugates ....................................... 250

    8.3.1. Overview ................................................................................................... 250

    8.3.2. Stage 3 Separation of fraction AS2:20 with MPLC................................ 251

    8.3.3. Isolation of Compound 9: Acylated kaempferol tetraglycoside.............. 253

    8.3.4. Isolation of S3 and re-isolation of Compound 9..................................... 255

    8.3.5. Investigation of AS2:20 fraction AG:113-119 ........................................ 257

    8.3.6. Isolation of S4 ......................................................................................... 258

    8.3.7. Isolation of Compound 10: Acylated kaempferol pentaglycoside .......... 260

    8.4 Summary of the isolation of potential chemotaxonomic indicators ............ 262

    Chapter 9: Structural Elucidation and Characterization of

    Chemotaxonomic Indicators in Planchonia careya................................263

    9.1 Introduction....................................................................................................... 263

    9.2 Structural elucidation of the isolated flavonol glycosides ............................. 264

    9.2.1. Compounds 7 and 8.................................................................................. 264

    9.2.1.1. Overview .......................................................................................... 264

    9.2.1.2. Compound 7: Kaempferol gentibioside ........................................... 264

    9.2.1.3. Compound 8: Quercetin glucoside .................................................. 270

    9.3 Structural elucidation of the isolated flavonol conjugates ............................ 275

    9.3.1. Compounds 9 and 10................................................................................ 275

    9.3.1.1. Overview ......................................................................................... 275

    9.3.1.2. Compound 9: Acylated kampferol tetraglycoside ............................ 275

    9.3.1.3. Compound 10: Acylated kaempferol pentaglycoside ....................... 287

    9.3.2. Preliminary elucidation of S3 and S4 ..................................................... 294

    9.3.2.1. Overview ......................................................................................... 294

    9.3.2.2. Partial elucidation of S3 ................................................................. 294

    9.3.2.3. Partial elucidation of S4 ................................................................. 296

    9.4 Summary of the elucidation of the isolated chemotaxonomic indicators .... 298

  • Table of Contents

    xvi

    Chapter 10: Conclusions and future research .........................................299

    10.1 Conclusions ...................................................................................................... 299

    10.1.1. Overview ................................................................................................. 299

    10.1.2. Elucidation of antibacterial constituents .............................................. 300

    10.1.3. Evaluation of biological activity ............................................................ 301

    10.1.4. Identification of potential chemotaxonomic markers........................... 303

    10.2 Future research ............................................................................................... 304

    10.2.1. Overview ................................................................................................. 304

    10.2.2. Further investigation of the isolated compounds ................................. 304

    10.2.3. Future studies involving biological activity........................................... 306

    10.2.4. Further chemotaxonomic investigations............................................... 308

    10.3 Concluding remarks ....................................................................................... 308

    Glossary.................................................................................................................... 309

    References ................................................................................................................ 317

    Appendix 1: Spectral data of the isolated compounds......................................... 337

    A1.1. Proanthocyanidins ..................................................................................... 338

    A1.2. Hydroxylated fatty acids ........................................................................... 343

    A1.3. Pentacyclic triterpenes............................................................................... 348

    A1.4. Flavonol glycosides................................................................................... 354

    A1.5. Flavonol conjugates .................................................................................. 359

    A1.6. Semi-purified bioactive compounds.......................................................... 364

    A1.7. Semi-purified chemotaxonomic compounds............................................. 369

    Appendix 2: Data for the cell culture calculations............................................... 372

    A2.1. Results of the Shapiro-Wilk normality tests for each compound.............. 373

    A2.2. The cell inhibitory rates of compounds isolated from the aqueous extract .......... 374

    A2.3. The cell inhibitory rates of compounds isolated from the methanol extract......... 375

    A2.4. Results of the significance tests for the cytotoxic assays.......................... 376

  • List of Tables

    xvii

    List of TablesList of TablesList of TablesList of Tables

    Tables from Chapter 1

    Table 1.1

    The main classes of secondary metabolites and some of their subgroups ................ 13

    Table 1.2

    Some of the key functions of flavonoids in plants.................................................... 36

    Tables from Chapter 2

    Table 2.1

    Medicinal uses of some Lecythidaceae species ........................................................ 46

    Tables from Chapter 3

    Table 3.1

    Comparison of the time required, sample capacity and percent yield of the

    different extraction methods ..................................................................................... 55

    Table 3.2

    The solvent used and resulting percent yields of the immersion extracts................. 57

    Table 3.3

    The effect of disc thickness on the diameter of the zone of inhibition for the disc

    diffusion assays ........................................................................................................ 60

    Table 3.4

    Comparison of the disc (DDA) and plate-hole (PHDA) diffusion assays ................ 61

    Table 3.5

    Antibacterial activity of the different extracts against B. cereus determined with

    PHDAs ...................................................................................................................... 62

    Table 3.6

    The antibacterial activity of the crude Methanol Immersion Extract against a

    range of bacteria determined with PHDAs ............................................................... 65

  • List of Tables

    xviii

    Table 3.7

    The antimycobacterial activity of the crude Methanol Immersion Extract

    of P. careya leaves determined with PHDAs............................................................ 67

    Table 3.8

    The TLC solvent systems and Rf values of the active bands determined by

    bioautography assays ................................................................................................ 69

    Table 3.9

    Activity of fractions from the Preliminary Aqueous Stage 1 Separation (PA1)

    using XAD-16 resin .................................................................................................. 74

    Table 3.10

    Activity of fractions from the Preliminary Aqueous Stage 2 Separation (PA2)

    with C18 media against B. cereus ............................................................................. 75

    Table 3.11

    Activity of fractions from the Preliminary Aqueous Stage 3 Separation (PA3)

    with LH-20 gel against B. cereus, determined with PHDAs ................................... 77

    Table 3.12

    Activity of fractions from the Preliminary Methanol Stage 1 Separation (PM1)

    with silica gel against B. cereus, determined with PHDAs....................................... 79

    Table 3.13

    Solvent systems of Preliminary Methanol Stage 2 Separation (PM2) with silica

    gel and the activity of each fraction against B. cereus, determined with PHDAs .... 82

    Table 3.14

    Activity of fractions from the Preliminary Methanol Stage 3 Separation (PM3)

    with C18 media against B. cereus, determined with PHDAs ................................... 82

    Table 3.15

    Activity of fractions from the Preliminary Methanol Stage 4 Separation (PM4)

    with preparative HPLC against B. cereus, determined with PHDAs........................ 84

    Tables from Chapter 5

    Table 5.1

    Antibacterial activity of extracts from the large scale collection compared with

    those of the small-scale collection ............................................................................ 126

  • List of Tables

    xix

    Table 5.2

    The antibacterial activity and concentrations of fractions from the Aqueous Stage 1

    Separation using XAD-16 resin ................................................................................ 129

    Table 5.3

    The antibacterial activity and concentrations of fractions from the Aqueous Stage 2

    Separation (AS2) using C18 media........................................................................... 132

    Table 5.4

    The antibacterial activity and concentrations of fractions from the Aqueous Stage 3

    Separation with Sephadex LH-20 gel ....................................................................... 140

    Table 5.5

    The antibacterial activity of fractions from the preparative HPLC separation of

    AS3:38-45 (C1)......................................................................................................... 144

    Table 5.6

    The antibacterial activity of fractions from the preparative HPLC separation of

    AS3:22-26 (C2)......................................................................................................... 147

    Table 5.7

    The antibacterial activity of fractions from the preparative reversed phase

    HPLC separation of AS3:14 (C3) ............................................................................ 150

    Table 5.8

    The antibacterial activity and concentrations of fractions from the separation of the

    methanol extract with liquid-liquid partitioning ...................................................... 155

    Table 5.9

    The different solvent systems trialled using TLC with silica plates ......................... 156

    Table 5.10

    The antibacterial activity and elution solvent of fractions from the Methanol DCM

    Stage 1 Separation (MD1) with silica gel ................................................................. 157

    Table 5.11

    The antibacterial activity of fractions from the Methanol DCM Stage 2 Separation

    (MD2) with MPLC and the retention times of the main peaks in

    the HPLC chromatogram .......................................................................................... 160

    Table 5.12

    The antibacterial activity and concentrations of fractions from the preparative HPLC

    separation of Methanol DCM Stage 2 Separation fractions 23-26 (C4).................. 164

  • List of Tables

    xx

    Table 5.13

    The antibacterial activity and concentrations of fractions from the preparative

    HPLC separation of MD2:4-6 (C5) .......................................................................... 166

    Table 5.14

    The antibacterial activity and elution solvent of fractions from the Methanol Water

    Stage 1 Separation (MW1), determined by plate-hole diffusion assays .................. 169

    Table 5.15

    The antibacterial activity and elution solvent of fractions from the Methanol Water

    Stage 2 Separation (MW2), determined by plate-hole diffusion assays ................... 171

    Tables from Chapter 6

    Table 6.1

    The 1H and 13C NMR chemical shifts for 1 in D2O at 400 MHz.............................. 181

    Table 6.2

    The COSY and HMBC correlations of 1, in D2O at 400 MHz ................................ 182

    Table 6.3

    The chemical shifts of the carbons and protons of 2, in D2O at 400 MHz,

    compared with those given in the literature .............................................................. 186

    Table 6.4

    The chemical shifts of the carbons and protons of 3 in CD3OD at 400 MHz,

    compared with those given in the literature .............................................................. 190

    Table 6.5

    The COSY and HMBC correlations of 3, in CD3OD at 400 MHz .......................... 192

    Table 6.6

    The chemical shifts of the carbons and protons of 4 in CD3OD at 500 MHz,

    compared with those given in the literature .............................................................. 196

    Table 6.7

    The 1H and 13C NMR chemical shifts of 5 in CD3OD at 500 MHz.......................... 201

    Table 6.8

    The COSY and HMBC correlations of 5, in CD3OD at 400 MHz .......................... 202

    Table 6.9

    The 1H and 13C NMR chemical shifts of the triterpene core structure of 6a ............ 207

  • List of Tables

    xxi

    Table 6.10

    The 1H NMR chemical shifts of the triterpene core structure of 6b ........................ 208

    Table 6.11

    The chemical shifts of the carbons and protons of the acyl group of 6a in CD3OD

    at 500 MHz................................................................................................................ 210

    Table 6.12

    The chemical shifts of the carbons and protons of the acyl group of 6b in CD3OD

    at 500 MHz ............................................................................................................... 210

    Table 6.13

    The ROESY correlations of 6a, in CD3OD at 500 MHz ......................................... 211

    Table 6.14

    The chemical shifts of the carbons and protons of S1 in CD3OD (500 MHz),

    compared with those given in the literature ............................................................. 215

    Table 6.15

    The chemical shifts of the carbons and protons of S2 in CD3OD (500 MHz) ......... 219

    Tables from Chapter 7

    Table 7.1

    The physical properties of the isolated compounds and concentrations prepared

    for the biological evaluation...................................................................................... 222

    Table 7.2

    Comparison of the MICs produced by the PHDA and BDA methods (mg/mL) for

    the crude fractions of compounds 1 and 2, as well as tetracycline ........................... 224

    Table 7.3

    MICs for the isolated compounds and crude extracts against Gram positive and

    Gram negative bacteria (mg/mL) as well as the cytotoxicity (IC50) against

    MA104 cells (g/mL) for comparison ...................................................................... 226

    Tables from Chapter 9

    Table 9.1

    The 1H and 13C NMR data for 7, in CD3OD at 400 MHz......................................... 267

  • List of Tables

    xxii

    Table 9.2

    The chemical shifts of the carbons and protons of 8, quercetin 3-O-glucoside,

    in CD3OD at 400 MHz, compared with the 13C chemical shifts given in the

    literature for the glucoside (Glc) and galactoside (Gal)............................................ 273

    Table 9.3

    The 1H and 13C NMR data of the aglycone and coumaroyl groups of 9, in CD3OD

    at 400 MHz................................................................................................................ 278

    Table 9.4

    The 1H and 13C NMR data of the sugar moieties of 9, in CD3OD at 400 MHz........ 279

    Table 9.5

    The COSY and HMBC correlations for the protons of the aglycone and

    coumaroyl groups of 9, in CD3OD at 400 MHz ....................................................... 282

    Table 9.6

    The COSY and HMBC correlations for the protons of the sugar moieties of 9,

    in CD3OD at 400 MHz ............................................................................................. 283

    Table 9.7

    The ROESY interactions for the protons of the sugar moieties of 9,

    in CD3OD at 400 MHz ............................................................................................. 285

    Table 9.8

    The ROESY interactions for the protons of the aglycone and coumaroyl

    groups of 9, in CD3OD at 400 MHz ......................................................................... 286

    Table 9.9

    The 1H NMR and COSY data of the aglycone, coumaroyl and glucose moieties

    of 10 in CD3OD at 500 MHz .................................................................................... 289

    Table 9.10

    The 1H NMR and COSY data of the rhamnose moieties of 10 in CD3OD

    at 500 MHz................................................................................................................ 291

    Table 9.11

    The 1H NMR chemical shifts of the aglycone and coumaroyl moieties of the

    major and minor compounds present in S3 in CD3OD at 500 MHz ........................ 296

  • List of Tables

    xxiii

    Tables from Appendix 2

    Table A2.1

    The determined Shapiro-Wilk normality test significance (generated by SPSS

    v14.0) of the cell and solvent blanks for each compound against MA104 cells....... 373

    Table A2.2

    The determined Shapiro-Wilk normality test significance (generated by SPSS

    v14.0) of the cell and solvent blanks for each compound against HeLa cells .......... 373

    Table A2.3

    Statistical data for each compound including the t value calculated using the

    one-sample t-test ....................................................................................................... 376

  • List of Figures

    xxiv

    List of FiguresList of FiguresList of FiguresList of Figures

    Figures from Chapter 1

    Figure 1.1

    Origin of new prescription drugs from 1981-2002 ................................................... 4

    Figures from Chapter 2

    Figure 2.1

    The distribution of some Planchonia species ........................................................... 42

    Figure 2.2

    (a) A herbarium specimen of P. careya leaves (CSIRO Tropical Research

    Centre Herbarium, Yarrumburra, Queensland, Australia); and (b) a live specimen

    from Cairns, Queensland........................................................................................... 44

    Figure 2.3

    The flowers of (a) P. careya; (b) Careya sp.; and (c) B. racemosa .......................... 44

    Figures from Chapter 3

    Figure 3.1

    An overview of the activity-guided fractionation of the crude aqueous extract

    (Extracts 3a and 3b) showing the media used and fractions produced at each

    stage of separation .................................................................................................... 72

    Figure 3.2

    HPLC chromatograms of the Preliminary Aqueous Stage 2 Separation (PA2)

    fraction PA2:6 with PA3 active fractions, PA3:6-12 and PA3:20-23,

    in 10% MeOH/H2O at 210 nm .............................................................................. 77

    Figure 3.3

    An overview of the activity-guided fractionation of the Methanol Immersion

    Extract showing the media used and fractions produced at each

    stage of separation .................................................................................................... 78

  • List of Figures

    xxv

    Figure 3.4

    HPLC chromatograms of Preliminary Methanol Stage 2 Separation (PM2)

    fractions 6 and 7 in 85% MeOH at 250 nm .......................................................... 81

    Figure 3.5

    HPLC chromatogram of the active Preliminary Methanol Stage 3 Separation

    fraction 20 (PM3:20) with PM4 fractions PM4:7 and PM4:10 in 70% MeOH/H2O

    at 210 nm................................................................................................................ 84

    Figures from Chapter 5

    Figure 5.1

    An overview of the activity-guided fractionation of the aqueous extract showing

    the media used and fractions produced at each stage of separation.......................... 125

    Figure 5.2

    HPLC chromatograms of the main fractions from the Aqueous Stage 1 Separation

    in 85% MeOH/H2O at 210 nm............................................................................... 128

    Figure 5.3

    (a) Fractions AS2:4 and 5 in 5% MeOH//H2O at 210 nm; and (b) Fractions

    AS2:7, 8 and 9 with compounds 1 and 2 isolated from Fraction AS2:6

    in 5% MeOH//H2O at 210 nm ................................................................................ 134

    Figure 5.4

    (a) Fractions AS2:8, 9 and 10 in 15% MeOH//H2O at 210 nm; and (b) Fractions

    AS2:11 and 12 in 20% MeOH//H2O at 210 nm .................................................... 135

    Figure 5.5

    (a) Fractions AS2:13 and 14 in 30% MeOH//H2O at 210 nm; and (b) Fractions

    AS2:15 and 16 in 40% MeOH//H2O at 210 nm .................................................... 137

    Figure 5.6

    (a) Fractions AS2:17 and 18 in 50% MeOH//H2O at 210 nm; and (b) Fractions

    AS2:19 and 20 in 65% MeOH//H2O at 210 nm .................................................... 138

    Figure 5.7

    The retention times of the range of compounds from Aqueous Stage 3 Separation

    with Sephadex LH-20 gel, demonstrated with fractions AS3:14, AS3:24,

    AS3:42, AS3:67, AS3:84, and AS3:110 in 5% MeOH/H2O at 210 nm ................ 141

  • List of Figures

    xxvi

    Figure 5.8

    (a) HPLC chromatograms of compound 1 (C1:17-25) with the combined Aqueous

    Stage 3 Separation fractions 38-45 (C1) in 3% MeOH/H2O at 210 nm; and (b)

    the UV profile of 1 .................................................................................................... 145

    Figure 5.9

    (a) HPLC chromatograms of 2 (C2:61-65) with Aqueous Stage 3 Separation

    fractions 22-26 (C2) in 3% MeOH/H2O at 210 nm; and (b) the UV profile of 2 .. 148

    Figure 5.10

    (a) HPLC chromatograms of S1 (C3:13-15) with Aqueous Stage 3 Separation

    (AS3) fraction 14 (C3) in 5% MeOH/H2O at 210 nm; and (b) the UV

    profile of S1 .............................................................................................................. 151

    Figure 5.11

    An overview of the activity-guided fractionation of the aqueous extract showing

    the media used and fractions produced at each stage of separation .......................... 152

    Figure 5.12

    HPLC chromatograms of the Methanol DCM Stage 1 Separation (MD1) fractions

    6 to 8 in 65% MeOH/H2O at 210 nm (a gradient to 100% MeOH has been used

    to shorten the elution time of the later eluting peaks in fraction MD1:6) ................. 158

    Figure 5.13

    (a) HPLC chromatograms of the Methanol DCM Stage 1 Separation fraction 7

    (MD1:7) with combined Methanol DCM Stage 2 Separation (MD2) fractions 4-6,

    14-19 (Compound 3) and 23-26, in 70% MeOH/H2O at 210 nm; and

    (b) the corresponding UV profile of 3 ..................................................................... 161

    Figure 5.14

    (a) HPLC chromatograms of compounds 4 6 in 75% MeOH/H2O at 210 nm;

    and (b) the corresponding UV profiles...................................................................... 163

    Figure 5.15

    (a) HPLC chromatograms of compound S2 (C5:7-9) with Methanol DCM Stage 2

    Separation fractions 4-6 (C5) in 70% MeOH/H2O at 210 nm; and (b) the UV

    profile of S2 ............................................................................................................. 167

    Figure 5.16

    HPLC chromatograms of the Methanol Water Stage 1 (MW1) fractions 3-8

    in 15% MeOH/H2O at 210 nm .............................................................................. 170

  • List of Figures

    xxvii

    Figure 5.17

    HPLC chromatograms of the Methanol Water Stage 2 (MW2) fractions 6, 9-11,

    14 and 20 in 5% MeOH/H2O at 210 nm ............................................................... 172

    Figure 5.18

    A 3D HPLC chromatogram of Methanol Water Stage 2 Separation fraction 10

    (MW2:10 or MP) in 5% MeOH/H2O showing the UV profiles of each

    comprising peak ........................................................................................................ 172

    Figure 5.19

    (a) HPLC chromatograms of compound 2 isolated from the aqueous extract and

    MP:21 in 10% MeOH/H2O at 210 nm; and (b) the corresponding UV profile

    of MP:21 (refer to Figure 5.9 for the UV profile of 2) ............................................. 174

    Figures from Chapter 6

    Figure 6.1

    The elucidated structure of 1, with some key HMBC relationships ......................... 179

    Figure 6.2

    The 1H (top) and 13C (bottom) NMR spectra for 1 in D2O at 400 MHz .................. 180

    Figure 6.3

    The elucidated structure of 2 with the 1H NMR spectrum CD3OD at 400 MHz 185

    Figure 6.4

    The elucidated structure of 3 .................................................................................... 188

    Figure 6.5

    The 1H (top) and JMOD (bottom) NMR spectra for compound 3 in CD3OD

    at 400 MHz ............................................................................................................... 189

    Figure 6.6

    The elucidated structure of 4..................................................................................... 193

    Figure 6.7

    The 1H (top) and 13C (bottom) NMR spectra for 4 in CD3OD at 500 MHz ............ 194

    Figure 6.8

    The elucidated structure of 5.................................................................................... 199

    Figure 6.9

    The 1H NMR spectrum in CD3OD at 400 MHz (top) and 13C JMOD NMR

    spectrum in d5-pyridine at 500 MHz (bottom) for compound 5 .............................. 200

  • List of Figures

    xxviii

    Figure 6.10

    The structure of 5, with some key HMBC correlations ........................................... 203

    Figure 6.11

    Elucidated structure of 6a, with some key HMBC correlations and the 1H NMR

    spectrum in CD3OD at 500 MHz .............................................................................. 206

    Figure 6.12

    The key ROESY correlations of the core structure of 6ab ...................................... 212

    Figure 6.13

    The elucidated structure of S1 with the 1H (top) and 13C (bottom) NMR spectra

    in CD3OD at 400 MHz ............................................................................................ 214

    Figure 6.14

    The elucidated structure of the main component in S2, with some key HMBC

    correlations ............................................................................................................... 216

    Figure 6.15

    The 1H (top) and 13C (bottom) NMR spectra for S2 in CD3OD at 400 MHz .......... 218

    Figures from Chapter 7

    Figure 7.1

    The average optical density (OD) after 72 hours incubation of wells seeded with

    solutions containing a serial dilution of cell concentrations. The optimal seeding

    concentration is shown for MA104 cells and HeLa cells. Absorbance units

    (AU) have been corrected for the media blank ......................................................... 233

    Figure 7.2

    The reduction of MTT by different concentrations of the crude samples of isolated

    compounds 1 and 2. Absorbance units (AU) have been corrected for the

    media blank .............................................................................................................. 235

    Figure 7.3

    The 50% inhibitory concentrations (g/mL) of the isolated compounds against

    MA104 and HeLa cells with the standard errors of each result ................................ 236

  • List of Figures

    xxix

    Figures from Chapter 8

    Figure 8.1

    An overview of the HPLC-piloted fractionation of Aqueous Stage 2 Separation

    fraction 16 (AS2:16) showing the media used and fractions produced at each

    stage of separation..................................................................................................... 243

    Figure 8.2

    A 3D HPLC profile showing the retention times and corresponding UV profiles

    of the comprising compounds of Aqueous Stage 2 Separation fraction 16

    (AS2:16) in 35% MeOH/H2O ................................................................................... 244

    Figure 8.3

    HPLC chromatograms of AS2:16 (FG) with the main fractions produced from

    the separation with Sephadex LH-20 gel in 35% MeOH/H2O at 254 nm ............. 245

    Figure 8.4

    (a) HPLC chromatograms of the supernatant and precipitate (compound 7) of

    AS2:16 fraction FG:16 in 40% MeOH/H2O at 210 nm; and (b) the UV profile

    of the isolated compound .......................................................................................... 247

    Figure 8.5

    (a) HPLC chromatograms of isolated compound 8 with AS2:16 fraction FG:21 in

    35% MeOH/H2O at 254 nm; and (b) the UV profile of the isolated compound.... 248

    Figure 8.6

    HPLC chromatograms of the original isolated compound 2 (from AS2:6) with

    the re-isolated compound from AS2:16 in 10% MeOH/H2O at 210 nm ............... 249

    Figure 8.7

    An overview of the HPLC-piloted fractionation of Aqueous Stage 2 Separation

    fraction 20 (AS2:20) showing the media used and fractions produced at each

    stage of separation..................................................................................................... 250

    Figure 8.8

    A 3D HPLC chromatogram showing the retention times and corresponding UV

    profiles of the comprising compounds of Aqueous Stage 2 Separation fraction 20

    (AS2:20) in 30% ACN/H2O...................................................................................... 252

    Figure 8.9

    HPLC chromatograms of Aqueous Stage 2 Separation fraction 20 (AS2:20) in

    65% MeOH/H2O and 40% ACN/H2O at 210 nm .................................................. 252

  • List of Figures

    xxx

    Figure 8.10

    HPLC chromatograms of a range of fractions from the separation of AS2:20 (AG)

    with MPLC in 35% ACN/H2O at 210 nm ............................................................. 253

    Figure 8.11

    (a) HPLC chromatograms of AS2:20 separation fraction AG:48-70 (AG1) with

    AG1:8, 9 and 15 as well as compound 9 (AG1:13-14) in 35% ACN/H2O at

    210 nm; and (b) the UV profile of the isolated compound ................................... 254

    Figure 8.12

    (a) HPLC chromatogram of isolated compound 9 with AS2:20 separation fraction

    AG:48-70 in 35% ACN/H2O at 210 nm; and (b) the UV profile of the

    isolated compound .................................................................................................... 255

    Figure 8.13

    (a) HPLC chromatograms of AS2:20 Separation fraction AG:71-94 (AG2)

    with fractions AG2:5-13, 15-19, 20, and 21-32 in 35% ACN/H2O at 210 nm;

    and (b) the UV profile of the re-isolated compound 9 (AG2:5-13) and

    S3 (AG2:21-32) ....................................................................................................... 256

    Figure 8.14

    HPLC chromatograms of Aqueous Stage 2 Separation fraction 20 (AS2:20) and

    the combined AS2:20 fraction AFG:113-119 in 35% ACN/H2O at 210 nm......... 257

    Figure 8.15

    (a) HPLC chromatograms of AG:113-119 (AG3) fraction AG3:10-16 with

    AG3:10-16:9-13 and 16-23 in 50% ACN/H2O at 210 nm; and (b) the UV

    profile of the AG3:10-16:16-23 ............................................................................... 259

    Figure 8.16

    HPLC chromatograms of AG:113-119 (AG3) fraction AG3:17-21 with

    AG3:17-21:16, 17-19, 20-22, 23, and 24-26 (compound 10) in 45% ACN/H2O

    at 210 nm .............................................................................................................. 260

    Figure 8.17

    (a) HPLC chromatograms of isolated compound 10 with fraction AG3:17-21

    in 40% ACN/H2O at 210 nm; and (b) the UV profile of the isolated compound.. 261

  • List of Figures

    xxxi

    Figures from Chapter 9

    Figure 9.1

    The elucidated structure of 7, Kaempferol 3-O-gentibioside, with some key

    HMBC correlations ................................................................................................... 265

    Figure 9.2

    The 1H (top) and 13C (bottom) NMR spectra of 7 in CD3OD at 400 MHz ............ 266

    Figure 9.3

    TLC plate showing the Rf values of authentic glucose and galactose, as well as

    those of the hydrolysis products of 7 ....................................................................... 269

    Figure 9.4

    The elucidated structure of 8, Quercetin glucoside, with some key HMBC

    correlations and the 1H NMR spectra in CD3OD at 500 MHz ................................. 271

    Figure 9.5

    TLC plate showing the Rf values of authentic glucose and galactose, as well as

    those of the hydrolysis products of 8 ....................................................................... 274

    Figure 9.6

    The elucidated structure of 9, an acylated kaempferol tetraglycoside ...................... 276

    Figure 9.7

    The 1H (top) and 13C (bottom) NMR spectra for compound 9 in CD3OD

    at 500 MHz .............................................................................................................. 277

    Figure 9.8

    Acylated kaempferol hexaglycoside isolated by Crublet et al. (2003) .................... 280

    Figure 9.9

    The Rf values of SD1 (rhamnose/glucose 3:1), SD2 (rhamnose/galactose 3:1)

    and the hydrolysis products of crude fraction AS2:20.............................................. 281

    Figure 9.10

    Some key HMBC relationships of 9 ......................................................................... 282

    Figure 9.11

    Some key ROESY interactions of 9......................................................................... 284

    Figure 9.12

    The elucidated structure of 10, an acylated kaempferol pentaglycoside with the 1H NMR spectra in CD3OD at 400 MHz .................................................................. 290

  • List of Figures

    xxxii

    Figure 9.13

    Diagram of the reference compound used in Tables 9.9 and 9.10

    (Crublet et al., 2003). R refers to a rhamnose unit ................................................... 290

    Figure 9.14

    Comparison of the original 1H NMR spectra of 10 in CD3OD at 400 MHz (top)

    and at 500 MHz (bottom) where a transition to the trans configuration is evident .. 293

    Figure 9.15

    Comparison of the 1H spectra of 10 after long-term storage (top) and 9 (bottom)

    in CD3OD at 500 MHz ............................................................................................. 293

    Figure 9.16

    1H spectrum of S3 in CD3OD at 500 MHz (top) and an expansion of the aromatic

    region of the spectrum (bottom) showing the presence of two

    configurational isomers ............................................................................................ 295

    Figure 9.17

    1H spectrum of S4 in CD3OD at 400 MHz (top) and an expansion of the aromatic

    region of the spectrum (middle). After short-term storage, the cis configuration

    becomes less predominant (bottom) ........................................................................ 297

    Figures from Appendix 1

    Figure A1.1

    Elucidated structures of compounds 1, prodelphinidin (top) and 2, gallocatechin

    (bottom) .................................................................................................................... 338

    Figure A1.2

    The COSY (top) and HSQC (bottom) for compound 1 in D2O at 400 MHz............ 339

    Figure A1.3

    The HMBC in D2O at 400 MHz (top) and the ESIMS (bottom) for compound 1.... 340

    Figure A1.4

    The 13C NMR spectra for compound 2 in CD3OD at 400 MHz ............................... 341

    Figure A1.5

    The COSY in CD3OD at 400 MHz (top) and ESIMS (bottom) for compound 2 342

    Figure A1.6

    Elucidated structures of compounds 3, 9-HOTE (top) and 4, 9-HODE (bottom) .... 343

  • List of Figures

    xxxiii

    Figure A1.7

    The COSY (top) and HSQC (bottom) NMR spectra for compound 3 in

    CD3OD at 400 MHz .................................................................................................. 344

    Figure A1.8

    The HMBC in CD3OD at 400 MHz (top) and ESIMS (bottom) for compound 3 .... 345

    Figure A1.9

    The COSY (top) and HSQC (bottom) NMR spectra for compound 4 in

    CD3OD at 400 MHz .................................................................................................. 346

    Figure A1.10

    The HMBC in CD3OD at 400 MHz (top) and ESIMS (bottom) for compound 4 .... 347

    Figure A1.11

    Elucidated structures of compounds 5, Hyptatic acid -A (top) and 6a, 3-O-cis-p-

    coumaroyl tormentic acid (bottom). Compound 6b is the trans isomer................... 348

    Figure A1.12

    The COSY (top) and HSQC (bottom) NMR spectra for compound 5 in

    CD3OD at 400 MHz .................................................................................................. 349

    Figure A1.13

    The HMBC in CD3OD at 400 MHz (top) and ESIMS (bottom) for compound 5 .... 350

    Figure A1.14

    The COSY (top) and HSQC (bottom) NMR spectra for compound 6 in

    CD3OD at 400 MHz .................................................................................................. 351

    Figure A1.15

    The HMBC in CD3OD at 400 MHz (top) and ROESY in CD3OD at 500 MHz

    (bottom) for compound 6 ......................................................................................... 352

    Figure A1.16

    The ESIMS for compound 6 ..................................................................................... 353

    Figure A1.17

    Elucidated structures of compounds 7, kaempferol gentiobioside (top) and 8,

    Quercetin glucoside (bottom) ................................................................................... 354

    Figure A1.18

    The COSY (top) and HSQC (bottom) NMR spectra for compound 7 in CD3OD

    at 400 MHz .............................................................................................................. 355

    Figure A1.19

    The HMBC in CD3OD at 400 MHz (top) and ESIMS (bottom) for compound 7 .... 356

  • List of Figures

    xxxiv

    Figure A1.20

    The COSY (top) and HSQC (bottom) NMR spectra for compound 8 in CD3OD

    at 400 MHz................................................................................................................ 357

    Figure A1.21

    The HMBC in CD3OD at 400 MHz (top) and ESIMS (bottom) for compound 8 ... 358

    Figure A1.22

    Elucidated structures of compounds 9, Acylated kaempferol tetraglycoside (top)

    and 10, acylated kaempferol pentaglycoside (bottom) ............................................. 359

    Figure A1.23

    The COSY (top) and HSQC (bottom) NMR spectra for compound 9 in CD3OD

    at 400 MHz................................................................................................................ 360

    Figure A1.24

    The HMBC in CD3OD at 400 MHz (top) and ROESY in CD3OD at 500 MHz

    (bottom) for compound 9 ......................................................................................... 361

    Figure A1.25

    The HRESIMS (top) and the IR spectrum (bottom) for compound 9....................... 362

    Figure A1.26

    The ESIMS (top) and COSY in CD3OD at 500 MHz (bottom) for compound 10 ... 363

    Figure A1.27

    Elucidated structures of compounds S1, Pyrogallol (top) and S2,

    24-hydroxytormentic acid (bottom) ..... .................................................................... 364

    Figure A1.28

    The COSY (top) and HSQC (bottom) NMR spectra for compound S1 in CD3OD

    at 400 MHz .............................................................................................................. 365

    Figure A1.29

    The HMBC in CD3OD at 400 MHz (top) and GC-MS library match (bottom) for

    compound S1............................................................................................................. 366

    Figure A1.30

    The COSY (top) and HSQC (bottom) NMR spectra for compound S2 in CD3OD

    at 400 MHz................................................................................................................ 367

    Figure A1.31

    The HMBC in CD3OD at 400 MHz (top) and ESIMS (bottom) for compound S2.. 368

    Figure A1.32

    The COSY in CD3OD at 400 MHz (top) and ESIMS (bottom) for S3..................... 369

  • List of Figures

    xxxv

    Figure A1.33

    The COSY (top) and HSQC (bottom) NMR spectra for S4 in CD3OD at

    400 MHz .................................................................................................................. 370

    Figure A1.34

    The HMBC in CD3OD at 400 MHz (top) and ESIMS (bottom) for S4.................... 371

    Figures from Appendix 2

    Figure A2.1

    The percent inhibition of MA104 cells and HeLa cells per concentration of each

    compound isolated from the aqueous extract. The concentration of each compound

    closest to the IC50 is given......................................................................................... 374

    Figure A2.2

    The percent inhibition of MA104 cells and HeLa cells per concentration of each

    compound isolated from the methanol extract. The concentration of each

    compound closest to the IC50 is given....................................................................... 375

  • List of Compound Structures

    xxxvi

    List of Compound StructuresList of Compound StructuresList of Compound StructuresList of Compound Structures

    Compounds described in Chapter 1

    1.1 Morphine ....................................................................................................... 2

    1.2 Quinine.......................................................................................................... 2

    1.3 Berberine ....................................................................................................... 12

    1.4 Strychnine ..................................................................................................... 12

    1.5 Scopoletin...................................................................................................... 14

    1.6 Suksdorfin ..................................................................................................... 14

    1.7 Benzoquinone................................................................................................ 14

    1.8 Anthroquinone .............................................................................................. 14

    1.9 Plumbagin ..................................................................................................... 14

    1.10 Menthol ......................................................................................................... 15

    1.11 Thymol .......................................................................................................... 15

    1.12 1,8-Cineole .................................................................................................... 15

    1.13 Artemisinin.................................................................................................... 16

    1.14 -Carotene ..................................................................................................... 16

    1.15 Squalene ........................................................................................................ 16

    1.16 Ergosterol-5,8-endoperoxide......................................................................... 17

    1.17 Oleanolic acid................................................................................................ 17

    1.18 Ursolic acid ................................................................................................... 17

    1.19 Jujubogenin saponins .................................................................................... 17

    1.20 Steroidal saponins ......................................................................................... 17

    1.21 Salicin............................................................................................................ 20

    1.22 Castanospermine ........................................................................................... 20

    1.23 Tubocurarine ................................................................................................. 20

    1.24 Sanguarine..................................................................................................... 24

    1.25 Epicatechin gallate ........................................................................................ 24

    1.26 Carbazole alkaloid......................................................................................... 25

    1.27 Rubraxanthone .............................................................................................. 25

  • List of Compound Structures

    xxxvii

    1.28 Dehydroxycostuslactone ............................................................................... 25

    1.29 Vincristine ..................................................................................................... 27

    1.30 Vinblastine .................................................................................................... 27

    1.31 Paclitaxel ....................................................................................................... 28

    1.32 Camptothecin ................................................................................................ 29

    1.33 Combretastatin A-4 ....................................................................................... 29

    1.34 Standard numbering of flavonoids ................................................................ 33

    1.35 2,2'-Dihydroxychalcone ................................................................................ 33

    1.36 Apigenin ........................................................................................................ 33

    1.37 Hesperetin ..................................................................................................... 33

    1.38 Delphinidin.................................................................................................... 33

    1.39 Daidzein ........................................................................................................ 33

    1.40 -D-Glucose .................................................................................................. 34

    1.41 -L-Rhamnose ............................................................................................... 34

    1.42 Xylose ........................................................................................................... 34

    1.43 -Arabinose................................................................................................... 34

    1.44 Cinnamic acid................................................................................................ 35

    1.45 p-Coumaric acid ............................................................................................ 35

    1.46 Caffeic acid ................................................................................................... 35

    1.47 Tiglic acid...................................................................................................... 35

    1.48 Malonic acid.................................................................................................. 35

    1.49 Galangin ........................................................................................................ 38

    1.50 Datiscetin....................................................................................................... 38

    1.51 Kaempferol.................................................................................................... 38

    1.52 Morin............................................................................................................. 38

    1.53 Quercetin ....................................................................................................... 38

    1.54 Myricetin ....................................................................................................... 38

    (Structures obtained from Wishart D.S., 2007, unless otherwise specified in the text)

  • List of Compound Structures

    xxxviii

    Compounds described in Chapter 2

    2.1 Barringtogenol C........................................................................................... 49

    2.2 16-Deoxy-barringtogenol C .......................................................................... 49

    2.3 16,21,22,28-Tetrahydroxyolean-12-en-3-one......................................... 49

    2.4 21,22-Ditigloylbarringtogenol C-28-O