by byron r. berger, jan l. van der voort, david f. …carbonate rocks, and (2) a later...

50
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY GEOCHEMICAL EXPLORATION STUDIES IN THE DILLON, MONTANA-IDAHO x QUADRANGLE: GEOCHEMICAL RECONNAISSANCE OF MINING DISTRICTS IN THE SOUTHERN PIONEER MOUNTAINS AND VICINITY, BEAVERHEAD COUNTY, MONTANA By Byron R. Berger, Jan L. Van der Voort, David F. Siems, and Eric P. We!sen Open-File Report 79-1426 1979

Upload: others

Post on 09-May-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

GEOCHEMICAL EXPLORATION STUDIES IN THE

DILLON, MONTANA-IDAHO 1° x 2° QUADRANGLE:

GEOCHEMICAL RECONNAISSANCE OF MINING DISTRICTS

IN THE SOUTHERN PIONEER MOUNTAINS AND VICINITY,

BEAVERHEAD COUNTY, MONTANA

By Byron R. Berger, Jan L. Van der Voort,

David F. Siems, and Eric P. We!sen

Open-File Report 79-1426

1979

Page 2: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

CONTENTS

Page

Introduction 1

Sampling and analytical procedures 3

Bannack mining district 3

Geology 4

Mineralization 6

Geochemistry 7

Blue Wing mining district 9

Geology 9

Mineralization 11

Geochemistry 12

Ermont mining district 12

Mineralization 15

Geochemistry 16

Argenta mining district 18

Geology 18

Mineralization 20

Geochemistry 21

Baldy Mountain mining district 21

Geology 21

Mineralization 23

Geochemistry 25

Discussion 25

Results of chemical analyses 28

_ _ _ ____ _ ______________ ___________________._______ « __ /I /I~ >

Page 3: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

GEOCHEMICAL EXPLORATION STUDIES IN THE

DILLON, MONTANA-IDAHO 1° x 2° QUADRANGLE:

GEOCHEMICAL RECONNAISSANCE OF MINING DISTRICTS

IN THE SOUTHERN PIONEER MOUNTAINS AND VICINITY,

BEAVERHEAD COUNTY, MONTANA

By Byron R. Berger, Jan L. Van der Voort,

David F. Siems, and Eric P. We!sen

Open-File Report 79-1426

1979

Page 4: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

CONTENTS

Page

Introduction 1

Sampling and analytical procedures 3

Bannack mining district 3

Geology -- 4

Mineral ization- - -- 6

Geochemistry- 7

Blue Wing mining district 9

Geology---- -- __________ __ 9

Mineral ization-- - 11

Geochemistry - 12

Ermont mining district - 12

Geologyr 12

Mineralization 15

Geochemistry 16

Argenta mining district-- -- 18

Geology 18

Mineralization 20

Geochemistry 21

Baldy Mountain mining district 21

Geology 21

Mineral ization-- 23

Geochemistry 25

Discussion-- - 25

Results of chemical analyses -- -- 28

References 44

Page 5: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

CONTENTS continued

TABLESPage

Table 1. Trace elements in ores in the Bannack mining district 8

2. Trace elements in ores in the Blue Wing mining district 13

3. Trace elements in ores in the Ermont mining district 17

4. Trace elements in ores in the Argenta mining district 22

5. Trace elements in ores in the Baldy Mountain

mining district - 26

6. Analytical data from rock samples collected in mining

districts in the southern Pioneer Mountains,

Beaverhead County, Montana 29

7. Longitude and latitude for samples collected in mining

districts in the southern Pioneer Mountains,

Beaverhead County, Montana 41

FIGURES

Figure 1. Major mining districts in the southern Pioneer Mountains

and vicinity 2

2. Generalized geologic map of the Bannack mining district 5

3. Generalized geologic map of the Blue Wing mining

district (from Lowell/1965) 10

4. Generalized geologic map of the Ermont mining district

(from Myers, 1952) 14

5. Generalized geologic map of the Argenta mining district--- 19

6. Preliminary geologic map of the Baldy Mountain mining

district (D. R. Zimbelman, Aug. 1979, unpublished data)- 24

Page 6: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

INTRODUCTION

Mineral resource studies are being undertaken in the Dillon, Montana-Idaho,

1° x 2° quadrangle as part of the Conterminous United States Mineral Assessment

Program (CUSMAP) of the U.S. Geological Survey. A broad spectrum of coordinated

geologic, geochemical, and geophysical data is being systematically collected

for the purposes of disseminating and interpreting mineral-resource information

for land-use planning and resource management. The synthesis of regional

geological information is an integral part of the program in order to increase

the understanding of crustal evolution and the controls on the distribution of

mineral deposits.

The overall objectives of the geochemical exploration investigations in

the Dillon project area are to (1) define the broad, regional geochemical

patterns; (2) geochemically characterize the different types of known mineral

deposits; (3) undertake research to develop and (or) evaluate regional

geochemical exploration techniques; (4) research the genesis of geochemical

dispersion patterns germane to gaining an understanding of regional metallo-

genesis and the geological controls of mineral occurrences; and (5) to provide

supportive data to the consanguineous geologic and geophysical studies.

The purpose of this preliminary report is to present reconnaissance

geochemical exploration data from mineral districts in the vicinity of the

southern Pioneer Mountains, Beaverhead County, MT (fig. 1). A considerable

number of historically productive mineral deposits occur in the southern

Pioneer Mountains, including the Bannack, Blue Wing, and Argenta mining

districts. The economically most important metals in the area discussed in

this report include silver, gold, copper, lead, zinc, and tungsten.

1

Page 7: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

FIGURE 1.--Major mining districts in the southern Pioneer Mountains and vicinity.

Page 8: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

Previous studies in the area have catalogued the geology, mineralogy, and

production of the various mineral deposits (Winchell, 1914; Shenon, 1931; Geach,

1972), but none of the studies have geochemically characterized the deposits in

order to build a systematic picture of the interrelationships (or lack thereof)

of the deposits for exploration and evaluation purposes. The geochemical survey

described here has found distinct elemental suites that are of considerable value

in gaining an understanding of the known deposits and, when utilized in conjunction

with other geological factors, affords one the opportunity of defining and

assessing minerals exploration targets.

SAMPLING AND ANALYTICAL PROCEDURES

Rock samples were collected during this study from selected mines and prospects

in all of the major mining districts in the vicinity of the southern Pioneer

Mountains. The samples were chosen whenever possible to represent ore, altered

host rock, and unaltered host rock. All samples were analyzed for 31 elements

using a six-step semiquantitative emission spectrographic technique (Grimes and

Marranzino, 1968), and for five elements (zinc, arsenic, antimony, tin, and

tungsten) using wet-chemical techniques. Colorimetric techniques were used to

analyze for arsenic (Almond, 1953) and tungsten (Quin and Brooks, 1972). Atomic-

absorption spectrophotometric techniques were used to analyze for zinc (Ward and

others, 1969), antimony (Welsch and Chao, 1975), and tin (Welsch and Chao, 1976).

BANNACK MINING DISTRICT

The Banncak mining district is in' T. 8 S., R. 11 W., approximately 20 miles

southwest of Dillon, MT (fig. 1). From 1862 intermittently until World War II,

Tertiary to Holocene placer deposits along Grasshopper Creek and adjacent lode

deposits were mined for the contained gold values. Shenon (1931) estimated that

approximately $10 million in placer gold and $2 million incombined metal values from

lode deposits were recovered from the district. Lyden (1948) estimated that from

3

Page 9: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

$2-3 million in placer gold were mined. The settlement of Bannack served as the

first Montana territorial capital in 1863, and the town is now partially

restored as a state park.

Geology

The general geology of the district (fig. 2) was mapped by Lowell (1965).

Mississippian carbonates and Pennsylvanian quartzites are the oldest exposed

rocks in the district, although Precambrian metamorphic rocks and older Paleozoic

formations occur south of Bannack. Probable Laramide (L, W. Snee, Aug. 1979,

unpublished data) extrusive and intrusive rocks occupy the eastern part of the

district, and the mineral deposits in the area appear to be genetically related

to these rocks, Nonmarine Tertiary sediments and volcanic rocks are prevalent

in the area, particularly in the western part of the district.

Lowell (1965) assigned the Mississippian carbonate rocks to the Madison

Group. He recognized both the Lodgepole and Mission Canyon Limestones, although

the two formations are undivided wherever altered to marble by the intrusive

rocks, Shenon (1931) described several hundred feet of carbonate rocks in the

district consisting of blue-gray, blue-white, and pink crystalline limestone,

Some parts of the section contain abundant fossil remains, and black chert

lenses and nodules occur in the middle part of the section.

The Quadrant Quartzite crops out on the south side of the district and

consists of white to pinkish-white vitreous quartzite (Shenon, 1931).

Extrusive volcanic rocks are prevalent in the district and consist of

rhyodacite to andesite flows, tuffs, agglomerates, and tuff breccias. The

volcanic rocks are intruded by a medium-grained granodiorite stock that is

exposed at two localities in the main part of the Bannack district. The

mineralogy of the intrusion and that of the majority of the extrusive rocks

Page 10: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

FIGURE 2.--Generalized geologic map of the Bannack mining district

nyoo 1

1/tf^frvS , \ ( /^

\ V ^Hr-f

c

I

»*. o it,

tim

}

fitU.lt

Page 11: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

consists of plagioclase (andesine), orthoclase, biotite, hornblende, quartz,

and magnetite. Pyrite is common along fractures and joints (Shenon, 1931).

The age of these igneous rocks is unknown, although we infer a Laramide age on

the basis of regional geochemical and igneous patterns.

The structural framework of the area is dominated by north-trending folds

and faults. North-trending, west-dipping thrust faults bring the Madison Group

limestones over older Paleozoic carbonate rocks. The low-angle faults are

displaced by northwest- and northeast-trending high-angle structures, and all

of these faults are intruded by the granodiorite.

Mineralization

Two episodes of metallization were recognized during the present study:

(1) an early contact metasomatic event producing skarn assemblages in the

carbonate rocks, and (2) a later fracture-controlled mineralization episode.

There are two types of skarn assemblages that were recognized during the

field study: magnetite-dominant calc-silicate assemblages and garnet-dominant

assemblages, The magnetite rock occurs as pods and stringers in the Madison

limestones immediately adjacent to the granodiorite contact. Epidote,

tremolite, quartz, specular hematite, and pyrite are common accessory minerals,

although most of the exposed rocks are oxidized, and the magnetite is mixed

with serpentine, quartz, malachite, and various clay minerals. The garnet

skarn consists primarily of red garnet, pyroxene, epidote, idocrase, quartz,

calcite, and pyrite. Away from the 1imestone-granodiorite contact the limestones

are bleached and recrystallized to coarse calcite.

Page 12: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

The vein systems crosscut the calc-silicate rocks in many instances, and

the main alteration phases associated with the veins are quartz, sericite, clay

minerals, and chlorite. The width of alteration selvages on the veins varies

from a few inches to several feet. The vein sulfides occur as open-space

fillings in quartz. The immediate edges of the veins consist of quartz and

sericite, grading outward in the larger veins into an argil!ic assemblage.

Many of the mineral deposits occur near the contact of the granodiorite and the

sedimentary rocks (Shenon, 1931), and some of the primary mineral phases in the

granodiorite are altered. Cloudy feldspar grains are common due to white mica

and clay, and biotite and hornblende are frequently altered to chlorite,

magnetite, and, less commonly, epidote. Shenon (1931) described the alteration

of hornblende to biotite, but this relationship was not confirmed during the

present investigation.

Gold is the most important ore mineral in the Bannack district. Shenon

(1931) noted the presence also of native silver, tetradymite, galena, sphalerite,

argentite, and chalcopyrite.

Geochemistry

Geochemical sampling in the district suggests that the predominant

elemental suite is gold, silver, copper, molybdenum, tungsten, and zinc

(table 1). Arsenic, antimony, and tin are also present in some of the sampled

occurrences, but the variability in 'these elements suggests that they do not

serve as useful characterizes of precious-metal mineralization. Lead was not

found to be abundant in any of the samples analyzed.

Page 13: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

TABLE 1, Trace elements in ores in the Bannaek mining district.

Mine/prospect

Pioneer mine

Golden Leaf mine

Hillside placer

Priscilla mine

Location

Sec.

Sec.

Sec.

Sec.

8

8

8

8

Trace-element suite

Au-Ag-Cu-Mo-Sn-Zn

Au-Ag-As-Cu-Mo-Pb-W

Au-Ag-Cu-Mo-W-Zn

Ag-Cu-Mo-Sn-W-Zn

Page 14: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

Iron and manganese oxides are the most consistent carriers of the

ore-suite elements. The garnet skarn rocks do not appear to contain the same

trace elements as the quartz veins. Magnetite skarn contains copper, silver,

and tin; adjacent to the quartz veins these rocks are highly anomalous in

silver, copper, tin, tungsten, and zinc, and are slightly anomalous in arsenic

and antimony, The altered, granodiorite does not consistently contain any of

the ore-suite elements, although copper, molybdenum, and silver are common.

The recrystallized and bleached limestone contains only trace amounts of

antimony and silver, A pervasively altered volcanic rock contains anomalous

beryllium, lanthanum, and molybdenum with minor amounts of arsenic and antimony,

BLUE WING MINING DISTRICT

The Blue Wing mining district is immediately north of the Bannack district

In T, 7 S., R. 11 W. The first locations in the district were apparently in

1864 and were the first silver deposits located in Montana (Shenon, 1931),

Total mineral production from the district is not accurately known, although

sporadic production to date of primarily silver areas has been approximately

$2*3 million (Shenon, 1931; Geach, 1972).

Geology

As in the Bannack district, Lowell (1965) found Mississippian carbonate

rocks to be the oldest rocks in the district (fig. 3), These rocks are in

tectonic contact with Laramide(?) extrusive volcanic rocks, and both of these

sequences are intruded by granodiorite.

The west-dipping Madison limestones are thrust over the Devonian Jefferson

Dolomite(?) along a northerly trend. The granodiorite is primarily but not

exclusively exposed along this thrust contact. Regional aeromagnetic data

(U,S, Geological Survey, 1975) and data from mine workings in the district

Page 15: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

FIGURE 3. Generalized geologic map of the Blue Wing mining district (from Lowell, 1965).

(

X. \\

'"

V

\v (

!/

Ta

f* ?0

^ /'

Palfoj<>«~ Pe/ecxoic,

(fas

10

Page 16: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

(Shenon, 1931) suggest that erosion along the fault trend has served to expose

the intrusion, but the emplacement of the intrusion was not controlled by the

thrust faulting.

Mineralization

Three types of metallization were recognized in the district during the

present study: (1) an early contact-metasomatic episode producing skarn

assemblages in the carbonate rocks, and (2) a later fracture-controlled

mineralization that produced open-space filling veins and pervasive replacement

of the limestone adjacent to the fissures.

Only garnet skarn was found in the district during this study. In addition

to garnet, pyroxene, idocrase, epidote, quartz, and calcite make up the skarn

rock,

The open-space filling veins are made up of sulfide minerals in a matrix

of quartz, calcite, and sericite. The replacement veins are made up chiefly

of dense fine-grained quartz. Alteration haloes adjacent to the open-space

fissure veins are narrow and end abruptly against ostensibly unaltered limestone

The replacement veins on the other hand have broad alteration haloes consisting

of quartz and calcite in the carbonate rocks, and quartz, calcite, sericite,

and clay in the volcanic rocks.

Shenon (1931) reported the ore minerals to consist of galena, tetrahedrite,

jamesonite, sphalerite, pyrite, chalcopyrite, argentite, cerargyrite,

pyrargyrite, polybasite, and stibnite.

The mineral deposits in the Blue Wing district are not as deeply weathered

as those in the Bannack district. Relict sulfide minerals are commonly found

in the gossans. Minerals common in the oxidized rock include quartz, goethite,

hematite, jarosite, undifferentiated iron and manganese oxides, azurite,

malachite, hemimorphite, and anglesite.

11

Page 17: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

Geochemistry

Geochemical sampling in the district suggests that the predominant

elemental suite is silver, arsenic, cadmium, copper, molybdenum, lead, antimony,

and zinc (table 2). Tin is ubiquitous in the southern part of the district,

vanadium seems to predominate in the central part of the district, and barium

occurs in the ores of the northern part of the district.

Iron and manganese oxides give the best indications of fissure-vein

mineralization. Where the replacement deposits occur, silver, lead, antimony,

and zinc are dispersed into the alteration haloes away from the main zone of

metallization. The recrystallized and bleached limestone contains silver.

The slightly to strongly altered granodiorite contains small amounts of silver,

zinc, and antimony.

ERMONT MINING DISTRICT

The Ermont mining district and adjacent Badger Pass region are about 14

miles west of Dill on, MT, in T. 6 S., R. 11 W. The Ermont gold deposits were

discovered in 1926 (Shenon, 1931), and produced bullion until World War II

(Geach, 1972), In excess of $1,400,000 in gold (Geach, 1972) was taken from

the district, No documented production has occurred in the Badger Pass area.

Geology

The general geology of the district was mapped by Kelly (1941) and Myers

(_1952)(fig. 4), Cambrian through Mississippian sedimentary rocks are exposed

In the district, with the majority of the productive horizons occurring in

Devonian dolomites, The rocks in general strike northeast and dip to the

southeast, Andesite dikes intrude the sedimentary rocks throughout the area.

12

Page 18: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

TABLE 2,-~Trace elements in ores in the Blue Wing mining district.

Mine/prospect

Charter Oak mine

Bob Ingersoll mine

Logan mine

Iron Mask mine

Pomeroy mine

Del Monte mine

New Departure mine

Location

Sec.

Sec.

Sec.

Sec.

Sec.

Sec.

Sec.

4

4

33

28

28

28

26

Trace-element suite

Ag-As-Cd-Cu-Mo-Pb-Sb-Sn-Zn

Ag-As-Cd-Cu-Mo-Pb-Sb-Sn-Zn

Ag-As-Cd-Cu-Mo-Pb-Sb-Sn-Zn

Ag-As-Cd-Cu-Mo-Pb-Sb-Sn-V-Zn

Au-Ag-As-Cu-Mo-Pb-Sb-V-Zn

Ag-Ba-Cd-Cu-Pb-Sb-Zn

Ag-As-Ba-Cd-Cu-Mo-Pb-Sb-Zn

13

Page 19: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

FIGURE 4.--Generalized geologic map of the Ermont mining district(from Myers, 1952).

Ta

ic Je&rt&n

14

Page 20: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

Northeast of the main part of the district the Cambrian Flathead

Quartzite, Wolsey Shale, and Pilgrim Dolomite crop out. Neither the Meagher

Formation, Park Shale, nor Red Lion Formation were separately recognized by

Myers (1952) in the area. The Pilgrim Dolomite crops out in the western part

of the mineralized area and consists of thick-bedded, sugary dolomite containing

some chert beds. The Devonian Jefferson Dolomite overlies the Cambrian units

and consists of thin- to medium-bedded, black, fetid dolomite. The Three Forks

Shale overlies the Jefferson and is mostly thinly laminated, fissile shale,

The Mississippian Madison Group crops out in the south and southeastern parts

of the district and hosts mineralization in the Badger Pass region.

Northerly trending andesite dikes and sills crop out in the main part of

the district and are spatially associated with mineralization. The dikes

contain andesine phenocrysts in a finer grained andesine, orthoclase, and

augite-bearing groundmass (Kelly, 1941).

The predominant structural framework of the area consists of north- to

northwest-trending high-angle faults. A major zone of thrust faulting is

exposed about 1 mile southeast of the center of the Ermont district, and this

zone transects the Badger Pass region.

Mineralization

Two distinct types of metallization can be recognized geochemically in

the district: (1) replacement gold 'deposits similar to the Carlin-type, and

(2) gold- and silver-bearing base-metal sulfide fissure veins. Only the former

type of metallization has been productive.

15

Page 21: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

The gold ore is disseminated and occurs as replacements of limy dolomite

and also as replacements of andesite. Pyrite is the principal sulfide mineral

present, although stibnite is not uncommon. The gold does not occur as visible

particles (Kelly, 1941). Alteration in the dolomite consists chiefly of quartz

and appears to be fault controlled. Alteration in the andesite dikes consists

of quartz, sericite, kaolinite, chlorite, and calcite (Kelly, 1941).

The precious- and base-metal mineralization spatially overlaps the gold

mineralization on the western side of the Ermont district, and possibly extends

into the Badger Pass region. The mineralized samples observed were thoroughly

oxidized, but the porous nature of the silica boxworks suggests that the deposits

were formed by open-space filling. Quartz, sericite, and clay occur in the

host rocks adjacent to the veins.

Geochemistry

Geochemical sampling in the district suggests two different trace-element

suites (table 3), The main elements accompanying gold mineralization are

arsenic, barium, molybdenum, antimony, and tungsten with minor amounts of

silver, lead, and zinc. The main elements accompanying the silver minerali­

zation are arsenic, cadmium, copper, molybdenum, lead, antimony, and zinc with

minor amounts of gold.

The trace elements accompanying the gold mineralization display a broad

dissemination into the bedrock around the structures controlling the

mineralization. Silicified ledges of Jefferson Dolomite and altered andesite

show the same trace-element suites. In contrast, the alteration haloes

accompanying the silver mineralization do not display the trace-element suite

except immediately adjacent to the vein. Ostensibly unaltered Jefferson

Dolomite and andesite porphyry within the district but away from the exploited

deposits do not contain elemental suites suggestive of either type of metalli­

zation, although the dolomite contains anomalous amounts of silver, lead, and

antimony. __I D

Page 22: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

TABLE 3. Trace elements in ores in the Ermont mining district.

[Parentheses () denote those elements not consistently found in all samples taken from a given deposit.]

Mine/prospect Location Trace-element suite

Gold deposits:

Ermont No. 2 Sec. 35 Au-(Ag)-As-Ba-Mo-Sb

Ermont No, 19 Sec. 35 Au-(Ag)-As-Ba-(Pb)-Sb-(Zn)

Badger mine Sec. 26 Au-(Ag)-Ba-Mo-(Pb)-Sb-W

Prospect Sec. 26 Au-(Ag)-As-Ba-Mo-(Pb)-Sb-W-(Zn)

Prospect Sec. 35 Au-(Ag)-As-Ba-Mo-Sb-(Zn)

Silver deposits:

Big West mine Sec. 35 Ag-As-Cd-Cu-Mo-Pb-Sb-Zn

17

Page 23: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

ARGENTA MINING DISTRICT

The Argenta mining district is in T. 6 S., R. 11 W. about 1 mile north and

northeast of the Ermont district. The district extends more than 4 miles

northwest of the Argenta townsite, and as such is one of the largest precious-

and base-metal camps in the region. Ore was discovered in 1865, and production

has occurred sporadically until the present. Total production from the

district has been on the order of $6 million (Shenon, 1931; Geach, 1972)-, the

principal economic metals are gold, silver, copper, lead, and zinc.

Geology

Rocks of all ages occur in the district, but the principal mineral deposits

occur in Precambrian and Paleozoic sedimentary rocks (fig. 5). The district is

on the eastern flank of a large anticline, the core of which consists of

Precambrian quartzite. Myers (1952) called this prominent structural feature

the Humboldt Mountain anticline.

The northwestern part of the district consists primarily of complexly

faulted Precambrian and Cambrian quartzite, shale, and dolomite. The core of

the district near the settlement of Argenta is underlain by Madison Group

1imestones t

Both extrusive and intrusive igneous rocks occur in the district. The

most important of these rocks in terms of the mineralization are quartz

monzonite and granodiorite stocks and andesite porphyry and dacite porphyry

dikes, Shenon (.1931) described the petrography of the various igneous rocks.

The mineralogy of the granitic stocks is andesine, orthoclase, quartz, biotite,

hornblende, and magnetite. The andesite dikes contain andesine phenocrysts in

a finer grained matrix of andesine and augite with accessory magnetite. The

dacite dikes contain phenocrysts of feldspar, quartz, and augite in a very

fine grained felted groundmass.

18

Page 24: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

Alluvium"7?

C D

FIGURE 5. --General ized geologic map of the Argenta mining district.

\ \

/

vt

/ /|Q( I fe

\'*' iV

V-/ y

^ \ i/

\ ^ t \

^s

\. x Y / n <^J'A. -V p ' /

NT^>- ' * <xi V. // /

/'.' ' "~ ~ r>f/c ^ ^ LI. ' x-x*^ \\

6

A'R-x ^C"\,\. \ J -^ <\^o^c. ' ^ ^-

^ > <~-<^0, f0 '/2 /*.'&_

o h Ik*- i- i j

dllvj

N .y. * "fe

^/CIA/

1

-»\ x/>x\^ r\ Tf^r <> f

c s \

Asi-i> ^i IMP i\^ ^ V /"VA Jw "v\ V^^i. c^^^X

^

\ /\ / .i x j Y

V»/r " N ^ X, /\ ̂ fN^

A /

J\vr>Ak0 /%1/^V

w Tmiinfi-le.

\\

19

Page 25: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

North- to northwest-trending high-angle faults are the predominant

structural features in the district. Major thrust faults are both west and

east of the main part of the district.

Mineralization

Two episodes of mineralization are evident in the district: (1) an early

metasomatic alteration of carbonate rocks that produced a skarn assemblage,

and (2) a later fracture-controlled complex base- and precious-metal metalliza­

tion.

The skarn assemblage consists in the most productive areas of garnet,

idocrase, pyroxene, tremolite, calcite, quartz, and epidote. Fine-grained

pyrite and base-metal sulfides occur in the skarn. Large masses of skarn

north of Argenta are composed wholly of fine-grained garnet and quartz. Bleached

recrystallized limestone surrounds the skarn but contains no calc-silicate

minerals.

The complex metal veins occur as tabular shoots along bedding planes and

fissures and as pipe!ike bodies (Shenon, 1931). All of these types occur close

to the contact with the granitic rocks. Alteration adjacent to the veins

consists of quartz and sericite grading outward into a quartz and clay assem­

blage. Veins crosscutting the granitic stocks produced intense phyllic

alteration consisting of calcite adjacent to the veins and a weak chloritization

of mafic minerals away from the veins. The dike rocks are intensely altered.

The feldspar is altered to sericite, and the groundmass appears to be mostly

quartz and epidote. The andesite shows a thorough alteration of all feldspar

to sericite, and the mafic minerals are pseudomorphed by chlorite, epidote,

and magnetite,

20

Page 26: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

Geochemistry

The geochemical sampling in the district suggests that the predominant

elemental suite is silver, arsenic, cadmium, copper, molybdenum, lead, antimony,

and zinc (table 4). Tin and tungsten are common in all but the western parts

of the district, and bismuth occurs sporadically,

Iron and manganese oxides are the most useful indicators of mineralization.

The calc-silicate hornfels and skarn rocks usually contain silver, lead, and

zinc but do not consistently contain the other trace elements characteristic

of the complex base- and precious-metal mineralization. Likewise, the altered

dike rocks are anomalous in silver, lead, and zinc, but are not anomalous in

the other elements. The altered stocks contain silver, copper, molybdenum,

lead, and zinc; frequently contain tin and tungsten; and infrequently contain

bismuth, Weakly propylitized quartz monzonite west of the Argenta townsite

contains anomalous lead and zinc.

BALDY MOUNTAIN MINING DISTRICT

The Baldy Mountain mining district is in T. 6 S., R. 12 W., 3 miles west

of the Argenta district on the south cide of Baldy Mountain, Gold placers and

lode silver deposits were discovered in the 1860's (Geach, 1972), but production

has been sporadic and there has probably been little actual metal recovered.

After World War II, tungsten was discovered in skarns, but there has been no

economic production.

Geology

The general geology of the district has never been mapped in detail.

Geologic studies are being conducted in conjunction with the current geochemical

studies, and preliminary results indicate that Precambrian, Cambrian, Devonian,

and Mississippian sedimentary rocks are complexly faulted and intruded by the

21

Page 27: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

TABLE 4. * Trace elements in ores in the Argenta mining district.

[Parentheses () denote those elements not consistently found in all samples taken from a given deposit.]

Mine/prospect Location Trace-element suite

Unnamed Sec. 30 Ag-As-Bi-Co-Cu-Mo-Pb-Sb-V-W-Zn

Unnamed Sec. 30 Ag-As-Cu-Mo-Pb-Sb-Sn-W-Zn

Iron Mountain West Sec. 30 Ag-As-Cd-Cu-Mo-(Sb)-Pb-Zn

Iron Mountain Sec. 30 Ag-As-Cd-Cu-Pb-Sn-(W)-Zn

Iron Mountain East Sec. 30 Ag-Ba-Cd-Cu-Mo-Pb-Zn

Mauldin Sec. 29 Ag-Pb-Zn

Prospect Sec. 13 Au-Ag-As-Cd-Cu-Mo-Pb-Sb-Sn-W-Zn

Tuscarora Sec. 18 Ag-As-Bi-Cd-Cu-Mo-Pb-Sb-Sn-Zn

Dexter Sec. 17 Ag-Bi-Cd-Cu-Mo-Pb-Sn-(W)-Zn

Mayday Sec. 7 Au-Ag-As-Cd-Cu-Mo-Pb-Sb-V-Zn

Groundhog Sec. 18 Ag-As-Cu-Mo-Pb-Sb-Zn

Midnight South Sec. 24 Ag-As-Cd-Cu-Mo-Pb-Sb-Sn-V-Zn

Argenta Sec. 13 Au-Ag-As-Cd-Cu-Mo-Pb-Sb-Sn-V-Zn

Rena Sec. 18 Ag-As-Cu-Mo-Pb-Zn

Jack Sec. 13 Ag-As-Cd-Cu-Pb-Sb-Zn

Goldfinch Sec. 13 Au-Ag-As-Cu-Pb-Sb-Zn

Dexter East Sec. 16 Ag-As-Cd-Cu-Pb-V-Zn

Yellow Band Sec, 2 Au-Ag-As-B-Mo-Sb-(Zn)

Stinson Sec. 14 Ag-As-Mo-rPb-Sb-Zn

22

Page 28: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

Pioneer batholith (D. R. Zimbelman, Aug. 1979, unpublished data)(fig, 6), The

Cambrian formations consist of dolomite, quartzite, and sandy shale. The

Devonian Jefferson Dolomite occurs in the area as thin-bedded carbonaceous

dolomite, Thin- to thick-bedded Madison Group limestones are also present in

the area and are the principal host rocks from the tungsten mineralization.

A gabbro and a granodiorite phase of the Cretaceous Pioneer batholith intrudes

all of the Paleozoic formations and the Precambrian quartzite.

The complexities of the structural setting are not well understood, but

both major thrust faults and high-angle faults are important in the district

(.D. R< Zimbelman, Aug. 1979, unpublished data).

Mineralization

Two episodes of mineralization are evident in the district: (1) an early

skarn alteration of Paleozoic carbonate rocks,, and (2) a fault-controlled

complex base- and precious-metal vein mineralization. Two distinctive types

of skarn were noted during the present study: a dark-green pyroxene-dominant

calc^silicate rock and a garnet-dominant rock.

The pyroxene skarn consists almost wholly of coarse-grained, dark-green

pyroxene with lesser amounts of coarse-grained, zoned, dark-red-brown garnet.

Pyrite is a common accessory mineral. The garnet skarn consists primarily of

red-brown garnet, epidote, pyroxene, calcite, and quartz. Pyrite and chalco-

pyrite are common accessory minerals'.

The vein mineralization consists primarily of quartz with variable amounts

of base-metal sulfides and free milling gold. Most of the ore constituents

observed during this study were oxidized. However, some specimens of pyrite,

galena, chalcopyrite, sphalerite, and tetrahedrite(?) were noted.

23

Page 29: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

FIGURE 6.--Preliminary geologic map of the Baldy Mountain mining district (D. R. Zimbelman, Aug. 1979, unpublished data).

I mile

30

,/

Pi I

wc. - j^-

24

Page 30: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

Geochemistry

The geochemical sampling in the district suggests that the predominant

element suite in veins is silver, gold, arsenic, bismuth, copper, lead, antimony,

vanadium, and zinc (table 5). Cadmium appears to be present at some localities.

The prefissure vein recrystallization and silication of the rocks makes most

of the host rocks for the complex base-metal-precious-metal veins impermeable

to the later mineralizing solutions. Therefore, away from the fracture systems

the host rocks do not readily give indications of the location of buried veins.

Analyses of iron and manganese oxide coatings on the fractures are the best

indicators of hidden metallization.

The skarns are variable, the pyroxene calc-silicate rock containing

manganese, molybdenum, tin, and tungsten, and the garnet skarn containing some

silver, copper, and zinc in addition to the molybdenum, tin, and tungsten.

DISCUSSION

The similarity of trace-element suites in the several mining districts

suggests the possibility of a common genetic process. The early contact

metasomatism is generally deficient in the base metals and is enriched in

tungsten and molybdenum. These skarns were probably formed at moderately high

temperatures (400°-600°C(?)) and represent a rapid expulsion of the rest of the

aqueous phase from the crystallized pluton now observed at the contact. The

presence of high base-metal content and lower temperature vein deposits

crosscutting the skarn deposits is therefore suggestive of a source somewhat

removed from the observed plutons. Altered feldspar porphyry dikes are present

in all of the mining districts discussed in this report, and these may represent

phases of the later crystallizing magmas that gave rise to the vein occurrences.

25

Page 31: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

TABLE 5. Trace elements in ores in the Baldy Mountainmining district.

Mine/prospect Trace-element suite

Nick Preen mines Ag-Bi-Cd-Cu-Pb-Sb

Sec. 24 mine* Ag-As-Cu-Pb-Sb-V-Zn

Old Faithful mine Ag-Au-As-Bi-Cu-Pb-Sb-V-Zn

Sec. 14 Ag-Co-Cu-Zn

Sec, 11 Mn-Mo-Sn-W

Tungsten mill Ag-Bi-Cu-Mo-Sn-V-W

Garret Hill Mn-Mo-Sn-W

Sec. 23 Ag-As-Bi-Mo-Pb-Sb

*Cable mine (?), Geach (1972).

26

Page 32: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

In the Bannack and Blue Wing mining districts the geochemical evidence

indicates that the two mining districts may be related to a large hydrothermal

system whose focus is northeast of the Argenta districts (Berger and others,

unpublished data; Siems and others, 1979). If this model is valid, then the

distribution of selected trace elements as well as the styles of mineralization

may point to the center of hydrothermal activity. In the Bannack and Blue Wing

areas this model is illustrated with respect to trace elements by the distribu­

tion of tin and barium in the various deposits (table 2), and the style of

mineralization is one of predominantly replacement-type ores on the periphery

of the district (e.g. New Departure mine).

The Argenta mining district is similar to the Bannack area in that mines

in the core of the district contain trace amounts of tin and also tungsten,

and the peripheral mines (e.g., along French Creek and in Ermont) have large

masses of siliceous replacement ores. These features suggest a relationship

to a zoning pattern around an unexposed hydrothermal source. Additional

geochemical work is currently underway to further elucidate any zoning patterns

and to investigate any possible genetic relationships of the Argenta and

Ermont districts,

A ramification for the whole Oil Ion region of the geochemical patterns

and the interrelationships of contact metasomatic deposits and later crosscutting

fissure-vein deposits is that anomalous concentrations of metals may not be

wholly explainable by the geometries of observable rock units. Not all mining

districts are parts of larger systems; however, geochemical indicators similar

to those in the Bannack area that may be found throughout the region should at

least be investigated for the possibility of larger, complex mineralization

systems,

27

Page 33: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

RESULTS OF CHEMICAL ANALYSES

The results from the chemical analyses are given in Table 6. All values

are in parts per million except where noted otherwise. The following abbrevi­

ations are used in the table:

G, greater than value shown;

N, below level of detection (value given);

L, detected below level of determination (value given);

S, emission spectrographic analysis;

AA, atomic-absorption analysis;

CM, colorimetric analysis;

P, partial extraction.

Sample locations are given in Table 7.

28

Page 34: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

TABL

E 6.--Analytical data fr

om rock samples

collected

in mining di

stri

cts

in the

sout

hern

Pi

onee

r Mo

unta

ins,

Be

aver

head

County,

Montana.

onion

OATE

5/ 3/79

NO 1 2 3 4 5 6 7 P 910

1 1

12 13 14 1 5

16 1 7

1 P

19 20 21 22 23 24 25 26

27 2P 29 33'

31 32 33 34 35 36 37 3P 39 40

41 4?43

4445

46 47

4«49 50

SAWPLF

«<M2001

PGI 20

02PG

I 2°ot

PGI 70

04PGI 200 5

PGT 2006

PGI ?007

PG I

200?

PG12009

PGI 2010

PGI 201

1«G

! 20

1 2

P G

I 2 o -n

P G

' 2 0

1 4

P G

[ ? n

1 5

P G

I 2 0

1 6

8GI201 7

PG I 20

1 P

PGT ?ni 9

P G

I 2 0 2 0

» G

T 2 0 2

1PG

I 20??

PGT 20? 3

PG I

2024

P G

I 2 0 2 5

PFT ?0?6

« F

I 20?7

«F I

?0?«

P F

! 2 0

? 9

PF i ?o^o

PF r 2031

PF I

203?

P, F

T 2 0 3 T

PF i

?OT4

PF r

?03S

PF r

20*iS

PF r

2037

P F

.( ? 0

3 0

PF j 20

40P

F J ? 0 4 1

«F J 204 ?

P F J 2 0

4 3

P F J 2 H

4 4

PF J2045

P F J ? 0

4 6

PF J 2047

«F J ?04P

RFJ ?049

RF J2050

PFJ2051

1S-

FFf*

20.0000

5.0000

7.0000

0.7000

1 .5000

0.5000

1 . 5000

7.0000

7.0000

5.0000

5.0000

1 .0000

10.0000

7.0000

7.0000

3 . 0000

o. ?ooo

0. 5000

0.7000

1 . 5000

3.0000

0. 0500

5.0000

?.oooo

1 .5000

1 5.0000

5.0000

0. 2000

7.0000

5 .0000

1 .0000

1 . 50

nr)

5.0000

o . 1

ooo

20. OOOOG

? .0000

5.0000

5.0000

3.0000

? 0.0 000

?0. OOPO

5.0000

1 o. no

oo7.0000

1 5.0000

1 . 5000

5.0000

0. 5000

10.0000

7.0000

2S-

*iG^

0.1 500

2.0000

1 .5000

0.5000

0.5000

0.2000

0.0300

0.0300

0.0200L

0.1000

1 .5000

0.0500

0. 7000

1 .5000

2.0000

1 .0000

0.7000

5 .0000

^.o

ooo

1 .0000

1 .0000

1 .5000

0. 7000

5 .0000

0.0700

0.0700

1 . 5000

0. 1

000

0.1 500

o. 2030

7.0000

0.5000

0.700Q

7.0000

0 .7000

^.00^0

1 .0000

0. 5000

0.7000

o.o^

no0.0200

1 .noOO

0. 5000

1 .5000

2.0000

2.0000

2.0000

5.0000

0.0500

1 .5000

3S-C A*

1.5000

2.0000

1 5.0000

7.0000

1 .5000

5.0000

0. 2000

1 .0000

0.1 500

5.0000

1.5000

1 . 5000

0. 7000

3.0000

2.0000

7.0000

1 .5000

1 ^.0000

10.0000

1 0.0000

1 0.0000

1 5.0000

3.0000

7.0000

0. 5000

0.3000

1 .0000

1 .0000

0. 2000

0. 1

500

1 5.0000

0. "^0

000. 5000

10.0000

1 . 5000

7. 0000

1 . 5000

0.0500

1 .OOno

0. 1

000

0.0500

1 .0000

0. 1

000

0.5000

0. 2000

1 0.0000

1 . 5000

20.0000

0.0500

0.3000

4 S-TIX

0.0200

0.5000

0. 2000

0. 1

500

0.3000

0. 1000

0.0300

0.0300

0.0020

0.01 50

0. 5000

0.0500

0. 3000

0. 5000

0. 300Q

0.0100

0.0200

0.0100

0. 1

500

0. 1

500

0. 1

500

0.0070

0. 5000

0.0300

0. 1

500

0. 1000

0.5000

0.0200

0. 3000

0.300Q

0.0200

0.0300

0. 2000

0.0030

0.0500

0.2000

0.2000

0.2000

0. 2000

0.0700

0.0500

0.2000

0.2000

0.0300

0. 1

500

0.2000

0. 5000

0.0020L

0. 1

500

0.5000

5 S-MN

1300.3000

1 300.3000

3300.3000

500.0000

1 300.0000

1 50.3000

2300.3000

1500.0000

1500.0000

5300.3000G

1300.0000

700.0000

700.3000

1 500.3000

2300.3000

5300

. OOOOG

5300.3000G

3D00.3000

700.0000

5300. OOOOG

5300.3000G

700.3000

1 500.3000

5300.3000G

1 50.0000

1 50.3000

700.3000

1 00.3000

300.3000

20.3003

2 00. 3000

1 500.3000

1300.3000

1 50.3000

500.3000

500.0000

700.3000

300.3000

700.3000

3300.3000

700.3000

1 300.3000

1 50.0000

5300.3000G

5300.3000

700.3000

1 500.3000

5300. OOOOG

1 50.0000

500.3000

6 S-AG

5.0000

0.5000N

0.5000N

0.5000L

0. 5000N

0.5000

1 50.0000

200.0000

500.0000

500.0000

5.0000

100.0000

70.0000

500.0000

2.0000

1000.0000

1000.0000

50.0000

30.0000

500.0000

300.0000

2.0000

10.0000

500.0000

1.5000

1 .5000

0. 5000N

1 .0000

0. 5000

0.5300L

0. 5000

500.0000

10.0000

1 .0000

20.0000

1 .0000

0.5000N

1 5.0000

0. 5000N

20.0000

10.0000

1 .0000

5.0000

300.0000

20.0000

3.0000

5.0000

10.0000

200.'0000

20.0000

7 S-AS

200. OOOON

200.

OOOON

200. OOOON

200.

OOOON

200. OOOON

200. OOOON

500.0000

700.0000

700.0000

700.0000

200. OOOON

200.0000

500.0000

200. OOOON

200. OOOON

200. OOOON

200.0000

200. OOOON

200. OOOON

200.0000

200. OOOON

200.

OOOON

200.

OOOON

200. OOOON

200.

OOOON

200.0000

200. OOOON

200.000QL

3000.0000

2000

.000

020

0. OOOON

1000

0. OOOOG

1000.0000

200. OOOON

700.0000

200. OOOON

200.

OOOON

300.0000

200. OOOON

700.0000

700.0000

200.

OOOON

200. OOOON

200.

OOOON

200.

OOOON

200. OOOON

200. OOOON

200.

OOOON

5000.0000

200.

OOOON

R S-AU

10.0000

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10.0000L

10. OOOON

10. OOOON

10. OOOON

10. O

OOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10.0000L

10. OOOON

10. OOOON

10. OOOON

1 0. OOOON

15.0000

1 0. OOOON

10. OOOON

1 0. OOOON

1 0.

OOOON

1 0. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10.0000L

10. OOOON

9S-8

10.0000

10.0000L

10.0000L

30.0000

50.0000

30.0000

20.0000

10.0000

10.0000

10.0000

10.0000

20.0000

200.0000

20.0000

20.0000

10.0000L

15.0000

10.0000

30.0000

50.0000

20.0000

10. OOOON

15.0000

10.0000

50.0000

20.0000

20.0000

20.0000

50.0000

100.0000

20.0000

10. 0000

200. 0000

10.0000

10.0000L

20.0000

10.0

000

50.000Q

1 5.0000

13.0000

10.0000

15.0000

10.0000

30.0000

1 00.0000

20.0000

15.0000

10. OOOON

10.0000

50.0000

10S-

BA

200.0000

700.0000

50.0000

150.0000

700.0000

150.0000

70.0000

100.0000

150.0000

200.0000

1000.0000

150.0000

150.0000

1000.0000

1 500.0000

20.0000

200.0000

150.0000

200.0000

500.0000

500.0000

20.0000

1000.0000

70.0000

150.0000

300.0000

700.0000

500.0300

200.0000

1000.0000

50.0000

20.0000

500.0000

20.0000L

200.0000

500.0000

700.0000

300.0000

1 000.0000

200.0000

200.0000

1000.0000

700.0000

5000

. OOOOG

50.0000

300.0000

1000.0000

20.0000L

100.0000

1000.0000

Page 35: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

OOOO'OS

OOOO'S I

10000*5

OGCG'OZ

C000*0£

oooo:os0000*001

0000*5

0000*5

OOCO'OS

0000*5 I

ooco*s0000*5

0000*01

GOOD '02

0000*01

10000'S

0000*0 I

0000*5

0000*02

0000*5

0000*02

0000*5

0000*02

0000*5 I

OOCO'OS

0000*02

0000*5

0000*5

COCO'S L

OOCO'02

GOGO'S L

COCO'S

0000*Z

10000*5

0000*5

COCO'S

OQOO'OS

COCO'01

GOOD'S L

0000*01

OOGO'Z

OOOO'Z

OOOO'Sl

OOOO'Z

OOOO'S

0000*01

OOOO'Ol.0000*02

OOOO'S

IN-S02

10000*02

NOCOO'02

NCGOU'02

NOOOU*C2

1UOOO*U2

N0000*02

NCOOO*U2

1COOU*02

100CU*U2

NUOOU*02

10000*02

10000*02

10000*02

10000*02

10000*02

10000*02

NUOCO*U2

100UU'02

10000*02

NUOOO*02

1UOCU*U2

10UUO*U2

10000*02

1GOCU*02

NGOOO*G2

10000*02

NUOOO*U2

10000*02

1GOUU*U2

1UUOO*U2

1GUUU*U2

1GCGO*02

NCOOO*U2

NCOOC'02

NGOGO*02

10000*02

1UOOO*02

10000*02

1CUGC'U2

1COOO*C2

NUCOO'02

NUOOO'02

N0000*02

N0000*02

10000*02

10000*02

10000*02

N0000*02

10000 '02

NOOOO'02

flN-S61

NCOOO'S

OOCO*00£

NUOCU'S

NOOOO'S

NCCUO'S

NOOOO'S

0000*02

OOOO'Sl.NOOUC'S

NOOOO'S

0000*01

NOOOO'S

0000*02

NOOUO'S

NOUOU'S

0000*02

NCOUU'S

NOOOO'S

OOOO'OS

OOOO'S

UOOU'Ol

UOOO'Z

NOOGO'S

COCO'S

0000*02

OOOO'Sl

0000*01

NOOOO'S

NOOUO'S

NOOOO'S

OOOO'S I

NUOUO'S

NOOOO'S

OOCU'S

NUOOO'S

NCOOU'S

NUOOC'S

0000*01

NUUUU'S

NUUOO'S

OUUO'S I

UOOO'Ol

UOOO'Z

OOOO'OS

NOOOO'S

OOUO.'SNOOOO'S

NOOOO'S

OOOO'S

OOOO'OS

ow-s81

OOOO'OZ

10000*02

10000*02

OOUU*02

0000*02

OUOO*0£

OUUO'OZ

OOUO'OZ

oouo*os0000*02

0000*02

OOOO'OZ

OUOO'UOl

OOOO'OS

OOOO'OS

10000*02

OOUU*0£

OUUO'OS

0000'0£

OOCO'02

OUOO'UOl

OUOO'UOl

OOCC'U2

UUOC'OZ

OOOO'OS

OOOO'OZ

0000*02

OOOO'OZ

OOOO'OS

OUOO'OS

0000*02

OUUO'C2

OUOO'U2

0000'0£

OCOO'U2

OUOO'C£

OUOU'OS

OOUO'OSl

UOOO'U2

UUUO'OZ

0000*02

OOUO'02

0000*02

0000*02

OGOO'02

0000*001

OOOO'OS

0000*02

OOOO'OS

10000*02

Vl-S2.1

OOGO'OZ

GGOO'OOZ

OOGO'OZ

OUUU'OS

OUUO'GZ

GOOO'OOOS I

UCOO'GOGUl

GCOU*G02

OUUU'US I

GGGO'OUGOl

0000*005 I

OUOO'OS

UUOU'US I

UOUU'S

OOOO'Ol

GCUU'002

UOUU'S

,GGCO'OS

GGGC'OOG I

10000*5

UUUU'OS

OCUO'OS

10000*5

COCC*U£

0000*01

OGGO'U I

CUOO'OOZ

0000*02

ICGOC'S

OGOO'OOZ

0000*005

GOUO*G£

COOO*OZ

GGGG*0002

0000*005 I

OUGO'S I

0000*05

OUOO'OOS

UUUU'US L

OUOC*0£ .

0000*0005

OOOO'OOZ

0000*0002

OOOU'0002

10000'S

10000'S

10000'S

OOOO'S

OOOO'OZ

0000*0002

m-s91

UOOG'OS

OOGC'G£

NOOOC'Ol

UUOC'OOS

OOOC'OO I

UGOG'OS

GGUG'02

UOOO'G I

UGOL'Gl

OUUC'U£

UUGC'uS

UUOC'02

CGCC'U£

UUUC'0£

GGOC'CG I

OGGC'0£

UUOC'Ul

UUOO'OS

UUCC'Ol

OGGC*U I

UUGC'US

OUUC*U£

UUGC'S I

OOOC'OS

UOGC'UG2

OGGC'OS

CGOC*0£

OGUC*U2

GGGO*U2

OUGG'OZ

OOOC'OSUUOC'OZ

UUUC*U£

GUGC*02

NOUOG'Gl

OOGC'Ul

UGOC'S I

OUOC'OS

UUOC'U2

OGUC'OZ

UUUC'OS

UGGC'G2

GGUC'02

OOOC'OS

OUOC'0£

10000*01

0000*01

OOOC'OS

OOOC'OZ

OOOO'Sl

iO-SSI

UGUU*S I

NUOOO'S

NUUGG'S

OUUU'S I

UUuU'Ol

OOOU'GS

UUGU'UUS

CUGG'Ul

UUGO'Sl

UUUU'Ul

NUUGG'S

GUUG'Ul

NOUUU*S

GUUG*U2

GUUO'Ul

UUUU*U02

NOOOO'S

UUUU*U2

OUUG'S

OOUU'S

UUUU *Ul

UUUU'U2

NOUUU'S

UUUU'02

NOUOU'S

OUUO'Z

NGUUU'S

UUUO'S I

NOUUO'S

IUUUO'5

GUOO'S

OUUU'S

lOUUO'S

IGGGU'S

NUGOG'S

OUUU'0£

UUUU'U£

UUGO'US I

lUUUU'S

UUOG'OS

IGUOO'S

ICUGU'S

lUGOO'S

lOUGU'S

ICGGO'S

OOOO'S

oouu*sOUOO'Ol

0000*02

OOOO'Ol

OD-S*l

NUUUU*U2

UUOC*U2

NUUUO*U2

NUUUU* G2

NGUUO'U2

OOOO'OS t

DUUUG'UOS

NUUUG*G2

NUUUU 'U2

UUUG'OS

GGUG'US I

NUUOO'U2

N'UUUU'U2NOUUO*U2

NGUGO*G2

NUUUU*U2

NuUOG'U2

NOOOU'U2

9UUUU*OOS

NUUUO'U2

NCUUu'U2

NUUUU'G2

NUGUU'G2

NOUUU'U2

NOUUU'G2

NGUUG*G2

GUUU'US I

NUOOO'02

NGUGU'U2

UUUO'GUk

OUUO*U2

NUUUU'UC:NUUUU*02

OCUG'UU2

OGOU*CU£

NGUUU'U2

NUUUU*G2

NCUUU*G2

NUUUU*U2

NUUOO*U2

UUUO*UU2

UUGU*U2

GUOO'US

UUUU*G02

NUUOG*G2

NUOGO*02

NUGUO*02

NUOOO'02

NOUOO'U2

N0000'02

(13-Sil

UUUS' I

1UOUU* I

1UUGU* I

OUUU* I

UUUG* I

UUOU'S

UUUU*£

GGGO* I

UGUi' I

UUCO'S

UUUO' I

JUUS* I

UUGU*2

UUUO* I

UGOC* I

UUUS' I

1UUUG* I

UUUS* L

1GUUU* I

1UUUU* I

UUOG* I

UUUU* I

10GUU* I

UUUU* L

GUUO* I

0000*2

1GGGO* I

GUGS* I

GGbU* I

UGUU* I

UGUO' I

UCUO* I

1UUUU* I

1UGGO* I

1GGGO* I

UUCU* I

UUUO' I

UUUO*£

UUUS* I

UGUS* I

UUUS* L

1UUGO* I

10000* I

UUUO'2

1UUUO* I

UGGU'£

OOOS' I

1UUUO* I

GOGS' I

OOOS' I

3u-s21

UUUS ' I

1UUUO* L

1UOGG' I

UUUU" I

GGGU* I

OUGG'S

UUUC'i.UUUC* I

UUOS ' I

UUUG'S

GUUG' I

UuGS " I

ouoo'<:UUUU' I

GJUU* L

UUUS ' L

IGGUU' I

UUGS* I

IGUGU* I

luUUO* I

GuOG' I

uuuu * iIUGGU* iUGUU* I

UUUO' I

GUUU*2

luuuc* iUUUS * I

UUUU* I

UuUU* L

UUUU* I

UUUU* I

IGGUU* L

1GUUU* I

luuGU' iUGGU* I

CUUG* I

OUUC'i

GUOb * I

GOGS' I

UGUS * I

lUuUU' L

lUUOO* I

uUUU " i

' IGUOU'I

OGGO*£

OOOS*l

10000' I

OUUS'l

OOOS' I

aa-su

ISG2 P J8GSC2 Td 8

o V u 2 r J y» V 02 P d 8Z V

U2 r d 8

9VQ2T J 8

5 VU2PJ8

V VU2 T J 8

' L VU2 r d8

2VU2 r d

8L V

U£ f d »

o v 02 r j 86 i. G 2 r d aZkUc 1 d 8

9i.Cc: 1 d8

SlUi 1 d 8

V i. u<: I d yi£G2 I d 8

2i.G2 1 d8UU<f 1 daUi 02 1 d 8

62U<: I d 8

b 2U2 I J&Z<;Ud 1 d 892 (J'd I d8

S 2 U 2 1 y 8V d. (jf. I 5 8£ 2

02 I y 8

2 <L U 2 I CJ 8Idut 1 y

8U 2 U 2 1 'J 861U2 1 9

8tf I

G2 198

z iGt iyy9 L U (. i y 8S iu<: iyyV L

G2 l'J8

£ I G 2 1 y 82 L

U2198

I LU<: 1CJ8

U t U 2 1 'J 8ou02 i y 8o G G 2 1 'J 8Z U U 2 I !J 89UU2 I

1J8

SGU2iy8

vuo2iyy£uu2 iyy2002198

1 00 2 TJ 8

31dWVS

US6V

8V

Z V9VSVV V

i. V2VIVGV6i

8£Z>-9£S£V £i£<: il£U£6282

Z29252V2£222i<:

026181

Z I9 LSIV I

£ I21I I

Gl68Z9SV£2ION

/S31V

Q

Page 36: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

0000*002

OOOO'OS

NOOOO'OL

OOOO'OS L

0000*002

0000*05

0000*0 L

GOOO'GOL

GOGO'OOL

0000*02

0000*05

0000*001

0000*002

OOOO'OZ

0000*002

UOOG*02

0000*5 L

0000*002

0000*05

GOOO'OL

OOGO*00£

0000*002

0000*5 I

0000*002

0000*05

0000*00£

0000*02

0000*001

10000*01

0000*002

UOOO'O^

OOOG'OZ

NOOGO'GL

NOOOG'OL

NGOGO'Ol

GGOG'OS I

. OOOO'OS L

G000*00£

OGOO*0£

0000*002

0000*01

NOOOO'OL

GOOD'S L

0000*5 L

0000*05 I

0000*00£

0000*002

0000*001

OOOO'OS I

10000*01

dZ-S0£

0000'00'OS

0000*0002

0000*00£

GOOO'GGS

GOOO'G02

90000*00001

9GOGU*UOOGl

GOOO *G02

GOGU'UGS

GOOG'GOOZ

9UGGO*GOOUl

GGUG*UU2

COOO*UG<1

NGOOO*UU2

NGOOO*G02

COOO'GGi

NCGOU*uU2

COGO*G002

9GOGG*GOGGL

NUOOG *002

NOOOO'002

GOOG*G02

NCOGG'G02

NGGOO*002

NGOOG*GG2

NGOOO*002

OOOG'GGOZ

N0000*002

NUOOO*G02

9GGOG'UGOGl

0000*0001

OOGO'GGZ

COGO*G02

GGOO*GGGUl

GGGO'GGOOl

NUOOG'002

N0000*002

GOOO'OGOL

GOOO'OOS

OOOU*G02

90000*00001

OOUO'GGGS

OOOU'OGOZ

9UGUO*OGUUl

NOOUO*002

NGOOO'U02

NUGOG*GG2

NOOOU*002

NOUOO*002

GOOO'QOZ

NZ-S62

OOOO'OS

NOOOO'OL

NOOOO'OL

0000*02

0000*02

OOGG'OSl

0000'00£

OOUG'G2

0000*02

GQOO'0£

GGOO'02

GGUO*02

G000'0£

GOGO'Oi

OGGG*0£

0000*02

NGGUO'O I

GGOO*0£

OOGO'O L

GOGO'UL

uooo*0£0000*0£

NGGOO'GL

OOGO'0£

GOOG'OZ

GGOG'GS

lOOCO'Ol

0000'0£

UOGG'GL

OGGU'02

GGOO'SL

0000*02

UGOO'GL

IGOGO'GL

OUOO'02

OOUU*Q£

GOOO*G£

GGGU'OGl

NGOOO'Ul

GOOG'G2

0000*01

UOOG'OL

GGUO'Ol

NGGOO'OL

GOUO'Sl

GOGO'Ot

0000*02

OOOO'Oi

OOGO*0£

OOGO'Ol

A-S

82

NOOOO'OS

10000'OS

NOQOO'OS

NOOOO'OS

NOOOO'US

NOGGG'OS

NGOGG'GS

IGOOU'US

NOOOO'OS

NGGGG'OS

NGUGG'GS

NOOGU'OS

10000*05

NOUGG *GS

NGUUO'OS

0000*05

NUOUU'US

NGOGG'OS

NGGGO'US

NUUOO'OS

IGOGG'OS

IGOOG'GS

NGOOO'US

NUOOG*GS

NGGGO'GS

NOGGO'OS

NOOUG'OS

NOGGG'OS

NOGGG'GS

NGOUG'GS

NOOGO'GS

NOOGO'GS

NOOOO'OS

NGGGU'US

NOUGU'OS

NGGOO'GS

NGGUG'GS

NOGOG'OS

NOGGG'GS

NOUGO'GS

NGGGO'US

NGGGO'OS

NOGGO'GS

NGOOO'GS

NOOUG'GS

NOOGO'GS

NOGGO'GS

NGOOO*US

NOOUO'OS

NOOUU'OS

tt-SLI

0000*002

OOOO'OS L

0000*0 L

GGUG*002

0000*00 L

OGOU'GS L

UGGO'GO L

UuUO'UO L

0000*05 I

0000*00 L

OCGG*OG2

GGOO'UG L

0000*05 L

UUUO'US L

0000*00 L

UGGG'UOS '

UUOG'G2

GUOU*GG2

UOUG'GGi.

GGGO *U2

GGUO*GG2

UOUU*G02

UGOG'O L

0000*002

GUGG'GO I

GGGO'UZ

U000'0£

GOGO'OS L

GUUO'S I

GGOO'OZ

GOGG'US L

OOOG'G-iUUOO*Q<LUGGG'GGL

GGGO'OG I

GOGO'002

GGGO*GG<:

0000*002

0000*005

GGOU'OS L

UGUO'GGG L

GOGG'OOS

GUOO'002

0000*05

GGGO'Oi

OGOU'0£

GGOO*0£

OGGO'OS L

GGOO'002

OGOO'OGL

A-S92

GGDC'OO I

GGGC'OO I

UGOC'05 I

0000*002

OOGG'OS I

ICGGC'UU I

GGUC'UUi

luUUC'OU L

GUGG'GUi

GuGC'GG I

IGuOC'UU I

uUUO'UOi

IGUUG'UO I

GGUG'GUS

GUGC'UG i

GOOC'GG I

IGuUC'GU I

IGUOL'UU I

GGGC'UO I

GUOC*UG I

UUOO*GU I

UOOG'US L

IGUUC'GO I

GGOG'OG2

GGOG'GUS

GUGC'Oui

OGUC'OO I

GUGG'GGS

GGOO'05 I

UGUC'US L

GGOC'GU I

GGGC *UU I

UUUC'OS I

GUOC'UO I

GOGC'GO I

CGOC'GOS

OGGC'GGS

lUGOC'UO I

IGGOC'GG I

GUGC*GO£

OUOC'GO L

IGUGO'GOL

UUOC'GOc

UGGC'GO I

OUOC'GO I

GOGC*G02

GGGC'GO I

lOGOC'GO I

OGOC'OO^

IGGOC'OG I

dS-S52

NOOOO'OI

OGOO'OL

NOGGO'Ol

NOGGG'Gl

NUUUO'GL

NGUUU*Ul

NGGGG*Ol

UUGG *UL

NUUOO'OL

NGGGG'GL

NUUUO'O I

NUUUU'UL

UUUU*UL

NGuGG'UL

NOUUO'O L

NGUUO'U L

NUUUU'Gl

NGuOO'OL

N G U U 0 * U LNGUUU'GL

NUUUU'UL

NGUUG'UL

NGUOG'UI

NUUUU *0 L

NGUUU'UL

NUUUU "0 L

NOuUU'U L

NUUOG'OI

NOUUU'O I

NuOUG'OL

NOGGG'Gl

NGGGG*GL

NUUUU'GL

NOGOG'GL

NGOOO'Ul

NOUUO *OL

NUUOU'Ol

NUUOO'GL

NGGGG'GL

NUGGU'Ol

UUOG'OL

OGGO*G5

GGGO'SL

.GUOU'SL

NUUOU'Ol

NUOOG'GL

NOGGO'UL

NUUOO'Ol

NGGOO'Ol

OUUO'US

NS-SV2

OOOO'S I

NGGOO'S

NOGOO'5

GUGU'S L

OUGG'Gl

GGGUV

lUGGU'S

UUGU'G L

OUUG'U I

GOUG'S L

QGUO*<1GGGG'Gl

GGGG'OL

UUUU'S I

GGGG'G I

NGGGO*!JlUUGU'b

UUUU'b L

lUUOG'i,

GGGO'S

GGGG*02

GUOG*G2

IGUUU'S

UUOU*U2

UUUU'b

UUGG'Z

OGGG'5

GGOG'Gl

GGGG'S

OUGGVUUUU'S

GUOG'Z

NGGUG*b

NUUUU'S

NUUUG*S

GuuU*U2

UUUG'G2

GUUU'G I

NGUUU'S

GGUO'Sl

NUUUO'S

NUUOU'S

UUUU'S

IUUOG'5

GGGO'S

GGOO'G L

OUGO'S

UUUU'Sl

0000*02

NGGUG'S

Db-S£2

NGGOO'GOl

OGUO*UUU2

NUOGG'GG I

NGUUO'UOl

NUUUU'UGl

NUGUG'GG I

NGuGu'uUL

N U U U U * G U INUUUU*UUL

NUUUU'UU I

NUUGU*GU iNGGGG *GG I

TGuGU'UU I

NUUUU'uU L

NUUUG'UU L

TUuGU *uU L

NuuUO * U

u L

UUUU'US L

GGuU'OOGGl

UUUU'UO L

GGuG'uGi.

uuuo'uui:UUUO'UGi.

NOUGG'UUl

NUUUG'UU I

NUbGU'UU I

UUUU'UUS I

NuUGG'UU L

NUUUU'UU L

UUUU'UUS

UuUG'uGS

NGOOG'UU L

UuUU*UG2

GUuU*UUU2

UGGG'GGS I

NUUUU'uUL

NUUGU*UG I

UUUU'UGS

0000*05 L

NGGUU'UUl

UUGO'GGS

GGUO'GGGl

GUUU'UGS L

GGGG'GGGS.

NUUUU'UUL

NGUGG'GOl

NuUGO'GGl

NGGGu'UOl

NUUGu'UOl

NUUGU'UUl

bS-5>22

UOOO'GGS

GGOG'UUUS L

UUUU *UUu2

UUGU'GZ

UUUU*US i

UuUU'UUGU L

UUUG*UGGU2

GuUG *uUL

UUUG 'UU£

UuUU "uGGb I

GuUU " UUUi.

UUUU'GuL

UUUG'uGUt

UUUU * U

iUUUU *Ui

UUUG'UUt

GuUU*uU2

GGUG'uUi

SGuGG " UUUU<;

GGOG*G2

GUUG "UUL

U u U G ' u iNUuGU'U L

UuUU*U£

UUOO*G2

UUUG* <3 I

GGGG" UUUb

GuUG * u

S L

UUUU*U2

UUUU*UUUS

UUUU'UUS L

UUJO'Ub I

UuuU'UUlt

UUUU*UUUS

GUGG* uuuu LUUUU "U^.

UUUO'UO

UUOO'UUUL

UUUO'UUS

UUUU'US L

UUUU'UGGS I

GUOG'uUUb I

GUUG'UUUU L

GUUU*GGUU2

UUUG*UL

UUUU*U2

UUGG**, LUUUU'U I

GUGU'S L

lUUUU'U I

bd-S12

15U2P ̂a

usG2rja67G2 Pd a

a7u2 r^8^.7U2r j a97G2 rjaS 7 U 2 C J tf7 7 u 2 r j ai.7ud r j«27G2r^aL 7u2 c J aG7G2 r^a6i02 fda

/iU2 1 d b

9^02 1 j a5iu<: i da7iU2 1 d «

iiu2 1 d

«2iGd I J a

LtG2 I da

GiG2 1 d

a62G2 i d&

a2U2 IdaLd(j<L i ja92G2 1 da

S2G2llia

7cG2 iyai <L u <L iya2 cud i y^i2U<: ID aU2U2 IDa

o LU2 19ba L u 2 1 CJ aL I

U2 I 9

a9tu2 iya5 L u 2 i y aVL 02 i yai I G 2 i i* a2 iG2 iyai lu2 iyaGIG2 Itltf

oG02I'jaaoG2 iyaZUU2 I9a

9GG2iyaSGG2l9a

7GU2 iyatuo2iy«2uu<: iyaLGU219a

ildwvS

OS67»7

L*i

97

5777

£727L7

07

6£bi/i9£Si.7£££2£L£ui62a2

L<L

92 ^

5272i222L2U2

6 Lb LL\.9L5 LV L£121L LGL6aL9S7£2IONflOd

/S

Page 37: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

BUUOO'O

bUUOO'O

euuoo'obUUOO'U

euouu'oeuuoo'oeuucu'OfaUUOO'Oauuuo'oeuuou'oeuuoo'oeouuu'ofeUOOU'Oeuuoo'u6UGOO*0

auuoo*ueucoo'oauuuo'oeuooo'oeuouo'oeuuoo'oauuuo*oeuuou'oeuouu'oeuooo'oUUUOO'O

euuuo'o6UUUO*0

auouo*oGouuo'oeuuoo'obOUOO'U

auuou'oauuoo'ueuuoo'oeucoo'oeuouu'oeuuou'oeuuou'ubUUOO'O

eouoo'oeuuoo'oBUUUO'O

aouoo'o60GOU*U

60000*0

euuuo'o60000*0

80000*0

80000*0

d-fl-WD9£

ICUOC'I

uOOC*£

IQOOC'l

UUUU* I

ICUOC'l

NOUOC'l

NUUOC'l

OUUC'S

OOUO* I

UUOC* I

NOUOC* I

OUUC* L

OUUC*2

OOOC'L

NUOOC*l

UUUC'Ol

lOUOC'L

UOOC*£

NUUOC'i

NUUOL" L

UUOC*2

UUUC'S

NUOOC'l

lUUUG'l

OUOC'S

OUOC'2

TUUOC'l

OOUC* I

UUOC'l

UUOC'l

OUUG'l

UUOC* I

OUOC'L

NUUGC* L

NUUUC'l

UUUG*2

IUUOC'1

UUOC*£

UUUC*£

UOOG'2

OOOC'l

TUUUC'l

"lUOOC'l

IOOOC'1

lUOOC'l

OOOG'l

0000*1

O000'£

IOOOC'1

OOOC'Ot

n-waS£

OOUO'02

OUOU'OOUV

UUUU'02

OUUU'U2

OUUU'Ul

OUUO'OOV

0000*08

OUOU*02

OUOU'OV

OUUO'OUV

UUOU*OU8

OUOO'OL

OUUO'UOV

lUUOU'UL

OUUU'UV

UUUO'009L

OUOO'OL

OUUU'U09L

OUUU*OUU2l

UUOU'Ob

OUUU'UU2L

OUUO'UOU2

UUUU'U8

OUUO'02 L

OUUU'OU2

UUUU'UV

. UUOU'U9l

"OUUO'U L

OUUO'02

UUOU'02L

OUOO'U2l

UUOO'02

OUUO'UV

UUOO'09l

UUUO'UV

UUUU'UL

OUUO'U2

OUUO'UU8

UUUO'U9L

OOOU'U2

OUOU'UOV

OUOU'002

OOOO'OOV

OUUO'UU2

"lOUOO'UlUUOO'OL

OUOO'OL.

0000*02

10000*01

0000*08

SV-W3V£

OUOO* V

9UUOO*UU2

10000* L

UUOU'2

UUUU'2

UUOU *<,

0000*5 L

UUUU *2

UUUU*2

' UUUU'OL

UUUO"U2

UUUU'2

UUOO'UV

OUUO'i

UUUU* V

UUUU'UV

UUUO' V

UUOU'U2 L

9UUUU"UU2

UUOU'UV

UUOO'UV I

UUUU"U02

UUOU'UV

OUUO' V

OUUU'S

UUUU'S

9UUUU'UU2

UUUO'C'L

UUUU*2

9UUUU'u02

90UOU " U

U2

UUOU'S L

UUUU'UOL

9UUOU"uU2

9uUUO " U

U2

UUUU'i

UUUU'S

9UUUU'U02

UUUU*U2 I

UUOU'UL

9UUUU " U

U2

900UU"U02

90UUO"OU2

90000*002

OUOU' L

UUOO*2

0000*2

0000*1

OUOO*2

0000*i

d-8S-VV

££

OUUO'OOUt

UUUO'UCUt

UUUU'UUS

UUUU'O VS

uuuu"uuvUUUU'UUOtfi.

UUUO'UUUOL

OUUU'UU2

UUUU'U2S

UUUU'UUVo

UUUO*UU96

UUUU'U^L

UUUO'UfeS

U U U U ' <3 iU U U Q * i iUUUU'UL L

UUUU* i.6

UUUU'UU6 L

UUUU'UOUU8

UUUU"US L

UUOU"S9

UUUG'Ufc L

UUUU'Oi.

OUUU*U8

uuuu'b vUUUU'OZ L

UUUU*UUU8

OUUO'Ui. L

UUDU'UZ

UUUU * U

UU2 S

UUUU'U9Z

UUUU'UU6

UUUU'U8L

UUUU'UUU2L

UUUO'UUUUi

UUUU' <i«

UUUU'U9

UUUU'UOS L

UUUU "08V

UUUU'UV L

UUUU'UUUVV

UUUU'UOV£

UUUO'UUUSL

UUUO*UUU2£

OUUU'U2

UOUO'OV

OOUO'SV

0000*S£

UOOO*S£

OOOO'OSZ

d-NZ-VV

NUUUC'UOl

NUUUU'UOl

NUUOU'UUL

NUUUU'UUL

NUUUU'UUL

NUUOU'UUl

INUUUU'UUL

NUUUU'UUL

NUUUU'UOl

NUUUO'UUL

NUUUO'UUl

NUUUU'UUL

NUUUU'UUl

NUUUU'UUL

NUUUU'UUL

NUUUU'UU L

NUUUU " U

U L

NUUUU'UUL

2NuUUU'UUL

NUUUU'UUL

NUUUU'OOL

NUUUU'UUL

NOUUU'UULNUUUU'UUL

NUUOO'UOL

NUUUU'UUL

NUUUU'UULNUUUU'UU L

NUUUU'UUL

NUUUU'UU L

NUUUU'UULNUUUU'UUL

NUOUU 'UU L

NUUUU'UUL

NuUUU'UUL'

NUOUU'UUL

NUUUU'UOL

NUUUU'UUl

NUUUU'UOL

NUUUU'UUL

NUUUU'UUL

NUUUU'UUl

NUUUU'UUL

NUUUU'OOL

NUUUO'UOL

NUUOO'UOL

NOOOU'OOl

NUOOO'OOl

NOOOO'OOL

NOUOO'OOL

Hl-SL£

LSU2 f J8US02 T J8

6V02CJ8

8 VU2T J8

ZVU2 f J8

9V02 T J8

S V02 TJ8v VU2 rjyi vu2 r J82 VU2 r J tfL VU2 r J8OVU2PJ8

6iU2 f J 6

^i.U2 1 J«V V U I I i 3i i. U

2 I J

8V i U 2 1 J 8£tU2 1 J

*2 £ U

2 1 4 V

L £ U<i 1 1 8UiU21 J8

62U2 I J

8tf2U2 I J

8Z2U21 J8

92U2 1 J

8S2U^ 1 9

8V202198

£ 2 U c 1 iW<i2U2 1 98L 2 U 2 1 9 «U2U2,1986 L 02 1988LU2 198

L LU2 19*9LU2 198

SLU2198

V LU2 198£ LU2 1982102 198

1 LU2 198U L U^ I 986UU2198

8UU2I98

ZU02198

9002198

^002198

V002 198

£002198

2U02I98

L002I98

BldWVS

OS6V8VL V9VSVVV£ V2VIVUV6i8£/iViSiV£££i i.liU£6282

t. 292S2V2£222L2U26L81Li

9LSLVL

£12 L

L LOL

6UL9IV£2LON

31VU

uo

)) JO

Page 38: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

OOOO'OS

10000'02

IOQOO'02

OOOO'OOZ

IOOOQ'02

10000*02

0000*005

0000*00 I

0000*0001

GUOO'GZ

0000*001

0000*05

OOOO'OZ

GGOO'UGOl

NOOOO*U2

NuOOO*G2

NGUOO*02

OOGO'GOZ

GOOC'uOOl

10000*02

0000*05 I

0000*05 I

GOOG'005

GGOO'u2

OUOG*QO£

10000*02

0000*005

0000*002

0000*000 I

0000*00$:GuOO'OOl

0000*00*10000*002

OOGO*0£

0000*0£

0000*002

OOOO'OS

0000*002

0000*001

10000*02

0000*05

OOOO'OS

OOOO'OOl

0000*002

10000*02

OOOO'OOS I

0000'002

OOOO'OOOl

OOOO'OS

10000*02

V8-S01

OOOO'Ol

0000'02

0000*05

OOOO'Ol

IGUOO'GI

1UGGO '01

GOGG'5 I

UGUO'02

GGOO'5 t

OGOU'Ot

OOGO'Gl

0000*5 I

lOGUO'Ol

0000*01

OGOU'5 I

UGOG'5 I

U000'5 I

UUOO*5 I'

GOGU* U2

GGGG'Gl

UOOO'Ul

0000*005

GGGU'Gl

UOGU'Gl

GOOG'OS

GOGG*05

0000*05

OGOO'G£

GGGO'5l

NUOOO'Ol

GOGG'Gl

OuGu'US

lOGOU'Gl

0000 "OS

OQOU'OZ

OOOG'002

OOOO'UZ

OOOO'OZ

OOOO'OOl

OOOU'Gl

UOOG'U£

0000'02

QOOO'002

0000*00£

GOOO'Ul

0000*02

G000*02

OOOG'G£

lOOOO'Ol

10000*01

b-S6

NOOOO'Ol

NOOOO'Ol

NOOUO'Ol

NOOOO'Ol

NGOOO'Ol

NUOUO'O I

NGOOO'U I

NUOOO'Ol

NuOOO'Gl

NGOGO'Ul

uOOO'51

NGOOO'Ol

ILGOO'O I

NGuOO'Gl

NuOOG'Ul

NuQOG'Ol

N G U G 0 * G INuOGO'Ol

N o 0 G 0 * 0 INuOOO *0l

NuGGO'Ol

NuOOO'Ol

NGUGO'G I

NGOGO'Ol

NuGOO'Ol

NGOOO'O I

NUGOO'Ol

NOOOO'Ol

NGOOO'Ol

NGJOO'Ol

GOUO'Ul

NUGGO*Gl

NGGOO'Ol

GOUO*Ul

NGGGO'O I

NGGGO'Ol

NOOOO'Ol

0000*02

0000*5 I

NOGOO'Ul

NGOOO'Ul

NGOOO'Ol

OOGO'02

NGOGO'Ol

NGOOO'Ol

NOOOO'Ol

NOOOO'Ol

NGOOO'Ol

NOOOO'Ol

NOOOO'Ol

nv-s&

0000*0002

NOOOO'002

NOQOO'002

NOOOO'002

NOOOO'G02

NOOUO'002

NOGUU'002

NOGUU'UG2

NOUUO'002

NOOUO'G02

OUUG'OOZ

NGGOO'GG2

NUGGG'002

NGGGO'002

NGGGG'002

NGUUO*U02

NOOUO'002

NOGOO'G02

NOUGG'GG2

NOOOO'002

NGOUO'GG2

NGGUO*G02

fJOGOO'002

NGGGG*G02

NUOOO'OC2

NOGUO'002

NOOOO'GG2

NOGUO'G02

NGGOG'002

OUUO'GOS

10GGO'G02

NUUOO*GU2

G000'00£

90000'UOOOl

OOOG'OOOOl

100GU'GG2

0000*0002

90000*00001

90UOG'GGOOl

OUOO'GUS I

0000*0005

0000*002

OQOO'OOOOl

NOOUU'002

NUOOO'002

NOGOU'G02

NOOOO'002

NOOGG'002

OOGG'OOOl

NOOOO'002

S«-SL

OOOO'Ol

OOOO'Sl

GGOO'S I

NOUOS'G

U000'2

NOG05 '0

NOGUS'O

NGGUS'O

GCOZ'O

UGUS' I

GGGO'02

GOGS '0

GOGS' I

NGGGS'O

NGOGS'O

NGGGS '0

GGUO'O I

NUGG5 *0

NGGGS *0

NUG05 *0

GOGO'i

NOOG5*0

NUGGS *oNUGGS'O

GOG5'0

UU05 ' I

GGOO'002

NGOOS'U

NOGGS'O

UUOO'2

GGGU't

UGUG*2

OOU5' I

GGGG'Gi

GGGO'02

GOOD' I

GGUO'0£

0000*05

0000*02

GGUO*0£

UGGO'UI

UGOO'Z

OGUO'Ot"

UUOO'2

NUOOS'O

GUOO'2

OGOO'Sl

OOOO'Ol

OGOO'OZ

GOOD'S

9»-S9

OOOC'OOC I

OOOO'UOCl

OOOC'OOS I

OOOC'GOCl

UOOC'GOc

OOGO'UOC2

OOGC'GUC I

GUGL'GUS

GGOC'uOZ

OOOC'UOi

OUOO'GZ

.UUOC'OGZ

GUOG'Ub I

OOOG'OOSl

GGOG'UUC2

OOOC'0£

OUOC'OOS I

GUOG'GG2

GOGC'OOC I

9CUUC'OGCS

GUOC'OGi

OOOC'OOSl

GOUU'UUC I

QGOt'GUC2

GGOC'OOCl

GOOC'GOZ

OOGO'005

UUOC'G5

0000*002

0000*0051

OOOC'UOC I

UGUC*GU2

GUOC*GO£

GOOG'0£

0000*05 I

GGOC'05 I

GOUC'OS

OOOC'OZ

UGOO'OG5

GUOC'U5 I

GUOC'OS

OUOC'U2

OUOC'UOS

OUOC'UOS

OUOO'OOS I

OOOO'UO/

OOOO'UOCt

OOOL'UUS

OuOG'OOl

' OOOC'OOZ

Nh-S5

05 lO'O

0001 '0

OOZQ'O

GG05 '0

OGiO'G

0051 *G

OuOi '0

Gu5 1 *G

GGG2 '0

GuZU '0

GG5G'G

CGZO'G

GuSU'G

GuGS "G

GZUG *oUiGO'G

GuZO *0

GuGi "G

GuG5 *G

GGiG'G

GG£Q*U

05 10*0

GuG5 *U

GUGI *0

GGGi *G

UU50 '0

OGZO'O

GUS I *0

OUG2 *0

GuiO'G

OU2U*0

OUG5 *U

GuiG'O

GuG 1 "G

OGUl'G

000*. *0GOOl'O

GUG i "GGG5 I *U

GuiO'U

OGbU'O

GUZO'O

005 I'O

0002 *0

OGSl'O

OGO£*0

UG02 *G

0002*0

UUSO'O

05 10*0

ii i-s7

JO 5 I

'O

GOOO'2

OUOO'Z

OGOG'5

GG5 I'O

OGGG'Gl

GGGu'<:GGUG*G2

OGU5 * I

GUUO*G2

uGUU" I

GGUG*G2

GG5 i *G

GuUO'2

GUUU'U I

GUUU * 5 I

UUUG * L

GGU5 " L

GUUG " <L

GGGG *G I

GGG5 * I

GUG5 *G

GUUU'Z

UOGG'ul

GUUG " L

GGUG'G I

GU05 * I

GGS I *G

OGG5 * I

GG5 I *G

GuZG'O

GGb I *U

OuUb ' I

IGUSG'U

UU5U*G

UUZG'G

OUSO'O

OGOi *G

GGOi'G

OuUl '0

GU5U'U

OUSO'U

UQOi'O

005 I'O

GGOO'Ol

0005 ' I

OOUO'Z

GUU5 ' I

UOS I'U

OUUG'5

%tf D-S£

UG5 I'O

OGOG't

GGGO*5

UGGO'2

OU^G'U

UG5 I'O

GOOb * I

GGU5 ' I

UGOC* I

GGUb* I

GG02' J

UUG5 * I

UU5 I *G

GGG5 * I

.GUUU* <.

GUGG* 5

GUUG" £

UUOG* I

UUUG*2

GGUb* I

Guu5* I

UGGU*5

GuUU*<iUGUG*£

UGGG*5

GUGO'Z

uOGG* I

GGU2*0

GGUZ'U

UU5G*U

GuUt*U

UGGG* I

GGUZ'G

UUZG'G

UGOS *G

GGGZ'U

QGOl'O

005 I'U

UGUS'G

OGiG'U

GG5G*0

GG50'G

OUG^'U

UGOU' I

OGOO'S

000*1*0GuUS* I

GGG/*0

0050*0

GOOD'S

X'JK-S

2

OOOG'5 I

GUUO'G2

GGOO'Gl

UGGO* i.

GUGG'Gl

UUUU*5 I

GGUG'5

UUOU* I

GGUU'i

GUOZ'U

uGUG *02

UU05*u

GGUG*G2

GUUG* 5

GUUu'i, IGUU 1 "G

GUOG'G t

UUU5 * t

GUUG* i.

bUUG*5 I

GGGG* 02

GUGG*<;GUUG'Z

UGUG'u I

GUUG'i

UGUZ * U

UGGG* I

GGOi *G

GOOG*£

9GGUG*G2

GuUG'Z

GGUU'5

uGUU * G2

GGUG'Z

GGGG'S

GUUU*2

UUGG'i

GOOG'5 I

GUUG'G I

UUOG'UI

GU05* I

OUU5*0

GUOG'S I

UGOG'S

GGU5 ' I

GOUO'2

UGOO'ftUGOG* I

OOGO'Ul

UUU2*0

X3d-SI

96l2f d a1

5 6 1 2 1 1J a7 6 1 2 1 1J ai 6 1 2 1 y a2 6 1 1 1 1J a10 12 l&aG o l 2 I "j aoa 1 2 1 3 aa a 1 2 i 9 a/a 12 i 9av a 1 2 1 v a5 a L <L 1 -J a7 a l 2 i y a£ a 1 1 i $ azau^Hja

9aUcHd a

5 aGc H d a7 a u 2 H d ai aG2 Hd a2 a u 2 H j al a G t H d bGeU2Hda

6ZG2hd a

azG^H jaZZu2hj a

VZU^HJb

5ZU2Hda

7ZG2Hda

i.zG2nda2^G2ndal zu<ih j aU L U <L h d aovGc H j a

a9u2 i ^aZ9G<i 1 da9VG2 I da

5902 Ida

79Gc: I d a£Vu2 i d a

<?vG<: i da19G<: IdaG9G21 da

65G2f da

aSG2 fdaZSU2fdS

9iG2f da

55G2f da

7iG2f da

iSU2Tda

2SU2f da

dldw Vi>

UG L66a6Lt>96

5o76

162616

U6

6ao azava5a78

iacaiaUaOZ

a/LL

9Z5Z1L

iZ2ZIL

(jL69a9Z99959791929190965SS/S95SS7S£S2SIS

ONrt

31VO

Page 39: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

OOOO'S

OOOO'S

OOOQ'02

0000*02

0000*5

OOOO'S

OOOO'S

OOOO'S I

OOOO'S

GOOD'S

OOOO'Z

0000*5

UQQO'S

OOOO'Of

0000*01

OOOO'Ol

0000'02

OOUG'S

GOOD'S I

OOUO'02

OOOO'Z

UOOO'OZ

OGOO'Of

OOOO'S I

cooo'otGOOD'S

GOOD'S

GOOD'S

GOOD'S

OOOO'Z

0000*02

0000*02

0000*02

0000*05

GOOO'OZ

0000*05

0000*01

OOOO'OOl

OOOO'OS

OOOO'S

OOOO'Ol

OOOO'Ol

0000*05

OOOO'QZ

0000*02

10000*5

GOOO'Sl

10000'S

10000*5

10000'S

IN-S02

10GOO'U2

IUUUO'02

1000U'U2

10GOO'U2

1UOGU'02

NGOOO'G2

10000*02

NOOOO'02

IGOOO'02

NOGOU'02

NUQOU'02

NQOOO'02

10000*02

100UU*02

1UUOO'02

NCOOO'02

10000*02

10000*02

10000'02

10000*02

10GOO'U2

10000*02

10GOO'U2

1GOOG'U2

OOOU'U2

10000*02

1GOOU'02

1000G'G2

IGOOO'02

1GGGO'02

NGOOO*02

10000*02

10000*02

NOOOO*G2

NUUOO'02

10UUO'02

NOOOU*02

10000*02

10000*02

10000*02

10000*02

10000*02

NOOOO'02

10000*02

10000*02

10000*02

10000*02

10000*02

NOOOO'02

N0000*02

6N-S61

NOOUU'S

NOOOO'S

NUOGO'S

NUOGU'S

NUOOO'S

UOGO'OS

NUOUO'S

NOOGO'S

NUUOO'S

NUUOO'S

UOOO'U2

NOUUO'S

0000*01

OOOO'Ol

OOOO'OOS

NGOUO'S

OOOO'OOl

NOOOO'S

NGOGO'S

OOGO'002

NGOGO'S

NUUOO'S

NOUOO'S

NUUUO' S

NOOOO'S

NOGGO'S

NUUGO'S

NGOGO'S

NGGCO'S

NGOOO'S

NGOOO'S

NGOOO'S

NOOOO'S

NGOUO'S

NOOOO'S

NGOOO'S

GOOO'Sl

NOOOO'S

OOUO'S

UOOO'OS

0000*5

NOOOO'S

GOOO'Ol

NGOOG'S

NOOOO'S

NOOOO'S

0000*01

NOOOO'S

0000*51

NOOOO'S

OW-S81

GOOO'G2

10000*02

10000*02

OGGO*U£

OOGO'02

10000*02

UUUU'OS

OGUG'02

GUOO'GS

GGOO'02

IOOGO'02

OOOG'G2

OOUU'U2

OOOG'GS

10UOO'02

QOQQ'Qf

OGOO'OS

OOGO'GS

OGUO'GZ

OGGG'02

OUOU'U2

OUGO'G2

GOOO'GS

1GUGO'02

GOQO'OS I

0000*02

0000*02

OOGO'OZ

GOOO'GOl

GOOO'G2

OUUO'G2

OOOO'OS

10000*02

0000*02

0000*02

OOOO'Ot

0000*02

OOGO'OZ

0000*02

OOUO'02

OOOO'Ot

oooo'otIOOUO'02

OOOO'OS

OGOU'Ot

0000*05

0000*05

0000*05

10000*02

10000*02

Vl-SZl

OUUO'002

GGOO'GOGS

GOOG'UUOS

GOUG'OS

OGGO'GOS

GCGG'OGS

GGGG'GS

IGOGO'S

OOOO'Of

GGGG'GZ

GUOU'OOS I

OGUG'U L

UUUU'OGZ

GGGG'GZ

GGOO'OS

GOGO'Oi.GLGG*G002

0000*02

GGOG'Gl

GGGG'02

GGOG'0002

90GGO'GG002

UGGG'OS

GGGG'O I

GUUU'S I

GOOG'Gl

OOOO'OGOl

GGUG'O I

GGGO'OS

GOOO'OGOGl

GOGO'OOS I

OGOO'GU I

UOGU'OOOOl

GOOO'OG I

0000*00 I

GUUU'US

GGGO'OZ

OGOQ'OOi

GGGO'OOUl

GOUO'OGS

UGOO'GOl

GGOO'G2

GUOO'UOS

OUOO'OS

OOOO'S

OUOO'OZ

OOOO'OOl

0000'0£

0000*0001

0000*02

ru-s91

OOOC'OS

OOOC'02

OUOC'OZ

GGGC'GS I

OGUG*02

GUOG'GG I

OUOG'Gl

GOOC'GG I

GGGC'Ol

GGGC'OG I

GGGG'GS

UOOC'GZ

GGOC*02

GGGC'QO I

0000*02

GUOC'GS

G G G C ' G iGuOC'Ol

UuGC'GZ

OuGC'GS

GUO C "04.

GGGC "G<;

GGGC'GS I

OGOG'02

OuOC*GU2

UGOC'U I

GOOG'U2

OOOC'02

GGOC'S L

GOGC'Gl

GOOC'Sl

OOOO'OZ

OUUC'Oi.OUGC'OS

GOOC'Of

GGGG'GG I

GGOC'Ui

GGOG'GS

OGOC'GG I

OGOO'S I

GGOC'02

UOOC'02

GOOG'GZ

UGUG'OG I

GGOC'OS

OOOC'Ol

OGOC'OZ

NGOOC'Ol

OGOG'Ol

OOOC'Sl

MD-S51

NOGGO'S

GGOO'OS

OUGG'OS

OGOG'Oi

OOUG'Gl

OGGU'Ol

GUGU "02

UUGO'Ul

OOUU'Ol

UUOO'Gl

OUUO'U I

NOUUU'S

OUGG'OS

GGUU'U2

UGGU'Ol

NUUOO'S

GGGG'S I

GGGO'Z

GUGU "04!

GUGG'G2

UUGU'UUl

UUGU'UUS

GOUO*04

UUUU'S I

OUUO'Sl

NUUOO'S

NOGOG'S

NGUGO'S

OuUO'Ol

NUUUU'S

OUOO'Ol

OGGO'02

OUUU'Ol

UGOU'S I

UUOU *S I

UUGU'S I

NGUOU'S

UUOO'04.GOOD'S I

NUGGO'S

UGOU '5 I

NOUGO'S

OOUU'02

OOUO'Ul

OUOO'S

OUOO'S

OOOO'Ol

NOOOO'S

NOOOO*S

oooo*zoo-sn

OOOO'OS I

NUUUU'Ud

NUOUO'G2

NUOUU*U<:NGUUU'U2

NUUOO'02

NUUUU*U2

NUGUO'U2

NGUOG*Q2

'NUOOG'02

NuGUU*u2

NGUUG*U2

NOUOO*G2

NGGGO'G2

NGGOO'02

NUUUU'02

NGOUU'U2

NUUUU'U2

NUGOO'U2

NGuUO'U2

NGGUO*U2

NUUUU'U2

NUOOG'02

NUUUU*U2

NUUUU'U2

NGGUG*U2

OGOG'02

NGUUU'G2

NGUOU'U2

NUUUU*U2

NUUOG*02

NUGOU'U2

NUUUG'U2

NUUUU'U2

GUGO'OS

NOOGG'02

NOOOG*G<:GOOU'GGl

GGOO'US I

UUUU'UcINGUUG'U2

NUUOU'U2

UUUU'UUl

NUUUU'02

NOOUO'02

NGUOO'02

OOOO'OOS

NOUOO'02

OUUO'OS

N0000*02

QD-S£1

1UOUU* I

1UUGU' I

UUGO* I

10000* I

GGUS* I

1UUUO' I

GGGG' I

10UUU' I

UOOO'2

1UUUO' I

GUGO't

IGUGU* I

UUUO* I

UUGS* I

1GGUO' I

1UUUU* I

UUGG' I

UUUS* I

UUUO* I

1UUGU* I

1UUUG* I

OUGO' I

UUGG' I

1UUUO' I

UGGO'2

UUUU' I

UUUU' I

UUUU' I

OUUS' I

UUOO'2

UUUU' I

UUUU' I

UGUO* I

UuUO' I

OUOO' I

OUUS' I

GGOO' I

UUOG'2

OUUC'4

1UGUU' I

UUUG' I

UUUU' I

UUUO'i

OUUO*2

IGGGu* I

OUUU*2

OOUU'2

OOOS'l

0000*1

10000*1

38-S21

1UUOU* I

10000* I

OUOU* I

IGUUO* I

UUUS " I

10000* L

GUGO' I

1GGGG' I

UUUU'2

IGUGU' L

UUUU'i.

1UUUG' I

GUGG* I

GOGS ' I

1GGUG* I

1UUUU * L

UUUU* I

GUGS ' I

GUUU* I

1UUUU * I

1GGUU* I

UUUU* I

GUGG* I

1UUUU* I

uuou'<:GGGG' L

GUUG* I

GUUU* I

UUUS' I

GOOG'2

UUUO' I

UUUU* I

UUUU' I

UUUU' I

UOOG* I

uGOS * I

UUOU' I

UGUG*2

OuOU'f

lUUOG* I

UGOU* I

GUOG* I

Guoo'sGUUU*2

1UOOG* I

OOOU'2

GGOO'2

OG05' I

UUUO' I

1UUOO' I

38-SU

96 12 P

d8

S 6 I 2 I 9 8V 6 L 2 I 9 84. 6 U

11) rf20 U 193

1012198

Uo L <i I 9ri

6 tf t i I "J 8Htf 12 1

98

Z 8 I 2 I 9 89 a I 2 1 J 8S o I <L I LJ aV a I c 1 9 3i 8 L c! i 9 3ZbucfHdy

9oG<:H J it

Sb Gc Hd 8

VaUtHd y

i aUi Hd 3

2 8 0 c H d aLaUc Hd d

G 8 G c H d a6 e. G (. H d 8»<iUc:hd 3

ZZG^Hd3

9<iuc:Hd 8SZU^ H d H

V Z G 2 H d 8i Z

ud Hd 8

2 Z U 2 H d 8lZG2hd e

GZGdHdy

09U2Hd 3

8 9 G (. \ d aZ9G2 1 d 3

99G<^ 1 d 8S9G2 1 d

8V9u^ 1 d 8

i. 9 U 2 1 d 829U2 I d

y19U2 I d 8

G9U2 id*

6SU2 T d 8

«iU2 Td«

ZSU2fd8

9SU2PJ8

SSU2Pd8

t/S02 Pd 8£SG2 Pd 8

.2SU2Pi8

JldwvS

OGl66

86Z696S676

io26lo

G663

8bZ898S8v a£8c818

GK

6Z8Z

ZZ9ZSZ^Z

«^tz

°-£L

IZGZ69

89Z9

9959

^9

4,92919096585

ZS9S55^5^ 52515

ONrtOd

Page 40: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

0000*01

0000*01

0000*01

0000*001

NGOQO'Ol

OOGG'GS

OOOO'OOl

0000*05

Qooo'002oooo'020000*51

GOGO*0£

OOOG'G2

0000*002

NOGGG'Ol

NOOOO'Gl

NOOCC'Gl

GGCO'OSl

GOGO'002

10000'Gl

IGOOO'Ol

0000*01

0000*05

0000*05

GOOG'OOl

oooo'020000*05

OOGO'OOS

0000*05 I

IGOOO'Ol

10000*01,0000*05 L

0000*01,0000*0^

0000*05

0000*001

0000*05

0000*001

0000*0<i0000*5 I

GOOO'OZ

0000*001

0000*05

0000*051

0000*05

oooo'ooi0000*001

0000*002

0000*01

0000*01

az-sOi

0000*0005

NGOOO*002

GOOO'OOZ

NOOOO*GG2

NOGOG*G02NOQOO*GG2

Noooo*G02NOOOG*G02

NOOOG'002

NGOGG*G02

NGGGG'G02

NGGOO'G02

GGOG 'GG/

NGGOG *G02

KGGGU 'uG2

NUOGU'U02

NuGGu " U

G2

NGUGG'U02

NUUOO*OG2

NGGOO'G02

NGOGO'C02

IGGOG'002

NOOGO*002

10000*002

NGOGO*GG2

NUOOO'G02

NGGGG*OG2

NOGOO*002

NGOOO*002

GOGO'UGi

KUGUG*G02

NGOGG'G02

GGGO*U05

GOGO*OG5

OGOG'OGOi

OOOG*002

0000*005

0000*0002

0000*0005

' OOOO'GOOt

0000*002

10000*002

0000*0002

OGGO*G05

0000*002

10000*002

OGOOO'GOGOl

OOOO'UOZ

OOGG'GOOS

NGOGO*GU2

NZ-S62

0000'5l

0000*51

0000*02

OOOO'Oi

NGOGO'Gl

GGGO*02

GGGO'Ot

0000*02

0000*02

GOGO'5l

OGUG'Ol

GOGG*G2

NUGOO'Ol

UUGO'GS

GOGG'5l

LUGO'5 I

UUOO'u2

UGGO'G2

GGGO'0£

GGGO'02

N'GGOO'OLGOOO'Of

OOGQ*G5

0000*02

UUGO'OS

GOOO'Gl

OOGO'Ol

GGOO'Ol

GOGO*G2

GGGO'Ol

NGOGG'Ol

GOOO'Gi

GGOG*G2

0000*51

OOGO*5 t

0000*02

GGGO'S I

0000*05

GOOO*G2

NOOOO'Ol

NOOOO'OL

0000*01

0000*01

0000*02

GOOO'Sl

COGO'Oi

OOGO'Oi

0000*0£

NOOOG'Gl

NOOOU'Ol

X-S^2

NOGOO*05

N0000*05

0000*05

NOOOG'OS

10000*05

OOUG'OS

NUUGO*05

MJOOG*US

NOOOO'OS

NGGGG*U5

OGGO*05

NOGOG*G5

UGGG*u02

NUGGG*05

GOOG*UG2

NGGGG'G5

GuGG'GO I

NGOGO*05

NOGGO*G5

OGOG'GGS

NOOGG*OS

NGGGG*G5

NOOOO*G5

NGOOO*G5

NUGGU*05

NGGGG'GS

NOOOO'OS

NGGGG'05

NOOOO*G5

NGGOG*G5

NGGUG*OS

NGGGO*G5

NGOGU*G5

NOGGO*G5

NGGGG*05

NGOGO'OS

NGOOO'OS

NGOOG*G5

NGOOG'GS

NGOOO*05

KGGUG*05

N0000*05

NOOGG*G5

NGOOO*05

NGUOO*U5

NOOGO'US

NOOOU'05

NUOGO*05

N0000*05

NOGGO*GS

M-SL<L

0000*005

100GO*-OtG000*02

OOGG*00£

GGGG*05 I

GGOU'OZ

GOGO'002

GGGG '(jL

GGUG*G/

GGGO'G2

GGOG*G5 I

GUGG'0£

OGGG'Gi.0000*05 I

GGGO'OG I

G000*02

GOUO*Ou2

GOOG *GGl

OOGO*G5 I

GGGO*G5 I

OOOO'UOl

GGOU*G1

GOOO*GG2

GGOO*0<iOGUG'Oul

0000*02

GOOO'GS

GGGG'Oi

GGGO'GZ

0000*00^1OOGG'G^

UGGG*UU2

GGUG 'GUV.

GGGG'Ot

OOOO'Gi

OOGO'GGl

GOOG*G5

0000*005

GOOG'GOi.GGGU*G02

0000*05 I

GGOO'Gi

GOOO*OG2

GOOU'OGl

0000*05

0000*04

GOOO'GS t

GOGO'Gi

GGOO'GZ

GGGG* 5 I

A-S92

100GC*00 t

10000*00 I

IOUGC'00 I

GGOC'GO^

lOOGC'GG I

IGOOC'OG I

GGOC'GG^

GGGO'GG/

GUGG'UGS

GGUC'GG-fIGGGC'UG I.

GuGC'OG^

IGOGC'GO I

UOOC'OOS

NGUOC*GO I

GUOC'UUi

NOUGC'UO I

GGGC'GGi

GGGC'GUS

IGGGC'uG I

IGGGC'UO I

IGGGL'GGl

GOGC 'OUZ

GUGC'OG I

GGOG*UGc

GGGG'UG I

GUOC'GO I

IGUOC'UU I

UGOG*GG£

IGGGC'UGl

IGGOG'GG I

GUOG'UG I

IGOOC'GG I

IGOOC'GO L

IGOOC'GU I

luGOC'OO I

IGOGC'GO I

OGOC*U02

IGGGC'GO I

OGOC*OGl

IGOGG'OG I

IGGGC'GGl

lUGOC'GG I

IGGGO'UG I

GGGG'GG L

GGOO*UG£

GOOO'GGc

GGOC*GG£

10GOC*GO t

IGGOC'GO I

as-s

52

NOOOO'Ol

UGOO*05

OGOO'Oi.NOUOO'GL

UUGOG'Gl

NGuUG'GL

NGuGO'Gl

NGUUO*Ul

NUGGO'Gl

NUJUO'Ul

NUUGO'O I

NUUUG "U I

N u U 0 U * 0 tNuGOU'Gl

UuGG*G5

NGUGU'Gl.

GUGG*5 I

NGGGU'G I

NGuUG *G I

UUGG'U2

NGUGU'O t

NUuGG'Gl

NGUGG'G I

NGUGG "0 I

NUUGG'G I

NUUGG'OI

NUuGG'Gl.

NGGGG'Gl

NUuOG'Gl

NGUGG "0 I

NUuGO'OL

NUUGO'OL

NUGGG'G I

NUuGO'GL

NOuUU'G I

NGGGG'Gl

NGGOG'Gl

GuGG'02

OGUG'Gi

GGGG'il

NGUOG'Gl

NGuGG'Gl

NUUGG'Gl

NOuGG'Gl

NGGOO'Ol

NOUGO'Gl

GuGG'S I

NOGGG'G I

NGGGO'O I

NUGGG'Gl

NS-SV2

IGUOO'S

GGOG'S

IGGGG'b

GGGG'Ui

luUGG'S

NUGGG " b

GOGO'G2

GUGU'U I

Uuuu * u I

UUuu ' L

GUUU * L

G U G U ' LNUUUU* b

UuJu " b I

NUUUU " b

NUuuU " 5

N G G u G * 5UuuU ' L

Guuu ' u2UUUU ' 5

Uuuu * 5

GGUU'i

GUuu " U

iGUUU'<!GGUU'b I

1UUUG * 5

lUGUU'b

GuUU' 5

GUUG'Z

NGUUG' 5

NUUUO 'S

UUUO *U2

GuGG'5

GUUU'G I

UUUG'Gl

GGuG'Gl

GGUG'-IGGGG*/

UGGG'Ul

1GGOG*5

1GGUG*5

NGGGU'5

UUGG'GI

OGGG'Gl

GGGG'Z

GGGG'Gl

UUGG'S I

UGGG'O L

NOGGG'b

1GGGG*5

Db'-Si!2

NUGGO'

NuGGG'

NGGGO'

NUUUU'

NUUGG'

NuUUG'

NuuUG'

NuGUU'

NuuuG'

N UUUG'

UUUU'

NGGuG'

N J u u G ' NuuGU

NuuUG'

N u u U U NuUUU'

N u u 0 0 ' NuuUu'

N u U u G ' NuuuG'

NGuGU'

NUUGG'

NuUUG'

NuuUG'

N U u'U U 'UUUO'

NuUUU'

NuUUU'

1GUUU'

NUUUO'

NGUUG'

UUUG'

luuuu'1 U U U U 'NUUUO'

NGuuG'

UUUU'

UUUG'

GUGG'

iGuGG'

NuGGG'

GGGG'

NuGUG'

NuGGG'

NGGGG'

NGUGG'

KGuGG'

GGGG'

NGUGO'

di'-S 22

GOl

GGl

UGl

GG I

UGl

UGl

GUI

GU I

GG I

uu I

GGl

GGl

UUl

UGl

uG I

uU I

UU I

uU t

UU I

UU I

uU I

GGl

GU I

GGl

UGl

GG I

Gub

UGl

UG I

UGl

UG I

UG I

GU2

GU I

GG I

OGl

UGl

GGi

G5 I UU I

GUI

GGl

UU I

uOl uGl UGl GOl GOi GGl

GGGG'

GUGO'

1GGGG'

GUGG'

luuGG'

1UGGU'

GGOG '

GUGG'

UUUU'

UUOG

1 GuGG'

UUUU '

UuGu '

UUUU'

lUuGG'

UUUU'

uuGU '

UUUU '

uuuG '

Uuuu'

lUuGu'

UGGG'

UUGG '

UUGG'

UUUU'

UuUG'

UUuG'

UGOu'

UUUU'

UUUG'

GGuG'

GUGG'

GuGG'

GUGG'

UUUG'

UUUU'

UUGU'

GUGG'

GGGG'

UGGG'

GUOG'

GUOG'

0000'

GGGG'

GGGG'

GGGU'

GOOU'

UGGG'

GGGG'

GUGG'

bd-i 12

GUGi

01

GlG2

Ul01

b" I

G IOb

uc:GG2

b I ulUi

G L b I G I G1

b I G I ul

G I 5 I Ul U5

uzGUG5 I

U IuiUiUUZ

UUGl

UUU2

U5 I

GGU1

UUGb I

GGGud

LGG5 I

GGGU I

GG5GGGb

UUl

GG2

UUl

00b

GUI

GOG5 I

UOUl

9612 F J»

5 6 I 2 J 'J tf V

612 19S

I a & 1 1J »J a *I LJ tf 1 'J bi a«i "J o1 'J 8I i) »

H J h

I o I 2 U 6 I <Lo « I <LH a I 2 L b' U9« \,<L b x i a7 «U

2 I b t 2 i * G c'

I i U c' H J tf

6VG2H jy

aVu2 1 jy ^9G2 J jy9VU2 I jy

S9G2 I Ja

7VG2 1 jy

i9U2 i J y

29G2 J J8

19021 in

G9U2I Jo

55G2F Jy

V5G2 Tdg

GGl

66

Vo

56 76 i6 26 16 G6

68Vb

b«vy ib <.** iy oy6^«z it vzIL\,L

G^ 6999

59 79 19 ^9 19 G9

65 85 Z5 95 55 75 i5 25 15

ONrtOd

/S

Page 41: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

0 i1

1 o

nD

AT

E5

7

3/7

9

ROUND 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

67 68 69 70 71 7?

73

*

7576

7778

79

80

81 8283

84858687

R889

90

91 92 93

9495

969798

99

100

SAMPLE

*FJ?052

8FJ2053

8FJ2054

8FJ2055

8FJ2P56

8FJ2057

8FJ2058

PFJ 2059

8FT 2060

8FI2061

8FI206?

8FI 2063

RF 12064

RF I

2065

8 F

T '066

8FI2067

8F I

2068

8FH2069

8FHP070

8FH2071

8FH2072

8FH2073

8FH2074

8FHP075'

RFH2076

8FH2077

RFH2078

8FH2079

8 FH20PO

8FH2081

8FH?082

8FM2083

RFH20R4

8FH2085

8FH2086

P FH20

n7

8 G

I 2

1 8 3

8 G

I 2

1 8 4

8 G

I ?

1 R 5

8GI 21«6

8GI 21 R7

8 G

I 2

1 8 8

8 G

I 2

1 8 9

8GI 2190

RGI 21 91

8GI2192

8 G

I 2

1 9 3

8GI 2194

8GI 21 05

8FJ21 96

31S-TH

100.

OOOON

100.

OOOON

1 OO.OOPON

100. OOOON

100.0PPON

100.00POM

100. OOOON

100.000PN

100.000PN

100. OOOON

100. OOOON

100. OOOON

100. OOOON

100.0.POON

100. OOOON

100.0POON

100.0PPOM

1 00 .

OOOOM

100. OOOON

100. OOOON

100. OOOON

100. OOOON

100. OOOON

100. OOOON

100.

OOOON

100.00PON

100. OOOON

100.00PON

100. OOOON

100. OOOON

100.00PON

100. OOOON

100.

OOOON

100.0000M

100. OOOON

100. OOOON

100.00PON

100.00PON

100. OOOON

100. OOOON

100.0POON

100. OOOON

100. OOOON

100. OOOON

100.00PON

100. OOOON

100.00PPN

100.00PON

100. OOOON

100.

OOOON

32AA-ZN-P

AGO. 0000

4000.0000

760.0000

2ROOO.OOOO

180.0000

1500.0000

460.0000

1700.0000

1 70.0000

140.0000

5600.0000

4600.0000

1 100.0000

480.0000

130.0000

2800.0000

380.0000

190.0000

20.0000

140.0000

360.0000

30.0000

10.0000

85.0000

20.0000

70.000P

25.0000

30.0000

300.0000

40.0000

20.0000

50.0000

15.0000

40.0000

25.0000

30.0000

50.0000

660.0000

30.0000

140.0000

45.0000

50.0000

1 5.0000

25.0000

25.0000

50.0000

30.0000

1400.0000

60.0000

2000.0000G

33AA-SB-P

4.0000

160.0000

3.0000

2.0000

1.0000

1 .OOOOL

3.0000

60.0000

10.0000

25.0000

1 RO.OOOO

140.0000

10H.OOOO

10.0

000

2.0000

25.0000

20.0000

200.0000

5.0000

10.0000

40.0000

1 .0000

1 .OOOOL

200.0000G

1 .0000

1 .0000

1 .0000

1 .OOOOL

2.0000

2.000Q

1 . OOOON

1 .OOOON

1 .OOOON

1 .OOOOL

1 .OPPON

1 .OOOON

2.0000

1 .0000

1 .OOPOL

60.0000

1 .OOOOL

1 .OOOOL '

1 .OOOOL

1 .OOOON

2.0000

1 5.0000

1. OOOON

3.00PO

1 .0000

20.0000

34CW-AS

20.0000

1 600.0000

40.0000

10.0000

10.0000

80.0000

120.00^0

1 600.0000

100.0000

1600.0000G

1 600.0000G

1600.0000G

1600.0000G

1600.0000G

200.0000

1600.0000G

1 600.000PG

600.0000

80.0000

80.0000

400.0000

20.0000

10.0000

40.0000

20.0000

10.0000

10.0000

10. OOOOL

40.0000

30.0000

10.0000

10.0000

10.0000

40.0000

10.0000

60.0000

10. OOOOL

10.0000

10.0000

400.0000

10.0000

10. OOOOL

10. OOOOL

10.0

0001

.10. OOOOL

40.0000

10. OOOOL

60.0000

1 20.0000

1 600.0000

35CM-W

1. OOOOL

1.3000

1. OOOON

5.0000

1.3000N

2.0000

2.0000.

1. OOOOL

2.3000

1.3000

2.0000

2.0000

1.3000L

1 .0000

2.3000

1.5000

1 .0000

1. OOOON

2.3000

2.3000

1 .3000N

1 .3000L

1 .0000

1.3000

2.3003

1.3003L

1.3000

1.0000

1. DOOON

5.0000

200.3000G

15.0000

5.3000

200.3000G

5.3000

200.3000

1 .30P3N

200.0000G

1 .OOOON

20.3000

1.3000

2.3000

1 .3000N

1. OOOON

10.3000

5.3000

1 .3000N

1 .OOOOH

1 .OOOOH

1. OOOON

36CH-W-P

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

0.00008

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

0.00008

O.OOOOB

O.OOOOB

O.OOOOB

O.P0008

0.00008

O.OOOOB

O.OOOOB

0.00008

O.OOOOB

O.OPOOB

O.OOOOB

O.OOOOB

O.OOOOB

0.00008

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

O.OOOOB

0. OOOOB

O.OOOOB

0.00003

0.00008

O.OOOOB

O.OOOOB

O.OOOOB

0.00008

O.OOOOB

Page 42: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

iion

DA

TE

5/

3/7

9

ROW NO

101

10?

103

104

105

106

197

108

109

1 10

1 1

1 1

1 2

1 1 3

1 1 4

1 1 5

1 1 6

1 1 7

1 1 8

1 19

1 20

1 21

1 22

123

124

SAMPLF

8FJ2197

8FJ21 9«

8FJ2199

8PJ2200

8GI2242

8GI2243

8GI 2244

8GI22A5

3 G

I 2 2 4 6

R G

I 2 2 4 7

8 G

I 2 2 4 8

8 G

I ? 2 4 9

P G

2250

8r,

??51

«F 225?

8F 2?53

8F 2254

PF

?? 55

*F ?256

«F 2402

8F 2403

8F 2404

8F 12405

8FI 2406

1 S-FF*

0. 7000

5.0000

1 .onon

1 .5000

10.0

000

7.0000

5.0000

5.0000

3.0000

5.0000

5.0000

5.0000

10.0000

7.0000

2.0000

1 . 5000

1 .no

nn1 .5000

1 .sonn

n. soon

5.0000

3.0000

1 o.nono

1 .5000

2 s - M

G r

1 .0000

1.5000

1.5000

1.0000

0.5000

0.500Q

1 .onnn

0.2000

0.2000

0.0200L

1 .5000

1 .oono

0.1000

1 .0000

3.0000

1 .0000

0.1000

10.0

000

0.5000

7.0000

0.7000

1 .0000

0.1500

2.0000

3 S-C AX

20.0000

1.5000

1 5.0000

2.0000

1 .0000

1.5000

10.0

000

0.1000

0. 1000

0.0700

1 .5000

1 . 5000

5.0000

2.0000

10.0000

1 .0000

0. 1

500

1 5.0000

0.3000

1 5 .0000

0.5000

2.0000

0.1000

3.0000

4S-T IX

0.0500

0.5000

0.1000

0. 1500

0.01

50

0.0300

0.5000

0.3000

0.3000

0.0020

o. 3oon

0.2000

0.2000

0.7000

0. 100

0o.2noo

0. 1000

0.2000

0.1000

0.0070

0.5000

0.7000

0.1000

0.0200

5 S -MN

200.3000

1 300.3000

300.3000

1 50.3000

5300. OOOOG

5300

. OOOOG

3300.3000

2300.3000

70n.

oono

5300.3000G

1 500.3000

5300.0000

1 300.0000

5300.3000

5300.3000

500.0000

70.0000

1 00.3000

700.0000

500.0000

700.0000

1 00.0000

1300.0000

1300.0000

6 S-AG

0.5000

0.5000L

2.0000

7.0000

200.0000

1000.0000

3.0000

2.0000

10.0000

0.5000

1 .0000

0.5000

20.0000

0.5000N

1 5.0000

1 .0000

50.0000

10.0000

0.5000

5.0000

3.0000

2.0000

3.0000

1.5000

7 S-AS

200.

OOOON

200.

OOOON

200.

OOOON

200.

OOOOL

700.0000

200.0000

200. OOOON

200.0000N

200.

OOOON

200. OOOOL

200. OOOON

200. OOOON

200.

OOO

ON200. OOOON

500.0000

200.

OOO

ON200. OOOON

200. OOOON

200. OOOON

200. OOOON

1000.0000

200.0000

1000.0000

200.0000

8 S-AU

10. OOOON

10. OOOON

10. OOOON

10. OOOOL

10. OOOOL

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

10. OOOON

1 0.

OOOON

10. OOOON

10. OOOON

10. OOOOL

1 0.0000

15.0000

10. OOOON

9 S-B

10. OOOOL

10.0000

100.0000

150.0000

10.0000

20.0000

10.0000

20.0000

30.0000

10. OOOON

10.0000

10.0000

10.0000

15.0000

50.0000

1 5.0000

30.0000

100.0000

200.0000

10.0000

200.0000

1 50.0000

50.0000

30.0000

10 S-BA

100.0000

700.0000

50.0000

70.0000

30.0000

700.0000

20.0000

200.0000

150.0000

100.0000

1000.0000

1000.0000

500.0000

700.0000

300.0000

1000.0000

300.0000

70.0000

500.0000

20. OOOOL

1000.0000

700.0000

500.0000

5000. OOOOG

Page 43: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

0000*01

0000*05

0000*5

OOCO*5 I

0000*5

10000*5

0000*5 I

0000*5 I

0000*5

0000*02

0000*4

0000*5

0000*5

U000*5

0000*5

0000*5

0000*5

0000*5

0000*5

0000*01

0000*51

0000*01

0000*5

0000*5

10000*02

10GOO*U2

1GGOU*G2

UOOO*U2

1000U*02

UOOU*02

100GO*02

100GO*G2

10GUO*U2

NOQOU*U2

1UGOG*G2

1UOOO*02

0000*U2

0000*02

10000*02

OOOU*02

OOOG*U2

1GOOO*U2

10000*02

NOOGO*02

10000*02

NOOOU*02

10000*02

N0000*02

OGOO'Ol

0000*001.0000*01

OUGG'O L

NUUUO*5

NOOGO*5

NUOOO*5

UUOO*02

NOOUU*5

UOUO*5l

NOOUO*5

0000*51

NGUUO*5

NOOGO*5

NOGOO*5

GOUU*5l

0000*5 I

0000*4

0000*02

OOUO*5

0000*4

N0000*5

NOOOO'S

NGOOO*5

UUOO*U2

OOUU*02

OOOO'UOl

GUUO'UO I

OOGO*02

OUOO*0£

OGUU*U£

OOUU*U2

0000*001

0000*02

0000*04

GUUO*02

UOOO*U5

0000*001

OOOO'Gt

OOUG*G4

0000*05

0000*04

0000*02

0000*02

0000*02

0000*02

0000*04

0000*02

0000*5 t

GGQO'OOt

10000*5

0000*04

GUOO*U2

0000*05

1GUOO*5

ULOU*U5

NGGUO*5

GUGU*U2

UOUO*G2

0000*005

GUOU*5

GGOO*5

UOUO*5

0000*5

0000*02

1GOOO*5

GOGG'OGUl

0000*002

OOUO*5 I

0000*01

0000*02

GOUCTU4

OGOC*U2

GUUG'Of

UUGG'UO I

GGOG'04

GUOG*5 L

OOOG'U I

OUOG'04

OUGG"U2

GUUC'Ot

OOOG'Gt

UUGU'Ut

OGUO*5 L

GOOG*02

OOOC'Oi:GOUO'Ol

UUOG'Oi

GUGO*G5

'0000*05

GUOO*05

0000*05

GOUO*U5

0000*05

0000*04

OOOC*05

UUUU*5

UUUU*G2

NGUUU*5

UUUG*02

NOOOU'S

NUUUU*5

NGUUU*5

NOGGG*5

NGUOU'5

UUUU'4

GUUO*G2

OUUQ'UL

UUUG'SL

UUUG*5 L

UOGU'Ul

NUUOU*5

GUUO*5 L

UUGG*5 I

NGOUG*5

0000*02

N0000*5''NOOGO*5

0000*02

NOUOO'S

NUUUU *G2

NGGOG*G2

NUOUO*02

NGUGG*U2

NUUUO*U2

NGUOG "02

N u U G U " U <LNUUOU *U2

NUUUU "u<:NUUOG*G2NUUUU* 02

NGUOU*U2

NUOUU*U2

NUUUG*G2

NGUUU*02

NUUGU*U2

N U U U U * U 2NOOOU*02

OGUO*05 I

OUOO'Ot

NUOUU*02

NGUGO*G2

NGGGO*G2

NUUOO*02

1GGGG* I

UUU5 ' I

UUGO* L

UuUU*2

1UUGU* I

GUGG*2

1GUGG* I

UUUG*2

UUUU'2

UUUG* I

UGUO* I

GGGU* I

OGU5* I

GUU5* I

GGGO* I

UUGG * 2

GUG5* I

GGGO* I

GGGO* I

GGGO*2

UGGO* I

1UUGG* \,

OGGO'l

TGUGO' I

1GUUG* I

G005* L

GUUU* I

G JGG"2

100UO* I

GUOU*2

luUOG'l

COUG'C

GUUU*2

UUUU* L

GuGO* I

UUGG* L

GU05* L

UG05* t

GGOG* I

GUUO*2

UUU5* I

GUGG* I

GOOD* I

GGOG*2

GGGO* I

10000*1

0000* I

1GOOO* I

VG92 Id8

5 G 9 2 I d '»9G92 I d 8

iG92 I d b

2G92138

9522 H 8

5 5 2 c 1 d b'95^2 i db

t 5 <Li I d 82 5 i<L I d 8L 5 C 2 1 CJ 8G 5 2 2 I CJ 86922138

8922138

L 1 2 c i 9 89 9 2 i 1 1) 85 9 2 2 1 i 87 7 i 2 I !/ 8£922 198

2 V 2 c I CJ 8OU22M8

66l2fd8

86 12 f d8

46 L2TJ8

92 I

°°

7C l

CO

£2122 L121G21

6 1 L8 I IL

I I

91 I5 L I91 I£ t t2 L II 1101 I6GL

801

4GL

9GI

501901£Gl201

tGl

IN-S 02

8N-S 61

OW-S 81

V1-S 41

ru-s91

aa-s51OD-S

OD-S

2138-S U

ONrtOU

31VQ

Page 44: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

2 _JooooooooooocccooocooooooOOOOOOOOOOOOGCOOOOOOOOOOoooooooooooooooooooocooo oooooooooooooooooooooooooooo^cooooooooooooocoooo r\iO»'">«A« r>jmi/"»w»« o*'"> OO^u"*fVii''>O»--OO»/'>»"

t\l r- - »- fM »~ »- K) »- fM f\l *VI

2 Z Z Z 2 2 Z _J -J Z Z Z 2 _J _J 2oooocooooooooocoococccoo oooocoooooooooooocoooooo oococooooccoocooooooooooOOGOOCCOOOCCGC-COGCCOOCOO

coocccocccococcocrccoccoo OGOCOOOGOCGCOGOCOCOOOOOO

ooc-oocroooocrecooooooooocc; oooooccoooccoccooooooooc oooocrococoocccocoooccrooo oooooooocooocooocroooooooinocooooooiAoocrcu^i^ccooocoo -' fO f\l r- f»» l\l »/> f\l K) T- Wi ft fM Ki »- »- ^- fM f\J »r- »/> K> f\j T-

oooocooocccroococcoooocoo oooococ.'Ccooooocrccrc ooococ cccooocococcoc-coccrcooooo ooococcooooooccocrocooooocococoococooccrooocroooooo

> oocrcrcro cococooocrocroocTcooci cococroccocroooocoococroocno

t« ocoooooccccocccccr. crccocrcDO«c cocccocccocoocooccooocoorv> .«««.. . ........ t..t

ccccc^ooccroocccccoc-oooooo

coocerococr, ococcrccooooccco c:. occccoooccocccccc-ccroooc ccccccooccococooocroooooo

coccc cccoccoccroocoooocco

crcccrc. ocrccooooecc-coocrcoooCC-CC, CCOOCCOOC-CC-CCCOCCOCCocccccccoocccccccccocoooCOOCCOCCCOCCCOCCC-C-CCOCOO

OCC-CCOCOCCOCCCCC OCCCOCCO

ooccocccc. ccccococcocrc-occ; cccocccccc c^occccc occcoccCOCC-COCCOC'CCCCC-OOOOOCOOCccocccccc crcccccccoccccoc

cccccrccccccrccc:c:cccc.ccocoCCCCCCCCCCCC. COC'CC. OCCCCCC OCCCCCCCCCOCCCOCCCCCCCCCcoccocrc'cccroccc-cc-rcoc'ooooo..« !. ..«...>.. . I .......

ccroccoccc. cccccec ccocrccoc occcccccocccccccoooc-oooc

OCCCCOCCC CCCCCOCTCCCCCCCOcccc.cc cc. ccccc. ccccocc cccoCCCCCCOCCC.CCCOCC. C CCOCOOOoccrccocrccoccccoocc-coocoo ccccocccccccocrcccccoccoci^^-ir»-COO»^OC;«/"'OCClu% Ci'~«-fVk/'Cir4^iri

CO«-«- fx-«- «- KI T- r- «- r-r\ ^-

o. « co oc oc cc oc a orcco.ccococ.ora ococornrorocccor

39

Page 45: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

0000*2

0000*0£

GOGO*02

0000*02

UGOO* I

80000*0

bUOOG'O

bUOOO'O

faOOOO*080000*0

80000*0

80000*0

80000*0

6GCOO*0

bOGOU'O

80000*0

bOUOO*0

80000*0

euouo'o80000*0

80000*0

800UO*0

auooo'uBUOOO'O

aoooc'o80000*0

8GGUG*0

8GOOC*0

eouoG'oIGOOC'l

10000*1

0000*2

IGOUC'l

GGOC*2

,,10000*1OUOO'l

0000*1

UUOC* I

NGGOC* I

uuoc*£uuuo'i

NGOOC'l

NOOUO' I

NOUUG'l

lOUOO'l

NGUOG'l

NUOUO'l

NOOOO'l

OOGU*08

0000*UU9 I

UOUO*09l

0000*0091

lOGOO'Ol

0000*0 I

GUUU'Oi.

0000*02

IGGOG'Ol

0000*002

0000*02

OGOO'U7

10000*01

IGGOG'Ol

UOGO*09l

OUUU*U7

0000*U£

0000*09

0000*007

OOUU'UU2

GUUO'UZ

OUOO'Ol

OOUU'Ol

UUUO'Ol

90000*002

9GUUU*U02

UOOU*S£

0000*09

GOUO'S

OUUO* I

OOOU'i

UUUU*07

GGGO " 2

UUOO*07

0000* I

0000*5

10000* I

10000* I

0000*01

GOOO'i

GUUG*2

0000*2

9UUOO*U02

OOUU'UZ I

UUOU'U9

OUUO* S2

10UOU* I

NOOOU* I

OUOG *027

OOGO*U87

OUUO'S I

GGUG * G^ I

UuuO * 02 2

OOUO'OlLOGUO*G£

GGUO*G6

OGGG'Oi

OUGU*OG2

UUGU'OS I

UUUO'UUl I

UUUU*0£ I

UGOO*U9

9UUUO*OGU2

OUUO*U9

UuUO*06l

0000*06

9UUGO*0002

9UUGO*0002

UOUO'06

UUOO*S6

UUOU*07

UUUO'Ut

NUUOU'UOl

NGUUU'UU I

NUOUU'UU I

NGUUO*GUl

NUUGG'UUI

NUUOO'OGl

NGOOG'UGl

NOUGG'UOl

NUUUG'GUl

NuUOU'UUl

NOGOO *GGl

NUUOG'UOI

NUUUO'UUl

NUOOO'UOl

NUUUU'UUl

NUUUU'UUt

NUUOO'UU l

NuOUU'GGl

NUGOU*OOl

NUUOO'UUl

NUUUU'UUl

NUOUU'UOt

NUUUO'UOl

NOOOO'OOl

d-rt-kO

SV-MD

d-«S-V¥

Sid-NZ-VV

2£Hi-S

7072

£G7c

J8

d 8

98L 7 2 <. I 9 d 9722198

198 £ 7 2 2 I 9 8

0612M8

8612TJ8

Y 6 12 f d 8

72 I £21 221 12 I 02 I 611

8 II / I I 91 I Sll 7 II £11 2 I I I I I Gil

601

IQI 901 SGl 7GI £Gl

101

ONrtOd

/S31VQ

Page 46: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

Samp

le No

Lati

tude

Lo

ngit

ude

RGI2001

8G

8G 8G

412002

4I I2003

2004

5GI 2005

RG

8G RG

8G RG

£ 4 4

50931

50031

5 50 01931

o?6

50^26

12006

450<

>26

12007

I200S

I IBG !

RG RG

RG

f G

RG *G

?G

8 f-

8G PG 8G 8 r.

PG

P, F

8* 3' f f

R F

* F

? F

^ F

P F

? '

? f

B C

P f

c°F

P F

8F

P F

8 F

P F

8F

2 00 9

20;10

201

112

01 2

I I ! I I I T I I ! T I I T 1 ! I T ; ; r J J J J j j j,8

F J

8F

8 F

8 F

8F

P F

8 F

P F

8 F

8F

8 F

8F 5F £ F

S F

j j J J j j J j J j j J j !

201

32014

201

520

1 6

201

7201

3201

920

?0

2021

2022

2r>?

32^24

2 0

? 6

20?7

20 2 P

2029

?030

2031

2^32

? "

7- T

? 0

3 4

; .-.

7 r

2 r>

3 A

?~\7

2038

2:^9

?04

02

" 4

1204 ?

2043

2044

2045

2P46

2047

2048

?n 4

Q2050

205

l? 0

5 ?

2053

20 54

2055

2056

2057

2058

205'

20&0

451006

451 024

4 4 4 i

5 5 5

10.37

1 151

45

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

51 1

51 5 5 5 5 5 5 5 5 5 5 5 5 5 c 5 t; 5 5 5 5 c c 5 5 5 5 5 c. 5 5 5 5 5 5 5 <;

1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 i 1 T 1 1 ; 1 j 1 1 1 1

451

4 4 4 4 4 4 4

5 5 5 5 5 5 5

1 1 1 1 1 1 1

1 35

135

1 57

1 57

1 48

1 48

1 4»

1 57

1 57

1 55

1 55

20?

1 50

1 55

1 55

5 n

15 53

c <; 7

5 57

< 56

5 57

6 ?4

6 7~"

626

^47

647

6 4 ?

04?

64?

7 ,

-)

7 .".

?

7 1 7

707

7 16

7 1

27 ??

7 1 A

7 16

7?5

°. 31

8 30

5 TQ

8 5o

855

005

857

fl 57

912

C24

8^2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 ) 1 1 1 1 1 1 1 1

1 25*51

1 25*52

1 25R51

1 25837

1 ?5837

125837

125723

125716

125704

125724

1 25703

1 2575R

1 25^58

1 2574 4

125745

125745

1 25521

1 25520

125519

125519

125514

1 25505

1 255 1

T125511

125418

125446

12545?

125452

125452

125452

1 2

5 4

5 7

1 ?

S /.

3 4

12543*

1 2

5 ?

5 6

1?5'55

1 ? V?

31

1 ? 5 2

3 n

1 25046

125052

125040

125036

1 25034

12504?

1 2

5 0

2 8

1 ? 50^5

125026

1 250 26

125034

12503?

125031

1 2 VO

3 2

1 2 5030

124058

1 25006

1 24957

124958

125023

1 25030

125236

TABL

E 7.--Longitude

and

latitude for

samp

les

collected

in m

inin

g districts

in the

sout

hern

Pi

onee

r Mo

unta

ins,

Be

aver

head

County,

Montana.

Page 47: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

60?SZ t I

Ol?S? t I

SS IS? I I

9S IS? L I9S IS? 1

'L 7

67? t

SO IS? 1 L

6SUS? I I

90?S?l I

90?S? t I

SSSSZ t t

7i.SS? Uy i s s ? 1 1y tss? 1 1y iss? 1 1,1S9W l t

iSVi? l L

S S 9 i, ? i. t10 IS? 1 LIOCS? 1 L

y Ly 7? L t6 L

87? I I

s 1 « 7 ? L t? 0 6 S ? I IZ06S? I I

d 0 6 S ? L 1.1 0 6 S Z 1 L?G6S? L I

10&S? I I

I 7SSZ I I

7 0 6 W 1 L

706b? 1 L

7UoS? I I

<^06S? t Lt L

6S? L I

174S? 1 L

70SOi t 1.

L L i" 0 i I IL i Z 0 i L t?iZOi I I

7t c^Ui 1 L

£ Z Z C i U0??0t I I

L??U£ t I

7 7 I U t I IIC?0£ I I

SO?G£l I

7S IUI I ISS IU£ I Ii? l

Oil L

£Z I0£l I

i? lOil I0? lUi L L

&S£SZl I

007SZI L

SS?SZl I

SS?SZl t

S ? 1 S ? UQLiSZl L

OUS? t I

S?9LS7

9?9 LS7

L79 L S

7?79 L S

7179 I S

7Si IZS7

M02S7

6UO?S7

7^, b IS 77S A L S 7£060S7

?U6US7

7boOS7

7 S 6 U S 7y s o o s 7faU L

L S7

80 L IS7I I

I I S7

7UO?S7

7uU?S 7

0 ? a '. i 7U » L S

7zzy L i7<l?OuS 7

9?cu^, 7

Z <L o 0 i 79?cOS 7

i?oUS 7

9?oOS7

« 5 'a 0 S 70? oOS7

G? CUS 7

O^OOS 7

<iU60S 7

?toOS7

8 S d 0 i 7S 1

6 IS 7

71 o t S 79GG?S7

VUOZS7

7S rf IS 7S781S7

07fe IS 7

07y I S 7

Si a IS 7i S a l S 7106 IS7

i S 8 I S

7

7Sy IS 7SOKIS7

SU&IS7

9u«lS7

OSZIS7

^.?y 1.57siy iS7zsy LS7ZSi LS7

1 i 8' I S 7

7i.« IS7S 1 « L S 7

^07?1 Jg

907?I JH

S 0 7 Z I J 8707?I J8

£07?I J8

9W? i J

«SSiZl J8

7 i i Z 1 J SI S Z Z 1 J *<:SZ? i J a6 7 Z I 1 CJ 8to 7 ? ? i 3 8Z 7 ? ? 1 9 89 7 ? ? I 9 aS 7 ? Z 1 1J 87 7 ? ? 1 9 b1 7 Z Z 1 9 y? 7 Z ? I 9 boo??r jy66 t ? r jys6 IZ r J8^ 6 i ? r j i9 6 l Z r j fcS 6 L Z 1 9 87 o t Z 1 9 S£ 6 1 Z I 'J S? 0 1 Z 1 'J 816 t Z i 98Go 1? I D86b t Z I

9g

y y i ? i 9 8Z b L ? 1 -J y9 8 L ? I 9 8

CMS b I ? I 3 8

^7 b 1 Z I 9 8£ y 1. Z I 9 3<^80ZH jy9bO?H jg

itfQZH J8?yo?H jyIbCZH j 8

UbO?H j 8

6 <^ o ? M ry*ZGZH Jy

<i<i U Z H i 89^UZH J8

s^uzms7^U?H Jb

i^OZHJ3

Z^OZHjj

l ^0?H jyO^U?H J8

690?H J S

89U?1 J8

^9U?I 12

99UZ 1 J8

S90ZI J8

790Z1 Jb

£9Q?I J8

? 9 0 Z J J ti

Page 48: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

Table

7.--

Longitude

and

latitude fo

r sample

s collected

in m

inin

g di

stri

cts

in th

e so

uthe

rn Pi

onee

r Mountains, Beaverhead C

ount

y,

Montana,

(continued)

Sample

No

. Latitude Longitude

451<

S?

5 1125209

8M

200

45

16

33

112521?

8

M2

41

1

45

16

33

1125212

Page 49: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

REFERENCES

Almond, Hy, 1953, Field method for determination of traces of arsenic in soils:

Analytical Chemistry, v. 25, p. 1766-1767.

Geach, R. D., 1972, Mines and mineral deposits, Beaverhead County, Montana:

Montana Bureau of Mines and Geology Bulletin 85, 194 p.

Grimes, D. J., and Marranzino, A. P., 1968, Direct-current arc and alternating-

current spark emission spectrographic field methods for the semiquantitative

analysis of geologic materials: U.S. Geological Survey Circular 591, 6 p.

Kelly, J. L., 1941, The geology and ore deposits of the Ermont mines: Montana

College of Mineral Science and Technology, B.S. thesis.

Lowell, W. R., 1965, Geologic map of the Bannack-Grayling area, Beaverhead

County, Montana: U.S. Geological Survey Miscellaneous Geologic Investi­

gations Map 1-433.

Lyden, C. J., 1948, The gold placers of Montana: Montana Bureau of Mines and

Geology Memoir 26, 152 p.

Myers, W. B., 1952, Geology and mineral deposits of the NW% Will is quadrangle

and adjacent Browns Lake area, Beaverhead County, Montana: U.S. Geological

Survey Open-file Report, 46 p.

Quin, B. F., and Brooks, R. R., 1972, The rapid determination of tungsten in

soils, stream sediments, rocks, and vegetation: Analytica Chimica Acta,

v. 58, p, 301-309.

Shenon, P. J., 1931, Geology and ore deposits of Bannack and Argenta, Beaverhead

County, Montana: Montana Bureau of Mines and Geology Bulletin 6, 80 p.

Siems, D. F., Berger, B. R., and Welsch, E. P., 1979, A comparison of sample

media in developing a geochemical exploration model for stockwork molybdenum

occurrences, Dillon 1° x 2° quadrangle, Montana-Idaho [abs.]: Geological

Society of America, Rocky Mountain Section, Abstracts with Programs, p. 302.

44

Page 50: By Byron R. Berger, Jan L. Van der Voort, David F. …carbonate rocks, and (2) a later fracture-controlled mineralization episode. There are two types of skarn assemblages that were

U.S. Geological Survey, 1975, Aeromagnetic map of southwestern Montana and

east-central Idaho: U.S. Geological Survey Open-file Report 75-655,

1 sheet.

Ward, F. N., Nakagawa, H. M., Harms, T. F., and VanSickle, G. H., 1969,

Atomic-absorption methods of analysis useful in geochemical exploration:

U.S. Geological Survey Bulletin 1289, p. 20-22.

Welsch, E. P., and Chao, T. T., 1975, Determination of trace amounts of antimony

in geological materials by atomic absorption spectrometry: Analytica

Chimica Acta, v. 76, p. 65-69.

1976, Determination of trace amounts of tin in geological materials by

atomic absorption spectrometry: Analytica Chimica Acta, v. 82, p. 337-342.

Winchell, A. N., 1914, Mining districts of the Dillon quadrangle, Montana, and

adjacent areas; U.S. Geological Survey Bulletin 574, 191 p.

45