by azaree t. lintereur

172
1 NEUTRON MULTIPLICITY COUNTER DESIGN WITHOUT HELIUM-3 By AZAREE T. LINTEREUR A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2013

Upload: others

Post on 06-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: By AZAREE T. LINTEREUR

1

NEUTRON MULTIPLICITY COUNTER DESIGN WITHOUT HELIUM-3

By

AZAREE T. LINTEREUR

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2013

Page 2: By AZAREE T. LINTEREUR

2

© 2013 Azaree T. Lintereur

Page 3: By AZAREE T. LINTEREUR

3

For Angel, who taught me the impossible can be achieved

Page 4: By AZAREE T. LINTEREUR

4

ACKNOWLEDGMENTS

I owe an enormous debt of gratitude to Dr. James Ely and Dr. Richard Kouzes for

giving me the opportunity to complete this dissertation, and providing guidance along

the way. There have been more people than I can list who have supported this project,

answered questions and suggested ideas, and even though I can’t name everyone

individually I am deeply grateful to all who contributed to this effort. In particular I would

like to thank Dr. Mitchell Woodring for his incredible patience in the lab, and Dr. Edward

Siciliano for his guidance with the simulations. My entire committee at the University of

Florida, Prof. David Gilland, Prof. David Hintenlang, Prof. Wesley Bolch, and Prof.

Bernard Mair, has been tolerant of the time it took for me to complete this project and

supportive of my efforts, and for that I thank them all.

I would like to acknowledge all of my friends who have gone through this process;

thank you to everyone who has commiserated with me on the frustrations of completing

a dissertation. I would particularly like to thank Crystal Thrall for all of her

encouragement, especially when it seemed like finishing was impossible. I would also

like to recognize everybody who reminded me that life is about balance, so thank you to

everyone who competed horses, ran races, went hiking and just generally helped me

enjoy life, despite the stress of graduate school. I especially want to thank Dr. Stacie

Atria, who time and again has gone above and beyond the requirements of friendship.

And she will always be the first veterinarian I call …no matter where I live. I must also

thank my family, in particular my mom, who taught me to always ask why, and my

sister, for her unwavering support.

Finally, without funding this work would not have been possible, so I would like to

acknowledge that this project was supported by the United States Department of

Page 5: By AZAREE T. LINTEREUR

5

Energy NNSA, Office of Nonproliferation and Verification Research and Development

(NA-22). I am also grateful to the Next Generation Safeguards Initiative, Office of

Nuclear Safeguards and Security, National Nuclear Security Administration, for partially

supporting my time on this project. The Pacific Northwest National Laboratory release

number for this document is PNNL-22572.

Page 6: By AZAREE T. LINTEREUR

6

TABLE OF CONTENTS page

ACKNOWLEDGMENTS .................................................................................................. 4

LIST OF TABLES ............................................................................................................ 8

LIST OF FIGURES .......................................................................................................... 9

LIST OF ABBREVIATIONS ........................................................................................... 13

ABSTRACT ................................................................................................................... 15

CHAPTER

1 INTRODUCTION .................................................................................................... 17

Sample Analysis ..................................................................................................... 18

Neutron Detection Basics ....................................................................................... 21 Helium-3 Shortage .................................................................................................. 24 Helium-3 Alternatives .............................................................................................. 26

Objectives of this Work ........................................................................................... 30

2 MULTIPLICITY COUNTERS .................................................................................. 31

Principles of Operation............................................................................................ 31 Multiplicity Counter Designs .................................................................................... 43

3 COUNTER MODEL AND SIMULATIONS ............................................................... 51

MCNPX Simulation Methodology ............................................................................ 52 ENMC Template ..................................................................................................... 55

Boron-10 Based Detector Simulations .................................................................... 61 10B-Lined Plate Configuration ................................................................................. 71 6LiF/ZnS Based Detector Simulations ..................................................................... 72 Model Validation ..................................................................................................... 73 Performance Comparison ....................................................................................... 79

4 BENCH-TOP SYSTEM DESIGN ............................................................................ 83

6LiF/ZnS Physics..................................................................................................... 83 Light Transmission .................................................................................................. 85 Configuration .......................................................................................................... 89

Data Acquisition ...................................................................................................... 92 Pulse Shape Discrimination .................................................................................... 94

Page 7: By AZAREE T. LINTEREUR

7

5 MEASUREMENT RESULTS .................................................................................. 97

Neutron Measurements .......................................................................................... 98 Gamma Ray Measurements ................................................................................. 106

Trace Variations .................................................................................................... 116 Model Validation ................................................................................................... 121

6 THEORETICAL CONSIDERATIONS: GAMMA RAY EFFECTS .......................... 126

Neutron Moments ................................................................................................. 127 Gamma Ray Moments .......................................................................................... 130

Joint Distributions ................................................................................................. 134 Final Formulas ...................................................................................................... 136

Assay Affect .......................................................................................................... 138

7 SUMMARY AND FUTURE WORK ....................................................................... 144

APPENDIX

A DERIVATION OF EQUATIONS ............................................................................ 147

B SAMPLE PARAMETER EFFECT ON THE CALCULATED MASS ....................... 160

C VIRTUAL LIST MODE SHIFT REGISTER ............................................................ 163

LIST OF REFERENCES ............................................................................................. 167

BIOGRAPHICAL SKETCH .......................................................................................... 172

Page 8: By AZAREE T. LINTEREUR

8

LIST OF TABLES

Table page 1-1 Neutron capture properties for select materials. ................................................. 26

2-1 Spontaneous fission and (α,n) yields for uranium and plutonium isotopes. ........ 50

2-2 Gamma ray yields for uranium and plutonium isotopes. ..................................... 50

3-1 Tube diameter and pressure combinations to achieve the same number of 10B atoms in a system designed with BF3 filled proportional counters as 3He atoms present in the ENMC. .............................................................................. 64

3-2 Tube diameter variations and the required number to achieve the same number of 10B atoms as 3He atoms in the ENMC, assuming a lining thickness of 2.5 µm. ........................................................................................................... 67

5-1 Test unit measurement configuration summary.. ................................................ 97

5-2 Results from the 252Cf measurements with the 0.7-cm thick PMMA and WLSP with a single PMT coupled directly to the end of the detector. ............... 101

5-3 PMMA and WLSP coincident PMT measurement results with a 252Cf source centered on the detector. .................................................................................. 103

5-4 Measurement summary for a single PMT coupled directly to the detector with the three different WLSP thicknesses tested. ................................................... 105

5-5 PMMA and WLSP (0.7-cm thick) measurement results with a 2.7 µCi 60Co gamma ray source. ........................................................................................... 107

5-6 Measurement summary with the 0.7-cm thick PMMA and 0.7-cm thick WLSP. 116

5-7 Validation correction factors for the different bench-top test units measured. .. 122

C-1 Example distribution from a JSR shift register in multiplicity mode and the corresponding factorial moments and singles, doubles and triples................... 164

C-2 Probability distributions generated with a virtual shift register. ......................... 165

Page 9: By AZAREE T. LINTEREUR

9

LIST OF FIGURES

Figure page 1-1 Helium-3 neutron reaction cross section. ........................................................... 23

2-1 Neutron multiplicity distribution for the spontaneous fission of 252Cf and 240Pu... 32

2-2 Neutron multiplicity distribution for the spontaneous fission of 240Pu and the induced fission of 239Pu. ..................................................................................... 33

2-3 Neutron distribution for a counter with a single exponential die-away time. ....... 34

2-4 The two neutron source events that correspond to the two terms in Equation 2- 8. .................................................................................................................... 39

2-5 The possible combinations of neutron source events that would result in double detections that correspond to the three terms in Equation 2- 9. .............. 39

2-6 The possible combinations of neutron source events that would produce the triple detection combinations that correspond to the six terms in Equation 2- 12. ...................................................................................................................... 40

2-7 Comparison of the results from a conventional assay and a multiplicity assay for samples with different amounts of effective 240Pu (adapted from Figure 7.3 Ensslin et al. [6]). .......................................................................................... 45

2-8 The ENMC shown with a sample being inserted into the chamber (photo courtesy of Dr. Henzlova). .................................................................................. 47

2-9 Prototype LANL developed 6LiF/ZnS well counter (photo courtesy of Dr. Swinhoe). ........................................................................................................... 49

3-1 Illustration of the two scenarios simulated in this work. ...................................... 53

3-2 ENMC MCNPX model used as the template for the 3He alternative configurations. .................................................................................................... 56

3-3 Example simulated spectrum from a 3He filled proportional counter and a 10B-lined proportional counter. .................................................................................. 59

3-4 Die-away time fit for the baseline 3He system. ................................................... 61

3-5 The original ENMC footprint, with 121 2.54-cm diameter 3He tubes, compared to the final BF3 system footprint, with 155 5.08-cm diameter BF3 tubes. .................................................................................................................. 64

Page 10: By AZAREE T. LINTEREUR

10

3-6 The range of alpha particles in several possible compositions of the lining for 10B-lined proportional counters, and the range of the 7Li ions in the same linings. ................................................................................................................ 66

3-7 Four tubes with a diameter of 0.8 cm occupy the same area as one tube with a diameter of 2.0 cm. .......................................................................................... 67

3-8 FOM space mapped out with the simulated 10B-lined proportional counter configurations. .................................................................................................... 69

3-9 Surface contour of the FOM space mapped with the simulated 10B-lined proportional counter configurations. ................................................................... 70

3-10 The original ENMC footprint, with 121 2.54-cm diameter 3He tubes compared to the final 10B-lined system footprint, with 4725 0.40-cm diameter 10B-lined tubes. .................................................................................................................. 71

3-11 The original ENMC footprint, with 121 2.54-cm diameter 3He tubes compared to the final 6LiF/ZnS system footprint, with 20 6LiF/ZnS screens. ....................... 73

3-12 Model and measurement configuration for the 10B-lined proportional counter model validation. ................................................................................................. 74

3-13 The neutron capture efficiency and counting efficiency as a function of 10B lining thickness. .................................................................................................. 76

3-14 Measured pulse-height spectrum obtained with a 252Cf source located 25 cm from a 10B-lined proportional counter. ................................................................. 77

3-15 Simulated pulse height spectra for three different lining thickness. .................... 78

3-16 The effect of the tube lining thickness on the FOM of a system simulated with various numbers of 4.0-mm diameter 10B-lined proportional counters. ............... 80

3-17 Final FOM comparison for the 3He alternative multiplicity counter configurations shown with the ENMC and the PCMC. ........................................ 82

4-1 Magnified (50x) view of a section of a 6LiF/ZnS sheet. ....................................... 84

4-2 The WLSP and PMMA sheets used for the bench-top test system. ................... 86

4-3 Emission Spectrum for the 6LiF/ZnS screens and the absorption and emission spectra for the WLSP. ......................................................................... 87

4-4 Refracted light between two media. .................................................................... 89

4-5 6LiF/ZnS system and a modified concept for the construction of the initial systems with the bench-top test unit equivalent marked. ................................... 90

Page 11: By AZAREE T. LINTEREUR

11

4-6 Bench-top test unit assembled on a support structure with two PMTs and no tapered light guides. ........................................................................................... 91

4-7 Test unit with a tapered light guide attached (photo taken by the author). ......... 92

4-8 Neutron and gamma ray digitized traces illustrating the regions of charge integration for the PSD methodology applied. .................................................... 94

4-9 Histogram illustrating the charge ratio region from the 60Co gamma ray traces and the 252Cf neutron traces. .............................................................................. 95

4-10 Parameters for a standard FOM calculation illustrating gamma ray and neutron separation. ............................................................................................. 96

5-1 Horizontal source positions for the bench-top test unit measurements. ............. 99

5-2 Example gamma ray and neutron traces recoded with the Pixie-500. ................ 99

5-3 Charge ratio histogram of the traces collected with the 0.7-cm thick WLSP and the 0.7-cm thick PMMA in response to a 252Cf source. .............................. 100

5-4 Charge ratio histogram of the traces collected with a 252Cf source in the center of the detector constructed with the 0.7-cm thick PMMA. ...................... 103

5-5 Charge ratio histogram of the traces collected with a 252Cf source positioned in the center of the detector constructed with the 0.7-cm thick WLSP. ............. 104

5-6 PMMA response with a single PMT to a gamma ray flux of 5.9x107 γ/s and 8.5x106 γ/s. ....................................................................................................... 109

5-7 WLSP response with a single PMT to a gamma ray flux of 5.9x107 γ/s and 8.5x106 γ/s. ....................................................................................................... 109

5-8 Trace examples showing the system response to a high gamma ray rate. ...... 110

5-9 PMMA response to a gamma ray flux of 5.9x107 γ/s with a single PMT and with two PMTs in coincidence. .......................................................................... 110

5-10 WLSP response to a gamma ray flux of 5.9x107 γ/s with a single PMT and with two PMTs in coincidence. .......................................................................... 111

5-11 Charge ratio histograms with the 0.7-cm thick PMMA and a single PMT in response to a 252Cf source and an incident gamma ray flux. ............................ 112

5-12 Charge ratio histograms with the 0.7-cm thick PMMA and two PMTs in coincidence in response to a 252Cf source and an incident gamma ray flux. .... 113

5-13 Charge ratio histograms with the 0.7-cm thick WLSP and a single PMT in response to a 252Cf source and an incident gamma ray flux. ............................ 115

Page 12: By AZAREE T. LINTEREUR

12

5-14 Example of the two neutron trace types collected with all of the systems measured.......................................................................................................... 117

5-15 Emission spectrum of the 6LiF/ZnS sheets from the time of excitation to 3.0 ms. .................................................................................................................... 118

5-16 Emission spectra from the 6LiF/ZnS without the polyester interface and from the polyester coated 6LiF/ZnS for three different excitation wavelengths. ........ 120

5-17 Simulated bench-top detector inside the light tight box and shown with components labeled in the cross-section view. ................................................ 122

5-18 Gamma ray rejection and VCF for different pulse height thresholds applied to the 252Cf and 137Cs coincidence measurements. .............................................. 124

6-1 Single gamma ray sources for the first factorial moment of the gamma ray probability distribution. ...................................................................................... 132

6-2 Double gamma ray sources for the second factorial moment of the gamma ray probability distribution. ................................................................................ 133

6-3 Triple gamma ray sources for the third factorial moment of the gamma ray probability distribution. ...................................................................................... 134

6-4 The effect of the gamma ray efficiency on the calculated mass for a 10 g 240Pu sample with different values of M and α if the gamma ray distributions are not accounted for in the calculations for F, M and α. .................................. 139

6-5 Detail of the likely region of gamma ray efficiency of interest from Figure 6-4 for the 6LiF/ZnS based bench-top system......................................................... 141

B-1 The change in the calculated mass if M is held constant (M=1) and alpha (α) and the gamma ray efficiency (εγ) are varied. ................................................... 161

B-2 The change in the calculated mass if alpha (α) is held constant (α=0) and the Multiplication (M) and the gamma ray efficiency (εγ) are allowed to vary. ......... 162

C-1 Shift register diagram. ...................................................................................... 163

Page 13: By AZAREE T. LINTEREUR

13

LIST OF ABBREVIATIONS

ANMC Alternative Neutron Multiplicity Counter

BF3 Boron Triflouride

252Cf Californium-252

137Cs Cesium-137

60Co Cobalt-60

DA Destructive analysis

τ Die-away time

eV Electron volt

ENMC Epithermal Neutron Multiplicity Counter

FOM Figure-of-merit

3He Helium-3

HEU Highly enriched uranium

IAEA International Atomic Energy Agency

6LiF/ZnS Lithium-6 fluoride zinc sulfide

LANL Los Alamos National Laboratory

LEU Low enriched uranium

MOX Mixed oxide fuel

ε Neutron detection efficiency

NMC Neutron multiplicity counter

NDA Nondestructive analysis

PMT Photomultiplier tubes

Pu Plutonium

PFPF Plutonium Fuel and Production Facility

PMMA Polymethly Methacrylate

Page 14: By AZAREE T. LINTEREUR

14

PGF Probability generating function

PH Pulse height (F8) tally

PSD Pulse shape discrimination

PCMC Pyrochemical Neutron Multiplicity Counter

U Uranium

VCF Validation correction factor

WLSP Wave-length shifting plastic

Page 15: By AZAREE T. LINTEREUR

15

Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

NEUTRON MULTIPLICITY COUNTER DESIGN WITHOUT HELIUM-3

By

Azaree T. Lintereur

August 2013

Chair: David Gilland Major: Biomedical Engineering

Neutron multiplicity counters are used to quantify the mass of a fissile isotope in a

sample with undefined parameters. Isotopes that decay through fission emit unique

neutron multiplicity distributions. The first three factorial moments of the detected

distribution can be used to identify one, two or three unknown assay variables. Neutron

multiplicity counters are complex systems that require a high neutron detection

efficiency, a short neutron life-time in the counter (die-away time), and minimal gamma

ray sensitivity. Traditional multiplicity counter designs have relied upon the use of 3He

filled proportional counters for neutron detection. The availability of 3He has decreased,

which has produced a need to develop a multiplicity counter configuration without 3He.

The complexity of multiplicity counter systems requires that several performance

parameters be optimized simultaneously. In this work, the best performing

configurations, within specified physical dimensions, were identified for three currently

commercially available thermal neutron detectors with the use of the Monte Carlo

transport code, MCNPX. The designs for the maximum efficiency and minimum die-

away time were determined. The simulated system with the highest performance

Page 16: By AZAREE T. LINTEREUR

16

capability was identified as the one designed with 6LiF/ZnS scintillating sheets inter-

layered with plastic light guides.

A bench-top test unit based on the simulated 6LiF/ZnS sheet design was

constructed. Measurements were performed with the bench-top test unit to establish

the appropriate configuration for a small-scale system assembly, and to validate the

simulation predictions. Two different types of plastic light guides were measured: a

wavelength shifting plastic, and non-scintillating polymethyl methacrylate. The

configuration selected for a future complete bench-top construction consisted of 0.7-cm

thick wavelength shifting plastic light guides with a photomultiplier tube coupled to each

end with a tapered light guide.

The 6LiF/ZnS sheets and plastic light guides have a higher inherent gamma ray

sensitivity than 3He filled proportional counters. Thus, the detected distribution will not

be solely dependent upon the neutron multiplicity distribution. The detected gamma ray

signals were separated from the detected neutron signals by applying pulse shape

discrimination algorithms. The effect of gamma ray misidentifications on the measured

parameters was considered by including the correlated gamma ray multiplicity

distributions associated with a spontaneous fission event in the formulas for the

unknown sample parameters.

Page 17: By AZAREE T. LINTEREUR

17

CHAPTER 1 INTRODUCTION

Radiation detection is the measurement of the quanta emitted by a radionuclide or

radiation producing sources. Radiation detection has a variety of applications. The

medical field utilizes radiation detection for diagnostic image formation and validation of

radiation absorbed doses in cancer therapy [1] [2]. Research applications, such as high

energy physics, make use of radiation detection to probe some of the fundamental

questions about matter and the universe. Material verification measurements rely on

radiation detection to provide accurate sample quantification. The fundamentals of

radiation detection apply to all of these applications; this work will focus on radiation

detection for sample quantification, nonetheless, the detectors and detection techniques

discussed could be applicable for other uses.

Radiation can be classified as either ionizing or non-ionizing. Ionizing radiation, as

its name implies, carries with it sufficient energy to ionize an atom. Non-ionizing

radiation, such as microwaves and radio waves, does not carry enough energy to ionize

an atom, although it can deposit energy in matter in the form of heat. Ionizing radiation,

for energies of interest to nuclear radiation, can be placed into two general categories,

as defined by the International Commission on Radiation Units and Measurements

(ICRU): directly and indirectly ionizing. Directly ionizing radiation carries a charge, and

can deliver energy directly to matter through Coulomb-force interactions. Indirectly

ionizing radiation (which includes neutrons and gamma rays) does not carry an electric

charge and transfers its energy through the production of secondary charged particles,

which themselves are directly ionizing, and thus able to deliver energy to matter as

stated above [3]. The presence of indirectly ionizing radiation is identified through the

Page 18: By AZAREE T. LINTEREUR

18

detection of the secondary products (energetic electrons or nucleons) produced by the

interactions of indirect ionization in matter [4].

Sample Analysis

Measurement techniques for nuclear materials can be loosely grouped into two

categories: destructive analysis (DA) and non-destructive analysis (NDA). Destructive

analysis is any technique that requires the destruction of the sample for the

measurement to be performed. Some examples of DA measurements include mass

spectrometry, gravimetry, and reduction-oxidation titration techniques [5]. Non-

destructive analysis methods do not affect the sample. Nondestructive gamma ray

measurements are often used to identify the presence of a gamma ray source, or verify

the isotopic composition of a sample. Gamma rays can be shielded with materials that

have a high density and a large atomic number (such as lead). Samples can also “self-

shield,” which limits the region of the sample that can be effectively assayed through

gamma ray measurements to the outer layer of the sample.

Neutron detection (if the sample is a neutron emitter) can be a viable alternative

(or addition) to gamma ray measurements for shielded samples. Neutrons are highly

penetrating, compared to gamma rays, through most materials (hydrogenous materials

can effectively shield neutrons) and therefore can be used to obtain a more uniform

measure of the entire sample with NDA techniques [5]. While both gamma ray and

neutron measurements play an important role in radiation detection applications (and

are often used in conjunction), this work will focus on neutron detection systems.

The neutron detector used for a measurement depends on the sample of interest,

and the information required. There are three basic forms of neutron detectors: those

that count singles (the total neutron detection rate), those that count singles and

Page 19: By AZAREE T. LINTEREUR

19

doubles (the rate at which two time-correlated neutrons are detected), and those that

count singles, doubles and triples (the rate at which three time-correlated neutrons are

detected). Detectors that provide total neutron counts are suitable for identifying the

presence of a source. However, additional information about the source cannot be

inferred with only a total neutron counter unless certain source parameters are taken as

known. If there is more than one unknown source parameter, then additional

information will have to be obtained through measurements to fully characterize a

sample. The factors that will influence the observed neutron fluence rate, as noted by

Ensslin et al. [6] are:

1. the spontaneous fission rate (F) 2. self-multiplication (induced fission) factor (M) 3. (α,n) reactions on low Z materials (α) 4. neutron detection efficiency 5. variation in spatial detection efficiency (sZ) 6. variation in detection efficiency with energy (sE) 7. system die-away time – time from neutron emission to detection (τ) 8. sample self-shielding

The source variables (1, 2, and 3) may be unknown, the detector parameters (4, 5, 6

and 7) are typically assumed to be known through measurements or modeling, and the

sample self-shielding (8) can be disregarded for most neutron measurements. If there

are two unknown source parameters, then two variables must be measured; if there are

three unknown source parameters, then three variables have to be measured.

Neutron coincidence counters are used to determine up to two assay unknowns,

and neutron multiplicity counters are used to determine up to three assay unknowns.

The measurement of higher multiplicities would allow additional unknown parameters to

be determined, but with the systems currently available, the measurements are not

practical. The efficiency for coincidence events scales as the detector efficiency

Page 20: By AZAREE T. LINTEREUR

20

squared, for triples events the efficiency scales as the detector efficiency cubed, and so

forth for the higher multiplicities. A detector with a neutron detection efficiency of 50%

would have a quadruple event efficiency of only 6.25%, which would lead to

unacceptably long count times to produce adequate counting statistics.

Nondestructive assay of neutron emitting samples can be required to monitor

throughput at a fuel fabrication facility, quantify contents of waste drums, or verify the

contents of holding containers. Sample assays with coincidence and multiplicity

counters can be performed to quantify the mass of fissile material (plutonium or

uranium) present in a sample [6]. There are a variety of samples and forms that are

assayed, which requires the use of different counters, as discussed by Doyle [5]. The

Plutonium Fuel and Production Facility (PFPF) in Japan (a mixed oxide [typically

plutonium and uranium], or MOX, fuel fabrication plant) accepts plutonium from several

reprocessing plants, and has over 20 coincidence counters installed to meet its material

control and accounting requirements. Neutron multiplicity counters are used in facilities

to assay impure Pu metals, oxides, waste, residues, and other samples that may not be

well characterized. Low enriched uranium (LEU) oxide and pellets can be assayed with

counters that have a built in neutron source to induce fissions in the samples (known as

“active” systems). Fuel assembly assays at fuel fabrication plants are performed to

verify the fuel isotopics. Irradiated fuel measurements are performed to assay the

assemblies in spent fuel storage facilities [7]. An example of a measurement system

used to assay irradiated breeder reactor fuels is the underwater breeder counter used in

Kazakhstan. Highly enriched uranium (HEU) spent fuels are assayed with active

neutron coincidence counters, such as the Research Reactor Fuel Counter used at the

Page 21: By AZAREE T. LINTEREUR

21

Savannah River Site (Georgia, USA). This counter measures the 235U in fuel that is

returned to the United States (as part of the program to reclaim the spent fuel from the

Atoms for Peace program) [5].

In addition to facility measurements neutron coincidence and multiplicity counters

are also used by the International Atomic Energy Agency (IAEA) for verification

measurements of Pu and U samples [8]. The IAEA is responsible for assuring that

Member States meet their accountancy obligations (that safeguarded material has been

declared and is not being diverted). Therefore the IAEA is concerned with verification of

nuclear material quantities. The verification measurements often require the use of high

accuracy NDA techniques to confirm the declared quantity of nuclear material in a

sample. The IAEA measurements must be independent, and so prior knowledge of the

sample cannot be assumed. Resultantly, the IAEA uses a variety of coincidence and

multiplicity counters to obtain as much information as possible regarding the surveyed

source material [8].

The counters used for these measurements are specialized for specific

applications; however, the fundamental operation of all the counters relies upon basic

neutron detection principles.

Neutron Detection Basics

Free neutrons are generated via fission (spontaneous or induced) and nuclear

reactions (photoneutron, (α,n) reactions, and accelerated charged particle

reactions[(e.g. deuteron-deuteron]). Neutron interactions occur primarily with the nuclei

of materials; the neutron can be captured by, or can scatter off, the nucleus. The

probability of one of the reactions occurring is described by the reaction cross section

[9]. Because neutrons do not carry a charge, their electromagnetic interactions with the

Page 22: By AZAREE T. LINTEREUR

22

orbital electrons of an atom are negligible (the spin of a neutron means that there is an

internal non-zero charge distribution, which will cause an extremely small

electromagnetic force with electrons). Therefore, neutron detection relies on the

detection of the charged particles produced by nuclear absorption or elastic scattering

reactions [10].

Neutron interactions produce secondary radiation, either in the form of heavy

charged particles or gamma rays (created by neutron capture or nuclear excitation), or

recoil nuclei (produced by neutron scatter). The secondary radiation produced by

neutron interactions is ionizing, and will produce charge that can be detected, allowing

for the (indirect) detection of the neutrons. It should be noted that the charge produced

by the secondary radiation can only be detected with an appropriately designed

detector. For example, if the neutron is captured in material from which the charge

cannot escape, a detection event will not occur.

The optimal material for a neutron detector must possess a high neutron cross

section [4]. The neutron interaction that occurs depends upon the neutron energy, and

the nucleus with which it interacts. For thermal neutrons the neutron-capture cross

section (reaction probability) tends to dominate, and is proportional to 1/E (where E is

the kinetic energy of the neutron) as shown in Figure 1-1. Some materials have regions

of strong interaction probability, known as resonance regions, but these regions are

typically superimposed over a 1/E trend [9]. Resonance regions arise when a nucleus

has discrete excited states that can enhance or suppress neutron interactions.

High energy neutrons are more likely to be scattered by a nucleus than to be

captured. The neutron will impart some of its energy to the nucleus off which it scatters,

Page 23: By AZAREE T. LINTEREUR

23

until eventually it becomes thermalized (on average 27 scatters off of a hydrogen atom

are required to thermalize a 1 MeV neutron [10]), and can be absorbed. The neutron

capture cross section for thermal neutrons is orders of magnitude higher than the

scattering cross section. Due to the high thermal neutron capture cross section, most

neutron detectors rely on capture reactions, and utilize moderation to thermalize the

incident fast neutrons.

Figure 1-1. Helium-3 neutron reaction cross section, note the 1/E trend.

Materials that have a large neutron cross section may have non-negligible gamma

ray interaction cross-sections. A gamma ray interaction can lead to ionization in the

detector, which will produce a signal that may be detected in the same manner as a

signal produced in response to a neutron interaction. Therefore, if the gamma ray

interaction cross section is not negligible, the gamma rays must be discriminated from

the response generated by a neutron detector (to prevent gamma rays from being

Page 24: By AZAREE T. LINTEREUR

24

misidentified as neutrons). The materials sought for neutron detection are those that

have a large Q-value, or kinetic energy generated by the neutron capture reaction in the

center of mass frame, compared to the energy deposited by gamma rays. If the Q-

value is large compared to the maximum energy deposited by gamma ray interactions,

the signal generated by neutrons can be distinguished from the one generated by

gamma rays. The ideal neutron detector has a large neutron reaction cross section and

a large Q-value, or generates a distinguishable signal between neutrons and gamma

rays.

Helium-3 Shortage

Helium-3 is a popular neutron detection media for a variety of applications, due to

its large neutron capture cross section (5330 b), large Q-value, gamma ray insensitivity

and proportional gas amplification characteristics. The 3He neutron capture reaction

has a cross section of 5330 b, and produces a proton and a triton (

)

with a Q-value of 0.764 MeV [4]. An additional attribute of 3He for radiation detection

purposes is that it is an inert gas, which makes it safe to handle and non-corrosive [4].

Helium-3 is used in its gaseous state as a fill gas in proportional counters. The signal

generated in 3He gas is due to the ionization of the gas in response to the motion of the

neutron capture reaction products (a proton and a triton) under an applied electric

potential.

Helium-3 is produced as a product of the beta-particle decay of tritium, which was

produced for nuclear weapons. The current 3He supply is thus obtained from the decay

of the tritium supply (which has a half-life of 12.3 years). The decrease of the weapons

stock pile has reduced the amount of available tritium, and consequently the supply of

3He available for neutron detection applications. The demand for 3He has increased

Page 25: By AZAREE T. LINTEREUR

25

significantly since 2001, driven primarily by the deployment of radiation portal monitors

for national security and use in neutron scattering science applications [11]. There are

potential alternative sources of 3He production, but none of them are currently utilized.

The CANada Deuterium Uranium (CANDU) reactors produce tritium, but it is not

harvested for 3He recovery at this time. Due to the 12.3 year half-life of tritium, there is

a delay between the start of tritium harvest and the production of 3He; therefore there

will not be a near-term supply from this source even if it becomes available. There is

also the potential to obtain 3He from natural helium, but it is present in very low

concentrations (~0.0001%), and it has not been demonstrated that it will be cost

effective for it to be collected [11].

The remaining 3He is being rationed, making it prohibitively expensive for the

majority of detection uses. Thus, alternative thermal neutron detection technologies are

necessary. Helium-3 alternatives have already been identified for some applications

(such as radiation portal monitors), but there are applications for which a viable solution

has not yet been developed. Coincidence and multiplicity counters are two systems

currently designed with 3He filled proportional counters for which alternative

configurations are being researched. The specialized nature of the measurements

performed with coincidence and multiplicity counters require high performance from the

neutron detectors used in the systems. The samples assayed with coincidence and

multiplicity counters emit both neutrons and gamma rays, so to ensure high precision

assays are obtained in a reasonable amount of time, the detectors have to be both

efficient at detecting neutrons and either insensitive to gamma rays or capable of

gamma ray discrimination.

Page 26: By AZAREE T. LINTEREUR

26

The goal of this work is to identify a 3He-free multiplicity counter configuration that

has equivalent capability to the highest performing multiplicity counter currently used.

The multiplicity counter configuration was selected for the replacement study because

an alternative detector capable of fulfilling the multiplicity counter requirements would

also be capable of meeting the performance requirements of a coincidence counter.

There is also a separate research effort currently exploring alternatives for coincidence

counter applications [12].

Helium-3 Alternatives

The commercially available near-term alternatives to 3He for thermal neutron

detection are detectors developed with 10B and 6Li. Both of these materials have large

cross sections for thermal neutron capture, and high Q-values, as shown in Table 1-1,

with the 3He values included as a reference point. The Q-value is divided between the

reaction products according to the ratio of their masses. There are two reaction

possibilities for neutron capture by 10B, one where the 7Li nucleus goes directly to the

ground state (6% of the reactions), and one where the 7Li nucleus is produced in its first

excited state (94% of the reactions). The Q-value for both reactions is shown in Table

1-1.

Table 1-1. Neutron capture properties for select materials [4].

Atom Neutron Capture Cross

Section (b) Reaction Q-Value (MeV)

3He 5330

0.764

10B 3840

2.792 2.310

6Li 940

4.780

Boron-10 is available in both gaseous and solid form. Elemental boron (typically

enriched to 96% 10B) is chemically stable in air, and therefore can be used as a coating

Page 27: By AZAREE T. LINTEREUR

27

either for proportional counters or solid state detectors. Boron tri-fluoride is a gaseous

form of 10B that can be used as a fill gas in proportional counters. Boron tri-fluoride is

not as well-behaved a proportional gas as 3He, and begins to lose its proportional

characteristics as the counter pressure increases, which results in higher applied

voltages being required to drift the ions to the anode [4]. Therefore, BF3 is not available

in tubes with fill pressures as high as 3He tubes (3He fill pressures can be as large as 10

atmospheres, while BF3 fill pressures are typically less than 2 atmospheres). Detectors

developed with a 10B conversion layer have separate neutron capture and signal

generating materials [13]. The neutron is captured in the 10B, and then the reaction

products must escape the lining to generate a signal in another medium. The signal

generating material can either be a semiconductor [14] or a gas. In both options, the

ions generated by the interactions of the neutron capture reaction products are drifted

under the influence of an electric field to generate a signal. The range of the 10B

neutron capture reaction products (alpha particle and 7Li ion) depends on the type and

density of the coating. For a typical 10B density of 2.34 g/cm3, the range of the reaction

products is 3.5 µm and 1.8 µm for the alpha particle and the 7Li ion, respectively (as

calculated using SRIM-2013 [15]). Due to the relatively short range of the reaction

products, the coating thickness is typically no more than a couple microns thick. Boron-

10 loaded scintillators (either liquid or plastic) are also available. Boron-10 loaded

plastics have a higher sensitivity to gamma rays than BF3 filled proportional counters or

10B-lined proportional counters. The signal produced by gamma rays can be

distinguished from the signal produced by neutrons in liquid scintillators loaded with 10B;

however, liquid scintillators are not a viable 3He alternative for certain applications as

Page 28: By AZAREE T. LINTEREUR

28

liquids cannot be taken into all nuclear facilities due to criticality concerns and the

flammability of most liquid scintillators.

Lithium-6 is not traditionally used as a coating in its elemental form as it is

chemically unstable in air. However, 6Li is stable once bound in a matrix, so it is often

used in scintillators. Lithium-6 can be part of the scintillator (as with CLYC [16]), bound

directly into a scintillator [17] (as with 6Li loaded glass fibers [18]) or bound with another

element and then used in a homogenous mixture with a scintillator (such as 6LiF/ZnS)

[19]. The scintillators produce light in response to the neutron capture reaction products

(alpha particle and triton) escaping the 6Li and entering the scintillation material. The

neutron capture reaction products from 6Li have more energy than the 10B reaction

products (due to the larger Q-value of the reaction), a lower mass and charge, and thus

a longer range (the alpha particle has a range of approximately 22 µm in 6Li and the

triton a range of approximately 117 µm [as calculated using SRIM-2013 [15]]). Although

the neutron capture cross section for 6Li is approximately 25% that of 10B, the difference

can be offset by the increased amount of 6Li that can be used while still producing a

signal. The limiting reaction product for 6Li is the alpha particle which has a range of 22

µm in 6Li, compared to the limiting reaction product in 10B, the 7Li ion, which has a range

of 1.8 µm 10B.

There are some additional options for neutron detection besides 10B and 6Li.

Gadolinium has an extremely high neutron capture cross section (255,000 b for thermal

neutrons); however, it is sensitive to gamma rays and also produces a gamma ray with

neutron capture [4]. Additionally, there are no currently commercially available

gadolinium based detectors capable of meeting the detection criteria of material

Page 29: By AZAREE T. LINTEREUR

29

quantification applications. Lithium sheets are another option for increasing the detector

response [20]. However, as 6Li is chemically unstable in air, the manufacturing of the

devices is challenging, and they are not currently commercially available.

Thermal neutron detectors are not the only 3He alternative option; there are also

fast neutron detectors that could be potential replacements for some applications. Fast

neutron detectors rely on neutrons scattering off of the target nuclei. The recoiled

nucleus will ionize atoms along its path length, creating a detectable signal. Hydrogen

has the highest neutron scatter cross section, which produces a recoiled proton

(hydrogen nucleus) [4]. One of the most common hydrogen based fast neutron

detectors is a proton recoil scintillator. Liquid scintillators are amongst the most popular

scintillators for fast neutron detection; however, liquids are not always a realistic option

for all measurement applications as liquids cannot be introduced into all facilities (due to

the safety issues mentioned above). Liquid scintillators are also sensitive to gamma

rays and rely on pulse shape discrimination (PSD) to distinguish between the signals

produced in response to neutrons and those produced in response to gamma rays.

Plastic scintillators offer an alternative to liquid scintillators for fast neutron detection

[21], but plastics with adequate PSD are currently limited by the size that can be

produced.

This project is focused on currently commercially available neutron detectors for

near term 3He replacement in multiplicity counter configurations. Due to the project

applications, thermal neutron detectors were the emphasis of the replacement effort.

Therefore, the alternatives considered for this work were BF3 filled proportional

counters, 10B-lined proportional counters and 6LiF/ZnS scintillating screens.

Page 30: By AZAREE T. LINTEREUR

30

Objectives of this Work

The objective of this work was to support the project in determining an appropriate

3He alternative for use in neutron multiplicity counter configurations. The work included

modeling and simulations to identify optimal design templates, and the development of

a bench-top test unit. Measurements were made with the test unit to demonstrate the

capability of the system and validate the model predictions. The multiplicity equations

were examined to explore the effect of using a 3He alternative detector on the

calculated assay results.

Page 31: By AZAREE T. LINTEREUR

31

CHAPTER 2 MULTIPLICITY COUNTERS

The number of neutrons produced by spontaneous fission events is random.

Different isotopes will have different neutron emission probability distributions, which are

also known as multiplicity distributions. Multiplicity counters are specialized neutron

detection systems that are used to measure the first three factorial moments of the

detected neutron distribution. Multiplicity counters are capable of assaying samples

with one, two or three unknown parameters. Coincidence counters are typically

preferred to multiplicity counters when the sample being assayed has only two unknown

parameters, as multiplicity counters require longer counting times than coincidence

counters to achieve the necessary statistics on the triplet count rates (rate at which

three time-correlated neutrons are detected, which is proportional to the efficiency

cubed). Multiplicity counters also require more complex electronics than coincidence

counters, and are more expensive. However, under certain conditions multiplicity

counters are the detection systems that must be used to obtain an accurate sample

assay.

Principles of Operation

An assay is typically performed to quantify the amount of a fissile isotope present

in a sample. The total neutron count rate cannot be directly correlated to the fissile

isotope mass for samples that contain impurities (such as oxygen) that can result in

neutrons being generated through (α,n) reactions, or for assays performed in

environments with significant background present [22]. Neutrons can also induce

fissions within the sample (multiplication), instead of escaping, which increases the total

neutron production rate above what would be expected for a given mass of a fissile

Page 32: By AZAREE T. LINTEREUR

32

isotope. All of these potential neutron sources must be accounted for when

characterizing a sample based upon its neutron emissions. The effect of detecting

neutrons from sources other than the isotope of interest can be mitigated by taking

advantage of the unique neutron multiplicity distributions generated by isotopes that

decay via spontaneous fission (Figure 2-1).

Figure 2-1. Neutron multiplicity distribution for the spontaneous fission of 252Cf and 240Pu (the data for the figure was obtained from Verbecke [1][24] for 252Cf and Bodeman [25] for 240Pu).

Induced and spontaneous multiplicity distributions are also distinguishable (Figure

2-2), which allows the spontaneous fission rate to be extracted from measured data

even when the sample also contains isotopes that undergo induced fission. The

moments of the distributions that are measured with a multiplicity counter can be related

to the moments of the neutron distribution that escapes the sample and is available for

detection (if the distribution available for detection is corrected for the detector

parameters, as was demonstrated by Bohnel [23]). The moments of the emitted

Page 33: By AZAREE T. LINTEREUR

33

neutron distribution can be expressed in terms of the sample parameters (such as the

fission rate, sample self-multiplication, and the (α,n) reaction rate). Therefore, if the

isotopic composition of the sample is known (typically determined with gamma ray

spectroscopy), the mass of the isotope of interest can be extracted from the measured

moments.

Figure 2-2. Neutron multiplicity distribution for the spontaneous fission of 240Pu and the induced fission of 239Pu (the data for the figure was obtained from Boldeman [25]).

Multiplicity counters record the neutron multiplicity distribution (from which the

factorial moments are calculated) using shift register logic. Multiplicity shift registers

organize the pulse train into time correlated groupings of 0, 1, 2, 3, … counts in a

specified duration, or gate [26]. The measured multiplicity distributions are comprised of

real and accidental neutron correlations. The distribution that can be related to the

unknown sample parameters is the distribution of real correlated events, which has to

be extracted from the distribution that is measured. Two counting gates are opened

Page 34: By AZAREE T. LINTEREUR

34

when the shift register is triggered by a neutron event. The second counting gate opens

long after the first gate closes (approximately 4 ms later) when the correlated neutrons

from the original fission burst are no longer present in the counter. Therefore, the

correlated pulses measured in the second gate are used to determine the rate of

accidental correlations, as shown in Figure 2-3. The first gate is typically referred to as

the foreground, or reals and accidentals (R+A), gate and the second gate as the

background, or accidentals (A), gate.

Figure 2-3. Neutron distribution for a counter with a single exponential die-away time. The Reals + Accidentals gate corresponds to the foreground and the Accidentals gate to the background. The red bars represent correlated neutrons from the initial fission event, the green bars represent the accidental correlations from fissions that are not associated with the initial fission, and the blue bars represent the uncorrelated background neutrons (adapted from Figure 6.11 from Ensslin et al. [28]).

The distribution in the R+A gate, f(n), is a convolution of the real and accidental

correlations; the distribution in the A gate, b(n,) is based solely on the accidental

correlations. If the probability distribution of real, correlated events is represented by

Page 35: By AZAREE T. LINTEREUR

35

r(n), then the probability of obtaining no counts in the R+A gate (after it is triggered) is

given by f(0) = r(0)b(0). The probability of there being one count in the R+A gate is

given by f(1) = r(1)b(0) + r(0)b(1), the probability of two counts is f(2) = r(2)b(0) +

r(1)b(1) + r(0)b(2), the probability of three counts is f(3) = r(3)b(0) + r(2)b(1) + r(1)b(2) +

r(0)b(3), and so forth.

The normalized distribution of correlated counts can be expressed as [27]:

1

0

)()()()0(

1)(

n

i

inbirnfb

nr

Equation 2-1

The general form for the factorial moments of a probability distribution P(ν) is given

by:

)()!(

!max

Pkk

k

Equation 2-2

The factorial moments of the correlated distribution can be used to calculate the

total neutron count rate, or the “singles”, the rate of detection of two time-correlated

neutrons, or the “doubles”, and the rate of detection of three time-correlated neutrons,

or the “triples” [6]. The singles are equal to the trigger rate (W) at the gate of the

multiplicity shift register, where W is given by Sεν1 (the source rate, S, multiplied by the

detector efficiency, ε, and the first factorial moment of the source distribution ν1). The

doubles are equal to the trigger rate multiplied by the average number of correlated

neutrons, n , which is equivalent to the first factorial moment of r(n). The triples are

equal to the trigger rate multiplied by the number of time-correlated neutron pairs, which

is equivalent to the second factorial moment of r(n).

The first three factorial moments of r(n) can be calculated with Equation 2-2:

Page 36: By AZAREE T. LINTEREUR

36

1)()!0(

!max

0

0

nrn

nr

n

nnrn

nr

n

)()!1(

!max

1

1

2

)1()(

)!2(

!max

2

2

nnnr

n

nr

n

The singles (U), doubles (D), and triples (T) can then be written with these three

factorial moments:

0WrU

1WrD

2RrT

Equation 2- 3

Recall that the distribution that is measured in the R+A gate is actually a

convolution of the correlated and uncorrelated distributions. Therefore, to calculate U,

D and T from the measured distributions, r0, r1, and r2 must be expressed in terms of the

moments of f(n) and b(n). The moments from the measured distributions can be

substituted into the equations for U, D and T by deconvolving r(n) from b(n):

WU

Equation 2-4

)( 11 bfWD

Equation 2-5

2

))(2( 11122 bfbbfWT

Equation 2-6

Page 37: By AZAREE T. LINTEREUR

37

These three equations can be used to calculate U, D and T from the measured

distributions, but to determine the unknown assay parameters the equations must be

related to the neutron distribution emitted from the sample.

The moments of the measured neutron multiplicity distribution can be related to

the moments of the neutron distribution emitted by the sample, if the emitted distribution

is corrected for certain detector parameters. To express the moments of the detected

distribution in terms of the sample parameters, the moments of the emitted neutron

distribution must first be defined.

The moments of the distribution of neutrons that escape a sample and are

available for detection can be derived from the probability distribution of neutrons

generated by a source event, as was demonstrated by Bohnel [23]. The general

expression for the probability distribution of source neutrons (with the inclusion of (α,n)

reactions) is:

1)()(S

Sq

S

FP sf

Equation 2-7

Where F = the fission rate Sα = the rate of (α,n) reactions qsf(ν) = the probability of ν spontaneous fission neutrons being emitted δ1,ν = 1 if ν=1, else = 0

The expressions for the factorial moments of a neutron emission distribution have

been derived by two different methods: from probability generating functions (PGF) [23],

and with the use of event tree analysis [29]. Event tree analysis does not produce a

closed form solution; additional terms are included until their effect is negligible. A

closed form solution for the factorial moments can be derived with a PGF. The

Page 38: By AZAREE T. LINTEREUR

38

equations used throughout this work were derived with the use of PGFs (which are

discussed further in Appendix A), although identical equations could be developed using

event tree analysis.

The first, second and third factorial moments of the distribution of neutrons that

escapes the sample and is available for detection are shown below (the derivation is

provided in Appendix A) [30]:

)1(11 sfMS

F

Equation 2-8

)]1(1

1[ 12

1

2

2

2

sfi

i

sf

MM

S

F

Equation 2-9

)]1(1

13])1(3[

1

1{ 1

2

2

2

1

3122

1

3

3

3

sfi

i

isfsfi

i

sf

MMM

S

F

Equation 2-10

The physical meaning of the terms in Equation 2-8 through Equation 2-10 can be

understood by considering the source events that could produce one, two, or three

correlated neutrons, as are illustrated in the following figures. The figures were

generated following the method demonstrated by Oberer [27], with (α,n) events

included. The origin of the two terms in Equation 2-8, which describe the origin of single

neutrons available for detection are illustrated in Figure 2-4.

Page 39: By AZAREE T. LINTEREUR

39

Figure 2-4. The two neutron source events that correspond to the two terms in Equation 2-8. The lines are multiplying branches, and the open circles represent neutrons available for detection.

The origins of the three terms in Equation 2-9 that correspond to the production of

two correlated neutrons are illustrated in Figure 2-5.

Figure 2-5. The possible combinations of neutron source events that would result in double detections that correspond to the three terms in Equation 2-9. The lines are multiplying branches and the open circles represent neutrons available for detection.

The six possibilities for producing three correlated neutrons available for detection

(given in Equation 2-10) are shown in Figure 2-6.

Page 40: By AZAREE T. LINTEREUR

40

Figure 2-6. The possible combinations of neutron source events that would produce the triple detection combinations that correspond to the six terms in Equation 2-12. The lines are multiplying branches and the open circles represent neutrons available for detection.

The detected distribution can be expressed in terms of the emitted neutron

distribution, corrected for the detector efficiency:

max

)1()()(n

nn

nPnC

Equation 2- 11

where

n

is the binomial coefficient, and is given by

)!(!

!

nn

.

The detected distribution must also be corrected for the fraction that arrives during

the gate to produce the distribution that is actually counted by the shift register. The

Page 41: By AZAREE T. LINTEREUR

41

correlated detected neutron distribution can be expressed as [6] (derivation shown in

Appendix A):

N

jn

jn

t

j

t dtppj

ntfn

nCjr

1 0

1)1(1

)()(

)(

Equation 2-12

where the integral expression represents the probability of the shift register being

triggered by a neutron, n, and j of the remaining n-1 neutrons being counted in the gate.

The factorial moments of r(j) are the correlated factorial moments which are

related to the measured distributions. These factorial moments can now be written in

terms of the source parameters. As was shown earlier, in Equation 2- 3, the measured

singles rate is equal to the zeroth correlated moment times the total trigger rate, the

doubles are equal to the first moment times the trigger rate, and so forth.

The method to derive the factorial moments of Equation 2-12 is shown in Appendix

A. The first three are given below:

10 r

Equation 2-13

)1(2 1

2

2

1

GPD

eer

Equation 2-14

2

1

3

3

2 )]1([3

GPD

eer

Equation 2-15

where PD is the pre-delay, or the time between the trigger and the opening of the gate

that is set to prevent any electronic dead-time from affecting the size of the gate, and G

is the gate length. The gate length is typically set to 1.27τ to minimize the relative error

in the coincidence rate [31].

Page 42: By AZAREE T. LINTEREUR

42

The singles, doubles and triples can now be written in terms of the factorial

moments of the detected distribution as follows.

1SU

Equation 2-16

)1(2

2

2

GPD

eeS

D

Equation 2-17

23

3

)]1([6

GPD

eeS

T

Equation 2-18

The expressions for ν1, ν2, and ν3 from Equation 2-8 to Equation 2-10 can be

substituted into Equation 2-16 to Equation 2-18 to produce equations in terms of the

source parameters (the fission rate, F, the multiplication, M, and the ration of (α,n)

neutrons, α). With these equations the sample parameters can be expressed in terms

of the multiplicity counter output, without the need for prior sample information. The

equations for U, D, and T can be solved for M, F and α to produce the following

expressions [6]:

032 McMbMa

Equation 2-19

where

)(

)1(6

2332

2

12

isfisft

isf

Rf

Ta

)(

]3)1([2

2332

2213

isfisfd

isfisf

Rf

Db

1)(

6

2332

22

isfisfd

isf

Rf

Dc

Equation 2-20

Page 43: By AZAREE T. LINTEREUR

43

The fission rate can be determined using the calculated value for M with the

following equation:

2

2

1

2

1

)1(2

sf

i

i

d

M

RMM

f

D

F

Equation 2-21

And then α is given by:

11

MF

R

s

Equation 2-22

Shift registers solve the equation for M by iteration, using the Newtonian method

with a first guess of 1 for the value of M [32].

The relationship between the source emission distributions and the measured

distributions make multiplicity counters a powerful tool for extracting the sample

parameters in situations where impurities may be present, or there are background

neutrons that can affect the assay.

Multiplicity Counter Designs

Multiplicity counters have evolved over time to meet specific performance

requirements. Multiplicity counters were originally developed to assay samples where

the (α,n) rate was not known and a third parameter had to be measured. The first

multiplicity counters were developed by adding additional detectors to existing

coincidence counters to increase the system efficiency (to improve the statistics on the

triples, which are proportional to ε3). Later, an additional decoding circuit was added to

the standard coincidence electronics to measure the multiplicity distributions. Simple

dead time corrections were also implemented; however, these corrections were

Page 44: By AZAREE T. LINTEREUR

44

assumed to be uniform, which introduced a bias with the count rate. To overcome this,

a correction based on the multiplicity probabilities was included and demonstrated to

improve assay results [33].

The design of multiplicity counters is complicated by competing performance

parameters (the detection efficiency and the die-away time) and stringent performance

requirements for a high detection efficiency and low die-away time. Moderation is

required to thermalize neutrons entering the detector, to increase the efficiency of the

system. However, the time it takes for the neutrons to lose energy through scattering in

the moderator increases the die-away time. The dual-mode multiplicity counter was

developed to work in two different configurations to provide additional insight into

multiplicity counter operations. Optional cadmium sleeves around the 3He detectors

were used to decrease the die-away time; however, the efficiency was also reduced in

this configuration due to neutrons being absorbed in the cadmium without being

detected. Without the cadmium sleeves, the efficiency was improved from 17% to 53%,

but different electronics were required to process the higher multiplicities [34]. Faster

electronics began to be incorporated into the multiplicity counter circuits and the

improved results demonstrated the importance of correctly designed read-out systems.

The drastic improvement in the results achieved with the multiplicity assay compared to

the results from a traditional coincidence assay can be seen in Figure 2-7. Note that the

impure oxides demonstrate more bias with conventional coincidence assay than the

pure oxides. The difference is largely a result of the correction factor that is applied to

account for the unknown parameters being less accurate when impurities are present in

the sample.

Page 45: By AZAREE T. LINTEREUR

45

Figure 2-7. Comparison of the results from a conventional assay and a multiplicity assay for samples with different amounts of effective 240Pu1 (adapted from Figure 7.3 Ensslin et al. [6]).

Multiplicity counters suitable for specialized measurements were constructed for

specific applications, such as the Pyrochemical Neutron Multiplicity Counter (PNMC),

which was designed specifically for in-plant detection measurements. Monte Carlo

simulations performed by Langner, et al. [35], and measurements made with the dual

mode multiplicity counter, were used to select the final design for the PNMC. Based on

the results from the studies of the various configurations, the PNMC was constructed

with four rings of 3He detection tubes and an all polyethylene moderator. The measured

1 Effective 240Pu (240Pueff) is the mass of 240Pu that would give the same response as that obtained from all of the even plutonium isotopes in the sample. The effective 240Pu is calculated by 240Pueff = 2.52238Pu + 240Pu + 1.68242Pu, which can be solved to determine the mass of 240Pu present in the sample.

Page 46: By AZAREE T. LINTEREUR

46

results were demonstrated to match the predicted capabilities within 4% for efficiency

and die-away time [34]. Aluminum was used in the body of the detection system prior to

this design and resulted in a decreased die-away time when compared to a

polyethylene body. However, the aluminum body also caused the die-away time to be

non-exponential, which nullified any improvements gained from a shorter die-away time.

The PNMC study demonstrated that systems must be carefully optimized for the

measurements being made, and that slight changes to the configuration can have

significant impacts.

The highest performing multiplicity counter that has been developed is the

Epithermal Neutron Multiplicity Counter (ENMC) (Figure 2-8). The ENMC contains 121

10-atm 3He filled proportional counters. The neutron detection efficiency of the ENMC

is 65%, and the die-away time is 21 µsec [36]. The counter was designed to have a

high efficiency and a short die-away time, and both were achieved in a compact

footprint. The sample chamber is lined with cadmium, iron and lead. The cadmium

prevents thermal neutrons from returning to the sample chamber and inducing

additional fissions, the iron is a scattering media, and the lead is to reduce the gamma

ray fluence incident upon the 3He tubes. Graphite end plugs on the sample chamber

improve the vertical uniformity of the neutron detection efficiency, and were selected

based on simulations with several different media [36]. The entire counter was carefully

designed; however, the performance was primarily realized due to the large amount of

3He present in the system (over 18 moles of 3He are in the ENMC [13]). The availability

of 3He decreased after the design of this counter, and building additional ENMCs has

Page 47: By AZAREE T. LINTEREUR

47

become prohibitively expensive. Therefore, high performance multiplicity counter

configurations without 3He that can replace the ENMC need to be identified.

Figure 2-8. The ENMC shown with a sample being inserted into the chamber (photo courtesy of Dr. Daniela Henzlova).

Helium-3 alternative neutron detectors for multiplicity counters are being

researched by several groups. Helium-3 alternatives based on 10B-lined proportional

counter technology have been considered by Proportional Technologies incorporated

and Los Alamos National Laboratory. Proportional Technologies has examined the in-

house manufactured 10B-coated straw detectors for use in multiplicity counters [37] and

Los Alamos National Laboratory has conducted a series of measurements to quantify

the performance of three different 10B based detectors [38].

In addition to thermal neutron 3He alternatives some fast neutron detection

techniques for use in multiplicity counters have also been explored, such as the design

Page 48: By AZAREE T. LINTEREUR

48

developed by researchers at the University of Michigan [39]. Liquid scintillators can be

designed to detect fast neutrons, and pulse shape discrimination (PSD) techniques can

be employed to distinguish between pulses generated by gamma rays and neutrons.

Liquid scintillators are fast, so there is a low accidental rate; however, like most fast

neutron detectors they produce lower neutron detection efficiency than conventional

thermal neutron detectors.

A prototype counter based on 6LiF/ZnS sheets was developed by Los Alamos

National Laboratory [40]. The light generated by the scintillation of ZnS was transmitted

to photomultiplier tubes (PMTs) via wavelength shifting fibers. The fibers were bundled

outside of the region with the 6LiF/ZnS and tapered to the PMTs, which resulted in a

relatively large configuration (Figure 2-9) [41]. The counter was designed with minimal

moderation, which resulted in an extremely low die-away time (<5 µs), however, the

design relied upon pulse shape analysis to discriminate between pulses generated by

neutrons and pulses generated by gamma rays. Therefore, the neutron detection

efficiency was dependent upon the threshold applied for the gamma ray discrimination.

The counter was tested with a high count rate sample (2.1 million neutrons/second) and

at the threshold required to produce a 1.6% gamma ray neutron identification the

neutron detection efficiency was 23% [41]. The efficiency was limited by the light

collection efficiency of the fibers. While fibers are less gamma ray sensitive than large

sheets of wavelength shifting plastic, the light collection efficiency will limit the neutron

detection efficiency. Customized electronics were developed to improve the PSD [40],

but the length of the neutron pulses (several µs) ultimately limited the performance of

the system.

Page 49: By AZAREE T. LINTEREUR

49

Figure 2-9. Prototype LANL developed 6LiF/ZnS well counter (photo courtesy of Dr. Martyn Swinhoe).

A similar system to the 6LiF/ZnS counter designed by LANL was developed jointly

by the University of Leeds and the University of London [42]. This counter was

designed for detection of heavy ions at low count rate applications, so the pulse length

was not a concern. Unlike the prototype developed by LANL, this system contained

polyethylene moderator between the layers, and utilized wavelength shifting plastic

sheets in place of the fibers. The polyethylene increased the die-away time of the

design, but also boosted the efficiency. The neutron signal was distinguished from the

gamma ray signal based on pulse shape discrimination. The electronics employed

provided accurate neutron identification, but were never tested at a high count rate,

such as would be required in traditional multiplicity counter applications.

Page 50: By AZAREE T. LINTEREUR

50

There is a wide range of potential neutron count rates that multiplicity counters

have to process. In addition to neutrons, the samples will also emit gamma rays. Some

representative neutron count rates are shown in Table 2-1, and the gamma ray

emissions for the same isotopes are shown in Table 2-2. These tables illustrate that not

only will any 3He alternative counter need to be capable of handling high neutron count

rates, but will also require high gamma ray rejection capabilities.

Table 2-1. Spontaneous fission and (α,n) yields for uranium and plutonium isotopes[1][6].

Isotope Spontaneous Fission Half-

Life (yr)

Spontaneous Fission Yield

(n/s-g)

Alpha Decay

Half-Life (yr)

Alpha Yield

(α/s-g)

(α,n) Yield in Oxide (n/s-g)

(α,n) Yield in Flouride (n/s-g)

235U 3.5x1017 2.99x10-4 7.04x108 7.9x104 7.1x10-4 0.08 236U 1.95x1016 5.49x10-3 2.34x107 2.3x106 2.4x10-2 2.9 238U 8.2x1015 1.36x10-2 4.47x109 1.2x104 8.3x10-5 0.028

238Pu 4.77x1010 2.59x103 87.74 6.4x1011 1.34x104 2.2x106

239Pu 5.48x1015 2.18x10-2 2.41x104 2.3x109 3.81x101 5.6x103

240Pu 1.16x1011 1.02x103 6.56x103 8.4x109 1.41x102 2.1x104

Table 2-2. Gamma ray yields for uranium and plutonium isotopes [5] [43].

Isotope Total Half-Life (yr) Gamma Ray Yield (γ/s-g) 235U 7.04x108 5.55x1010 236U 2.34x107 9.1x105 238U 4.47x109 7.18x106

238Pu 87.74 3.02x108

239Pu 2.41x104 8.58x105

240Pu 6.56x103 4.43x106

The multitudes of counter configurations that have been developed demonstrate

the specialized nature of these systems. Several performance parameters must be

considered during the design to produce a system with the necessary capabilities within

the physical constraints (i.e. footprint, height, weight, sample chamber size) associated

with the measurements that will be made. A change in one parameter can affect others,

so a systematic study of capabilities is necessary for any new counter configuration.

Page 51: By AZAREE T. LINTEREUR

51

CHAPTER 3 COUNTER MODEL AND SIMULATIONS

Radiation detection systems can be complex, and small design changes can

significantly affect their performance. Building different systems to test various

configurations typically is not a practical way to investigate multiple designs; models of

detectors present an alternative method of performance characterization. Simulations

can be a valuable asset for detector development as different designs can be modeled

much more efficiently than they could physically be built. However, the simulation

methodology must be validated with experimental data.

A system model allows performance mapping with different changes, and should

ultimately lead to the system with the highest performance within the design constraints.

There are various means of performing simulations to predict the response of a neutron

detector. The basic simulation methods for radiation detection problems are either

Monte Carlo or deterministic. The two methods seek to answer the same questions, but

through different approaches. For predicting the average behavior of radiation quanta,

deterministic methods solve the transport equation. Alternatively, Monte Carlo methods

simulate individual particles and record their average behavior, which is then used to

predict how the particles in the system will act. Most deterministic methods rely on the

discrete ordinates method, which divides a space into small units through which

particles traverse in a differential amount of time. In the limit of the spatial regions

becoming progressively smaller; this method approaches the integro-differential

transport equation. Monte Carlo does not rely upon integrating the particles through

space or time; instead, the Monte Carlo method simulates the spatial transport of

individual particles between specific types of events. Because there are no spatial

Page 52: By AZAREE T. LINTEREUR

52

regions, Monte Carlo methods are extremely useful for solving problems involving

complex physical systems. Monte Carlo simulations use a random number selection to

statistically sample each type of event during a particles life-time. The probability

distributions are sampled randomly, according to material cross-section files, which are

built into the code. The events happen sequentially, so an interaction and the new

direction of travel (for a scatter event) are sampled with at least two different random

numbers. If additional particles are created through interactions of the original particles,

they are stored for later analysis [45].

All of the simulations performed as part of this research effort were conducted with

the Monte Carlo method. The performance for the simulated systems was evaluated

based on the standard figure-of-merit (FOM) (ε2/τ) [44].

MCNPX Simulation Methodology

A standard Monte Carlo package used for radiation transport is the Los Alamos

National Laboratory developed Monte Carlo N-Particle transport code, MCNP [45].

MCNP is capable of photon, neutron, and electron transport. MCNPX was developed to

accommodate the transport of heavy charged particles (such as alpha particles and

tritons). MCNPX v.2.7.0 [46] was used for all of the simulations in this work, as the

transport and tallying of heavy charged particles was required for some of the

simulations.

The simulations performed for the optimization of the 3He alternative multiplicity

counter configuration were comprised of two categories: one where the neutron capture

material and the signal generation material were the same (e.g., 3He filled proportional

counters), and one where the neutron capture material and the signal generating

material were different (10B-lined proportional counters) (Figure 3-1). There are several

Page 53: By AZAREE T. LINTEREUR

53

options available for recording the particles generated in MCNPX simulations (normally

referred to as a tally) to produce efficiency calculations. However, not all tally

methodologies are appropriate for the two types of simulations performed in this work.

If the material that captures neutrons and the material that generates the signal are the

same, the neutron detection efficiency can be determined in one step, by tallying the

number of neutron captures. The F4 reaction tally, with a multiplier card that specifies

capture reactions, can be used to simulate the number of neutron captures in the media

of interest. A net neutron current tally, generated with the F1 tally (which is a basic

surface counting tally, meaning the number of particles crossing a surface are tallied)

and the use of cosine bins to track the direction of travel of the neutrons, was used to

verify the F4 tally results.

(a) (b)

Figure 3-1. Illustration of the two scenarios simulated in this work: one where the neutron capture medial and the signal generating media are the same (a) and one where the signal is generated in a separate media from where the neutron was captured (b).

Signal generation in neutron detectors that have a separate neutron capture

material and signal generating material is a two-step process. The neutron has to be

captured and the reaction products then have to escape the capture material and enter

the signal generating material. Therefore, the neutron captures tallied with a F4 tally will

over-predict the signal generating, or counting, efficiency. An accurate system counting

Page 54: By AZAREE T. LINTEREUR

54

efficiency simulation for these detectors requires the tracking of the correlated reaction

products into the signal generating material. Heavy ion tracking, which is necessary to

track the 7Li ion, was implemented in MCNPX v.2.6.0 [47]. The ability to require

correlation of the reaction products, with the correct two-branch Q-values for neutron

capture reactions in 10B, was added in MCNPX v.2.7b [46]. Prior to MCNPX v.2.7b, a

correction factor was applied to the simulated neutron capture efficiency to estimate the

neutron detection efficiency. The use of a correction factor can produce an accurate

efficiency estimate; however, the lining thickness will affect the die-away time as well as

the efficiency. Thus, for system capability estimates a correction factor is not adequate.

The energy deposited by the reaction products in the signal generating media can

be simulated with the use of F8 pulse height (PH) tallies. The F8 tally differs from other

MCNPX tallies in that the particles are tallied at the end of their life in the simulation.

The energy deposited in a specified region of the detector geometry is determined by

comparing the energy of the particle at its entry into the region with the energy of the

particle when it leaves the area of interest (or passes below the energy threshold for the

simulation). As a result, the F8 tally cannot be used to simulate the energy deposition

of particles that are created in the same volume of interest in which they end (that would

result in a net energy deposition of zero based on the definition of the tally

methodology). However, for simulations where the particles are created in a separate

region from where the energy is deposited, the F8 tally can be used to determine the

detection efficiency. The results of the tally can be verified with a F1 tally to count the

number of reaction products entering the region of interest. The reaction product

currents (the F1 tallies) assume that all of the products that enter the region of interest,

Page 55: By AZAREE T. LINTEREUR

55

regardless of energy, create enough ionization to produce a detectable signal. The F1

tally will over-predict the detection efficiency by 1-2%, as long as the current tally and

the pulse height (PH) tally do not differ by more than a couple percent, and the current

prediction is higher, the current tally (a well-established method) can be used as a

confirmation of the PH tally predicted efficiency.

MCNPX cannot be used to simulate any potential loss of signal that occurs after

the particle energy deposition, or capture, in the signal generating media. Validation

measurements are required to establish the relationship between the simulated

response and the measured response.

ENMC Template

The MCNPX simulations were performed starting with a template that was designed at

Los Alamos National Laboratory [36] based on the ENMC. The model for the ENMC

was used to select the design of the physical ENMC configuration, and therefore it

includes all of the system components (excluding the electronics), as shown in Figure 3-

2. The tube spacing, selected based on an optimization study [36], was approximately

1-cm tube to tube. The measured efficiency of the ENMC is 65%, and the die-away

time 22 µs. The ENMC template was reconstructed in MCNPX prior to any

modifications being performed for the 3He alternative technologies. The efficiency for

the baseline ENMC template was simulated with F4 neutron capture tallies, and the die-

away time by simulating the number of captures in specified time intervals. The

simulated efficiency was 65.6%, and the die-away time 23.2 µs, which corresponds to a

percent difference between the measured and simulated results of 1% and 5%,

respectively. After the model was verified by comparisons to the measured ENMC

values, the ENMC template was adapted for alterations with the 3He alternative

Page 56: By AZAREE T. LINTEREUR

56

technologies through the development of the Alternative Neutron Multiplicity Counter

(ANMC) template [13].

Figure 3-2. ENMC MCNPX model used as the template for the 3He alternative

configurations.

ANMC Template

The same geometry as in the ENMC MCNP input was used for the initial ANMC

template. However, the tubes were simulated such that a single master tube was used

as a template for the rest of the tubes in the system [13]. This methodology simplified

tube by tube and ring by ring analysis and detector substitutions. All of the design

changes to accommodate the alternative detectors were made external to the layer of

polyethylene between the aluminum shell of the chamber and the first ring of tubes.

Additional modifications were implemented for the configurations which contained more

detector units than cells allowed by MCNPX (MCNPX contains a 1000 cell limit) and for

the configurations with detectors that were not based on a circular geometry (i.e., the

6LiF/ZnS simulations, which were not performed as part of this work).

Page 57: By AZAREE T. LINTEREUR

57

Alternative configurations were simulated using detectors based on 10B and 6Li.

Two 10B based thermal neutron detectors, BF3 filled proportional counters and 10B-lined

proportional counters, were simulated using the ANMC template. A separate set of

simulations was performed to determine if plates lined with 10B and orientated at an

angle to the surface normal would increase the neutron detection efficiency. The 6Li

based detector simulated with the ANMC template was 6LiF/ZnS(Ag) sheets; however,

those models were developed separately from this research effort [44].

The BF3 efficiency tallies were performed with a F4 neutron capture tally and

verified with a neutron current tally (net neutrons entering the BF3 fill gas). The signal

produced by 10B-lined tubes is dependent upon one of the reaction products from the

neutron capture in the 10B escaping the tube lining and entering the fill gas. Because

the neutron capture material and the signal generating material are not the same for this

detector, the neutron detection efficiency (signal generating efficiency) was determined

by tallying the correlated reaction products escaping the 10B lining and entering the

signal generating fill gas. The 10B-lined tallies were verified by tallying the energy

deposited in the fill gas by the reaction products (PH tallies). Momentum conservation

requires that the reaction products be emitted in opposite directions. Therefore, only

one reaction product per neutron capture in the 10B-lining will enter the proportional gas

and generate a signal. The detection of one of the reaction products per neutron

capture produces a spectrum with two distinct regions, one from each of the reaction

products. The products will lose energy in the lining prior to entering the proportional

gas. The amount of energy the products lose depends on the reaction location.

Therefore, the regions are broad distributions that range from the full particle energy to

Page 58: By AZAREE T. LINTEREUR

58

zero. This is a fundamentally different spectral shape compared to proportional

counters where the neutron is captured in the same material that generates the signal

(such as those filled with 3He or BF3). When the reaction products are created in the

same media that generates the signal, both of the reaction products will contribute to

the detected signal (even though the reaction products are emitted in opposite

directions). The two spectral shapes are illustrated by an example simulated spectrum

from a 3He filled proportional counter and a 10B-lined proportional counter shown in

Figure 3-3. No conclusions should be inferred from the difference in the count

efficiencies, as this figure simply illustrates the differences in the spectral shapes

obtained with different detectors. Any gamma ray contribution to the signal will be

evident in the low energy region of the spectra. A low-energy-threshold can be applied

to produce the required gamma ray rejection. The low-energy-threshold will not

significantly affect the efficiency of the 3He or BF3 proportional counters due to the large

separation between the signal produced in response to a neutron capture and that

produced by a gamma ray. However, the low-energy-threshold will have an impact on

the neutron detection efficiency of the 10B-lined proportional counters due to the energy

distribution of the reaction products entering the proportional gas. The standard low-

energy-threshold is approximately 100 keV, which will produce an effect around 10% on

the 10B-lined proportional counter detection efficiency [44]. This effect was not included

for the full system simulations, but was considered for the model validation studies. The

spectra shown for the model validation all show the position of the low-energy threshold

that was applied.

Page 59: By AZAREE T. LINTEREUR

59

(a)

(b)

Figure 3-3. Example simulated spectrum from a 3He filled proportional counter (a) and a 10B-lined proportional counter (b). The location of a 100 keV low-energy threshold is marked in both figures. Note that the location of the peak in the 3He spectrum corresponds to the Q-value for a neutron capture in 3He, and the two plateaus below the peak are due to the wall effect, or the result of some of the reaction products escaping prior to depositing all of their energy. The contributions of the two reaction products produced by a neutron capture in the 10B lining to the total energy deposited in the proportional gas are shown in the 10B-lined proportional counter spectrum. Note that the low intensity upper region for each reaction product is due to the higher kinetic energy of the reaction products in the ground state reaction (6% probable).

As with the 10B-lined proportional counters, the signal generated by the 6LiF/ZnS

sheets is a two-step process that is the result of the neutron capture reaction products

Page 60: By AZAREE T. LINTEREUR

60

escaping the neutron capture material (6LiF) and entering the signal generating material

(ZnS). However, tracking the reaction products from the 6LiF into the ZnS is not

informative as the microscopic scale of the particles compromises the accuracy of the

simulations. Additionally, the final measured efficiency with the 6LiF/ZnS system is also

highly dependent upon the light collection efficiency, which cannot be simulated by

MCNPX v.2.6.0. Therefore, the neutron detection efficiency of the 6LiF/ZnS sheets was

simulated (separate from this research effort [44]) by the use of neutron capture tallies

in the 6Li only. A validation correction factor (VCF) was applied to the simulation results

to account for the difference between the neutron capture efficiency and the signal

generating efficiency. The VCF was determined by comparing simulated to measured

efficiency values [48]. Because the simulation did not consider signal generation, there

were no spectral shapes generated for this technology.

The die-away time for all of the technologies simulated was calculated by

determining the number of neutrons captured per time interval, and fitting the results to

an exponential, such as is shown for the base-line 3He system in Figure 3-4. Note that

error bars are not shown on any of the reported simulation results. The MCNPX code

provides tests to give the user reasonable confidence that the simulation results have

adequately sampled all of the phase space. For all of the simulation results reported

here the MCNPX tests were passed and a large enough number of particles were

simulated to produce a statistical uncertainty of less than 1%.

Page 61: By AZAREE T. LINTEREUR

61

Figure 3-4. Die-away time fit for the baseline 3He system.

Boron-10 Based Detector Simulations

The probability of a thermal neutron being captured by a 10B atom is lower than the

probability of a thermal neutron being captured by a 3He atom. Therefore, to have the

same number of neutron captures in a system built with 10B based neutron detectors as

would be seen in a system built with 3He based neutron detectors more 10B atoms than

3He atoms are required. The number of 10B atoms required to obtain an equivalent

number of neutron captures to 3He can be determined by multiplying the total number of

3He atoms present by the ratio of the neutron capture cross-sections. For a complete

system, the relationship between atoms of detection media and neutron detection

efficiency is not linear due to neutron scattering (as the system gets larger to

Page 62: By AZAREE T. LINTEREUR

62

accommodate the increased amount of 10B, the neutrons will be more likely to lost in the

moderator).

The amount of 10B in all of the 10B based systems was maximized as much as

possible to offset the lower cross section. However, while the amount of neutron

detection media must be maximized, it is also necessary to restrict the overall size of

the system to prevent the die-away time from becoming too large. An additional

physical size constraint was that the chamber be accessible without the need for

additional equipment and that the entire counter could be moved by two people.

The first sets of simulations with 10B instead of 3He as the neutron detection

medium were conducted with BF3 filled proportional counters. The initial BF3

simulations were performed by replacing the 121 2.54-cm-diameter 10-atm 3He tubes in

the ENMC with 1-atm BF3 tubes (and keeping the rest of the ENMC design the same).

The system performance with these parameters (discussed in the Performance

Comparison section, below) was less than the ENMC target, due to the decrease in the

available neutron capture sites. The three options to increase the number of 10B atoms

in the system were to increase the number of tubes, increase the tube volume, or

increase the tube pressure. It is evident that an increase in the tube pressure would

increase the number of 10B atoms in the system without increasing the footprint, but the

tube pressure was limited to 2 atm, for availability purposes. BF3 is considered a

hazardous gas, due to its corrosive nature; BF3 also loses its proportional

characteristics at high pressures and requires a high operating voltage. The corrosive

nature of BF3 and the high operating voltage required limit the available tube pressure.

Therefore, to increase the number of neutron capture sites, the number of tubes, and

Page 63: By AZAREE T. LINTEREUR

63

the tube volume, had to be increased. However, a system that is comprised of more

tubes, of a larger diameter, than those in the original ENMC configuration, will result in a

larger die-away time due to an increased footprint; thus, the optimal BF3 tube

configuration is not determined solely by the number of 10B atoms present. The entire

design has to be considered when searching for overall performance optimization.

Several options to produce a system with the same number of neutron capture

sites as are present in the ENMC (1.09x1025 atoms of 3He) are shown in Table 3-1

(although the lower neutron capture cross section of 10B will still result in a system with

a lower efficiency). The physical constraints of the system eliminate an increase in the

tube diameter beyond 5.08 cm. Likewise, a configuration with 1-atm tubes was

determined to be impractical for an actual physical configuration. The best option for

the BF3 filled proportional counters was identified as the 5.08-cm diameter tubes filled to

a pressure of 2 atm. The factor of two increase in the tube diameter from the initial

configuration increased the tube volume by a factor of four. However, due to the larger

tube size, fewer tubes could be positioned in each of the rings. Accordingly, two

additional rings were added to the design to accommodate the required number of

tubes. System optimization of the moderator and the tube placement resulted in a

configuration with 155 5.08-cm diameter tubes spaced as closely as possible

(approximately 0.1-cm spacing between the tubes in each ring) in a total of 6 rings. A

comparison of the efficiency of each ring of tubes illustrated that the efficiency gained

with the addition of a seventh ring was not enough to overcome the increase in the die-

away time. As shown in Figure 3-5, the footprint of the final design was larger than that

of the ENMC, but not so large that the system could not be moved by two people.

Page 64: By AZAREE T. LINTEREUR

64

Table 3-1. Tube diameter and pressure combinations to achieve the same number of 10B atoms in a system designed with BF3 filled proportional counters as 3He atoms present in the ENMC.

Pressure (atm) Tube Diameter (cm) Atoms/Tube Number of

Tubes

1 2.54 8.81x1021 1239 1 5.08 3.52x1022 310 1 7.62 7.92x1022 137 2 2.54 1.76x1022 619 2 5.08 7.05 x1022 155 2 7.62 1.58x1023 68

(a) (b)

Figure 3-5. The original ENMC footprint, with 121 2.54-cm diameter 3He tubes, compared to the final BF3 system footprint, with 155 5.08-cm diameter BF3 tubes.

The second set of simulations performed with 10B as the neutron capture material

utilized 10B-lined proportional counters. Boron-10-lined proportional counters do not

have the same safety issues associated with BF3 filled proportional counters, as they

can be filled with an inert proportional gas. However, the neutron capture material is

limited to a thin lining on the tube surface, which can make achieving the required

Page 65: By AZAREE T. LINTEREUR

65

efficiency challenging. The lining thickness is limited by the range of the reaction

products (which varies with tube lining compositions); if the reaction products are unable

to escape the tube lining, a signal will not be generated in the proportional gas. As

shown in Figure 3-6, the 7Li ion has a shorter range than the alpha particle, and is the

particle that limits the lining thickness. There is an optimal thickness for each lining

composition that will stop the maximum number of neutrons and still result in a signal

being generated. The neutron detection efficiency will increase with lining thickness

until approximately 3 µm, where the efficiency will begin to decrease as a result of fewer

reaction products escaping the lining.

The first set of simulations consisted of replacing the 2.54-cm diameter tubes in

the ENMC template with 2.54-cm diameter tubes lined with 2.5-µm of 10B and filled with

argon gas at a pressure of 1 atm. The performance of the initial system was not

adequate, so, as with the BF3 filled proportional counter configuration, an increase in

the amount of 10B in the system was required.

The number of 10B atoms in a system designed with 10B-lined proportional tubes

can be increased by increasing the total surface area of the tubes, or the lining

thickness. The use of a thicker tube lining will increase the number of neutrons

captured, but due to the physics of the detectors, not necessarily the signal generated.

The overall surface area of the tubes in the system can be increased by increasing the

number of tubes (of the same diameter), or by replacing every tube by several smaller

ones. As shown in Figure 3-7, four tubes with a diameter of 0.8-cm each occupy the

same area as a tube with a diameter of 2 cm, but the four smaller tubes have a surface

area 1.6 times greater than that of the larger tube.

Page 66: By AZAREE T. LINTEREUR

66

(a)

(b)

Figure 3-6. The range of alpha particles in several possible compositions of the lining for

10B-lined proportional counters (a), and the range of the 7Li ions in the same linings (b). Note that two KE thresholds are shown in both of the figures, one for the reaction which produces a ground state 7Li ion (6% probable) and one for the reaction which produces an excited state 7Li ion (94%) probable. The range values for both figures were calculated with SRIM-2013.

Page 67: By AZAREE T. LINTEREUR

67

Figure 3-7. Four tubes with a diameter of 0.8 cm occupy the same area as one tube with a diameter of 2.0 cm, but the combined surface area of the small tubes is greater than that of the large tube.

Table 3-2. Tube diameter variations and the required number to achieve the same number of 10B atoms as 3He atoms in the ENMC, assuming a lining thickness of 2.5 µm.

Tube Diameter (cm) Atoms/Tube Number of

Tubes

5.08 7.05x1022 274 2.54 1.99x1022 547 0.40 3.14x1021 3470

Several small-diameter tube configuration simulations were performed to increase

the total tube surface area (and consequently the amount of 10B in the system) while

maintaining a reasonable system size. However, as shown in Table 3-2, the number of

small-diameter tubes required to obtain the same number of neutron capture sites as

present in the ENMC was greater than the MCNPX cell limit. Therefore, the ANMC

template was reconfigured with a lattice structure that permitted simulation of the

number of cells required. The lattice parameters were changed based on the simulation

being performed to accommodate various tube diameters (down to a 4-mm diameter).

One of the potential consequences of decreasing the tube diameter is that the wall

effect will begin to have a pronounced influence on the results. The wall effect is seen

Page 68: By AZAREE T. LINTEREUR

68

when the reaction products escape the tube before depositing all of their energy. As the

tube diameter decreases, the potential for the reaction products to escape the

proportional gas increases. This effect was monitored by simulating the pulse height

spectrum of the energy deposited in the fill gas, and monitoring the loss of efficiency

with the decrease in tube diameter. It was determined that for tube diameters down to 4

mm, with a fill gas pressure of 1 atm, the loss of efficiency due to the wall effect was

negligible [49].

The evolution of the performance of the simulated 10B-lined systems can be seen

by mapping the simulated FOM. As with the BF3 based configurations, the number and

size of the detectors, as well as the amount of moderator, was altered until the system

with the highest FOM, within the physical constraints placed on the design, was

identified. The design alteration limits placed on the configuration were to keep the

inner chamber the same as that of the ENMC, restrict the height to less than 1 m, and

limit the foot-print to less than 1 x 1 m2. An example of the progression of the simulated

10B-lined FOM is shown in Error! Reference source not found.. The contour lines

epresent constant FOM values, with the target performance of the ENMC shown for

reference. The first system simulated was a simple substitution of the 3He tubes in the

ENMC with 10B-lined tubes. The following simulations included alterations in the

number of tubes, tube diameter, 10B thickness, tube placement, and the amount of

moderation. Not all of the alterations improved the simulated FOM; the FOM changes

were used to guide the system adjustments implemented in the simulations.

The same information shown in Figure 3-8 can be viewed in a more qualitative

representation on a 3D plot (Figure 3-9). The surface in Figure 3-9 illustrates the FOM

Page 69: By AZAREE T. LINTEREUR

69

space covered with the simulations, the black circles correspond to the FOM values of

the simulated designs. Several of the configurations were labeled; note that the labels

in Figure 3-9 correspond to those in Figure 3-8 for comparison purposes. However, for

clarity, labels were not included for all of the markers.

Figure 3-8. FOM space mapped out with the simulated 10B-lined proportional counter configurations. The gray lines represent constant FOM contours. The performance goal was to have the same FOM as the ENMC, marked with the red circle.

Page 70: By AZAREE T. LINTEREUR

70

Figure 3-9. Surface contour of the FOM space mapped with the simulated 10B-lined proportional counter configurations. Note the markers represent simulated values and the labels correspond to the marker numbers in Figure 3-8.

The configuration with the best performance of the simulated systems consisted

of 4725 tubes with 4-mm diameters. A ring-by-ring efficiency analysis illustrated that the

system performance could be improved by increasing the number of tubes above the

required 3470, which resulted in the final 4725-tube configuration. The addition of tubes

beyond 4725 did not produce a sufficient increase in the neutron detection efficiency to

counter the corresponding increase in the die-away time, which increased with system

size. The amount of polyethylene between the tubes was optimized for both efficiency

and die-away time, resulting in final configuration with a lattice pitch (tube center to tube

center distance) of 0.35 cm, which is shown in Figure 3-10. More moderation increased

the efficiency, but also increased the die-away time, resulting in a lower overall FOM.

Page 71: By AZAREE T. LINTEREUR

71

Likewise, less moderation decreased the die-away time, but also decreased the neutron

detection efficiency, resulting in a lower FOM than what was achieved with the

configuration shown below.

Figure 3-10. The original ENMC footprint, with 121 2.54-cm diameter 3He tubes compared to the final 10B-lined system footprint, with 4725 0.40-cm diameter 10B-lined tubes.

10B-Lined Plate Configuration

The large number of tubes simulated without satisfactory performance led to the

exploration of other geometries. A plate configuration was simulated to determine if the

efficiency per mole of 10B could be increased by using configurations other tubes. The

plates attempted to maximize the path length that the neutrons could travel in the 10B to

increase the likelihood of being captured. The plate approach has been shown to be

successful for neutron scattering applications where large area detectors are required

[50]. The detectors used for scattering measurements do not include moderation, so

the neutrons will enter the detector parallel to the sheets of neutron capture media,

increasing the probability that a capture will occur prior to the neutron exiting the

Page 72: By AZAREE T. LINTEREUR

72

system. The simulations for multiplicity counter applications included moderation

around the plates to increase the detection efficiency. Several different plate

orientations were simulated to determine if the efficiency would change with plate angle

to the normal (relative to the source). However, the lack of significant change with plate

orientation suggested that the moderation process of the neutrons mitigated any

advantage of the radial directionality of the plates.

6LiF/ZnS Based Detector Simulations

A 6LiF/ZnS scintillating sheet template was initially developed using rings of

6LiF/ZnS and plastic light guide layers that encircled the sample chamber. In this

design, the light guide also functioned as the neutron moderator, which decreased the

amount of polyethylene surrounding the detector media. The 6LiF/ZnS sheets were

simulated in a 1:2 ratio of 6LiF to ZnS, as reported by the vendor, and held together with

an organic binder. The composition of the organic binder is vendor proprietary, so for

these simulations the binder composition was assumed to be the same as that used by

Bicron in the 6LiF/ZnS screens developed for the LANL prototype neutron capture

counter [44].

The signal generated 6LiF/ZnS sheets is due to the 6Li neutron capture reaction

products that escape the 6LiF and enter the ZnS, causing the ZnS to scintillate. The

ZnS scintillation light that is transmitted via the plastic light guides to a photomultiplier

tube (PMT) produces the detected signal. The initial configuration consisted of 20

sheets of 0.05-cm thick 6LiF/ZnS layered with minimal plastic for the light guides.

However, optimization studies, as reported by Ely et al. [44] demonstrated that

improved neutron detection efficiency could be achieved by increasing the amount of

plastic (and therefore the neutron moderation) between the screens. The final

Page 73: By AZAREE T. LINTEREUR

73

configuration consisted of 20 sheets of 0.05-cm thick 6LiF/ZnS layered with 0.7-cm thick

plastic light guide sheets, as shown in Figure 3-11. Due to the thin 6LiF/ZnS sheets and

the minimal moderation in the final system the original footprint of the ENMC was

maintained with this configuration. The light transmission was not simulated, so the

configuration optimization was based on the neutron capture efficiency and the die-

away time.

Figure 3-11. The original ENMC footprint, with 121 2.54-cm diameter 3He tubes compared to the final 6LiF/ZnS system footprint, with 20 6LiF/ZnS screens layered with 0.7-cm thick plastic light guides.

Model Validation

Simple detector geometries were measured and simulated to validate the

simulation methodology, and establish the appropriate VCF for the 6LiF/ZnS

simulations. The simulated efficiency (generated with a F4 neutron capture tally) with a

single 5.08-cm diameter BF3 tube at a pressure of 1.18-atm was within 1% of the

measured results (1% over prediction of efficiency) [48]. The BF3 tube measurements

were performed outside with the tube located in polyethylene housing, which mitigated

the effect of neutron scatters. The 10B-lined tube measurements were performed

Page 74: By AZAREE T. LINTEREUR

74

indoors due to climate constraints; the simulated results demonstrated sensitivity to the

model of the room. The entire room was modeled, and a 2.54-cm diameter 10B-lined

tube (manufactured by GE-Reuter Stokes, Twinsburg, OH) was positioned in a 7.62-cm

x 7.62-cm polyethylene block with a 2.54-cm diameter hole in the center that was 62 cm

long (9.12-cm shorter than the 10B-lined tube), as shown in Figure 3-12. The room

effect had a greater influence on the measurements with a source-to-detector distance

over 50 cm; therefore the validation measurements and simulations presented here

were performed with a source to detector distance of 25 cm.

Figure 3-12. Model (left) and measurement (right) configuration for the 10B-lined proportional counter model validation (photo courtesy of Dr. Richard Kouzes).

The 10B-lined tube simulations are highly dependent upon the details of the

simulated lining. The organic binder of the lining is vendor proprietary; thus, simulations

were performed with several lining compositions covering a range of possible 10B

concentrations; 96% enriched 10B, B4C, and BN (96% to 50% 10B). The 10B lining

thickness, composition and density affect not only the neutron capture efficiency and

counting efficiency, but also the die-away time of system simulations (as the 10B

concentration will affect the rate at which neutrons are captured). The change in the

Page 75: By AZAREE T. LINTEREUR

75

simulated efficiency was not linearly related to the 10B concentration, due to the

differences in density of the compositions (10B has a density of 2.34 g/cm3, B4C has a

density of 2.52 g/cm3, and BN has a density of 3.45 g/cm3). Therefore, each

composition had to be simulated separately. The efficiency of the signal generated was

simulated with F8 energy deposition tallies for the reaction products in the fill gas, and

verified with current tallies of the reaction products entering the fill gas. The best

efficiency agreement between the simulated and measured results was obtained with a

0.75 µm thick 10B lining, which produced a 2.2% difference compared to the measured

efficiency (an over-prediction of efficiency). However, as shown in Figure 3-13, several

lining thicknesses will produce a similar efficiency (more neutrons are stopped with a

thicker lining; however, if the lining is thicker than the range of the reaction products,

fewer secondary particles will escape to generate a signal). The lining thickness will

affect the die-away time as well as the efficiency. Consequently, simply comparing

measured to simulated efficiency is not necessarily a reliable indicator of the ability of a

model to accurately predict the performance of a system developed with 10B-lined

proportional counters. The pulse height spectra of the reaction products can be

compared to the measured spectra when energy bins are applied to the F8 tallies. The

spectral shapes can be used to obtain additional insight into the appropriate lining

thickness and composition. The measured pulse height spectrum from a 10B-lined tube

demonstrates the two separate plateaus (one due to the alpha particle and due to the

7Li ion), as expected of a system where one of the two reaction products generated is

detected (due to the particles being emitted in opposite directions), as shown in Figure

3-14. The pulse height spectra for different lining thicknesses and compositions

Page 76: By AZAREE T. LINTEREUR

76

demonstrate the same two-step response as the measured results. However, the

simulated results show different relative contributions by the two reaction products for

different lining compositions and thicknesses, as can be seen in Figure 3-15. As the

lining thickness increases, the average energy deposited by the reaction products

decreases, because the particles must travel further through the lining, which reduces

the peak appearance noted with the thinner linings [51].

Figure 3-13. The neutron capture efficiency and counting efficiency as a function of 10B lining thickness.

The additional information obtained with the pulse height spectra generated

suggests that although the 0.75 µm lining may produce the closet efficiency to that

measured, the actual lining is likely thicker (note the absence of any peaks in the

measured spectrum). The B4C spectra have similar shapes to the measured results at

Page 77: By AZAREE T. LINTEREUR

77

a thickness greater than 1.0 µm and less than 2.5 µm, suggesting a thicker lining with a

slight organic contribution is probably closest to the actual tube lining.

Figure 3-14. Measured pulse-height spectrum obtained with a 252Cf source located 25 cm from a 10B-lined proportional counter. The kinetic energy thresholds for the two reaction products (for both the ground state and excited state reaction) are marked with the pink dashed lines. The low-energy threshold is marked with the red dashed line.

Page 78: By AZAREE T. LINTEREUR

78

(a)

(b)

(c)

Figure 3-15. Simulated pulse height spectra for three different lining thickness (0.75 µm, 1.5 µm and 2.5 µm) for a 96% enriched 10B lining (a), a B4C lining (b) and a BN lining (c). The pink dashed lines represent the kinetic energy thresholds for the two reaction products (for both the ground state and excited state reaction) and the low-energy threshold is marked with the red dashed line.

A commercially available 6LiF/ZnS based detector manufactured by Innovative

American Technologies (IAT) (Coconut Creek, FL) was used to establish an initial VCF.

Efficiency measurements were performed outdoors with four detector paddles located in

polyethylene housing, which were then simulated for comparison. Each paddle was

comprised of layers of 6LiFZnS and light guide fibers. The VCF obtained by comparing

0 0.5 1 1.5 20

0.5

1

1.5x 10

-5

Energy (MeV)

Eff

icie

ncy p

er

(10 k

eV

) B

in

0 0.5 1 1.5 20

0.5

1

1.5x 10

-5

Energy (MeV)

Eff

icie

ncy p

er

(10 k

eV

) B

in

0 0.5 1 1.5 20

0.5

1

1.5x 10

-5

Energy (MeV)

Eff

icie

ncy p

er

(10 k

eV

) B

in

0 0.5 1 1.5 20

0.5

1

1.5x 10

-5

Energy (MeV)

Eff

icie

ncy p

er

(10 k

eV

) B

in

0 0.5 1 1.5 20

0.5

1

1.5x 10

-5

Energy (MeV)

Eff

icie

ncy p

er

(10 k

eV

) B

in

0 0.5 1 1.5 20

0.5

1

1.5x 10

-5

Energy (MeV)

Eff

icie

ncy p

er

(10 k

eV

) B

in

0 0.5 1 1.5 20

0.5

1

1.5x 10

-5

Energy (MeV)

Eff

icie

ncy p

er

(10 k

eV

) B

in

0 0.5 1 1.5 20

0.5

1

1.5x 10

-5

Energy (MeV)

Eff

icie

ncy p

er

(10 k

eV

) B

in

0 0.5 1 1.5 20

0.5

1

1.5x 10

-5

Energy (MeV)

Eff

icie

ncy p

er

(10 k

eV

) B

in

Page 79: By AZAREE T. LINTEREUR

79

the measured efficiency with this system to the simulated neutron captures was 0.57

(multiplicative factor). The IAT VCF was applied to the simulations of the complete

ANMC configuration; however, due to the difference in light guides between the IAT and

ANMC design, the correct VCF for the ANMC must be verified with the construction of a

bench-top system.

Performance Comparison

The performance of the final optimized configurations for the three technologies

simulated was compared based on the FOM. The target performance for all of the

systems was the FOM of the ENMC, 189. The initial FOM for the counter developed

with 121 2.54-cm diameter 1-atm BF3 filled proportional counters was 12. The six-ring,

155 5.08-cm diameter 2-atm tube BF3 system produced a detection efficiency of 57%,

and a die-away time of 44 µs, corresponding to a FOM of 74.

The initial 10B-lined tube system with 121 2.54-cm diameter tubes with a lining

thickness of 2.5 µm had a FOM of 8. The final system consisted of 4725 4-mm

diameter tubes. The initial simulations considered the optimal performance, so the

lining was simulated to produce the maximum FOM, not the lowest percent difference

with the measured results. It should be noted that as the number of tubes in the system

changes, so does the optimal lining thickness. In single tube systems, the efficiency of

the tube must be maximized; however, in multi-tube systems the efficiency of the

system must be maximized. A “thick” (2.5 µm) and “thin” (1.0 µm) lining were simulated

in a system with varying numbers of tubes (the amount of polyethylene moderator

between the tubes was held constant, thus the total system moderation increased with

the number of tubes). For this particular configuration, when the total number of tubes

was below approximately 1,000, the thicker lining produced superior neutron detection

Page 80: By AZAREE T. LINTEREUR

80

efficiency as compared to the thinner lining. However, as the number of tubes in the

system increased, the thinner lining produced better results because although fewer

neutrons were stopped per tube, a greater percentage of the reaction products per

neutron capture were detected (Figure 3-16).

Figure 3-16. The effect of the tube lining thickness on the FOM of a system simulated with various numbers of 4.0-mm diameter 10B-lined proportional counters.

With the large number of tubes simulated, the 1-µm 10B-lining was found to

produce the best FOM. The system with optimized moderation produced a final

simulated system efficiency of 39% and die-away time of 37 µs. These values

correspond to a FOM of 40. The values for the FOM with a lining simulated to produce

maximum performance were not near enough to the target values of the ENMC for this

research effort to pursue additional simulations with other lining compositions.

Page 81: By AZAREE T. LINTEREUR

81

The FOM for the first 6LiF/ZnS configuration was 4. The final configuration

consisted of 20 sheets of 0.05-cm thick 6LiF/ZnS layered with 0.7-cm thick plastic light

guide. The efficiency of the system was found to be 38%, and the die-away time was 8

µs. The low die-away time achieved with this configuration is due to the minimal

moderation used. The FOM with the optimized 6LiF/ZnS system was found to be 238,

which is higher than that of the ENMC (due to the extremely small die-away time). It

should be noted that the efficiencies reported are the neutron capture efficiencies

corrected with the VCF obtained from the IAT system. The final performance will

depend on the VCF calculated with a bench-top system that utilizes light guide sheets,

as opposed to fibers. The sheets will have a higher optical efficiency than the fibers,

and therefore a higher VCF.

The final performance of all three systems is compared in Figure 3-17 on a

constant FOM contour plot. It is evident that the best performance is achieved with the

6LiF/ZnS configuration. Included in the plot is the ENMC contour and the PCMC

contour (for comparison purposes). The exact efficiency and die-away time of the

ENMC are noted with the red marker.

Page 82: By AZAREE T. LINTEREUR

82

Figure 3-17. Final FOM comparison for the 3He alternative multiplicity counter configurations shown with the ENMC and the PCMC.

Page 83: By AZAREE T. LINTEREUR

83

CHAPTER 4 BENCH-TOP SYSTEM DESIGN

The simulation results were used to select a technology for a bench-top system

build. Based on the comparison of the final templates, the 6LiF/ZnS scintillating sheets

were chosen as the neutron capture technology to be used in the bench-top system. A

bench-top test unit was configured to determine the best physical configuration for the

complete bench-top system. The predictions from the simulations did not account for

the light collection attenuation from the ZnS through the light guide to the photomultiplier

tubes, and thus measurements were made to identify the design that produced the

highest collected signal. The bench-top test unit was also constructed to determine the

appropriate validation correction factor (VCF) for systems built with sheets of 6LiF/ZnS

sandwiched between light guides. The original VCF applied to the MCNPX simulations

was based on measurements using the IAT detector configuration, which utilizes fibers

for the transmission of the scintillation light. The sheets used for the light guides in the

final MCNPX design have different light transmission properties than fibers. The

appropriate VCF varies depending on the configuration, and must be established for

each of system measured. The primary considerations in the construction of the bench-

top test unit were the physics of the 6LiF/ZnS sheets and the transmission properties of

the light guides.

6LiF/ZnS Physics

Silver activated zinc sulfide is a bright scintillator, generating ~160,000 photons

per captured thermal neutron in 6LiF [19]. However, ZnS is not transparent to its own

light, and so thin sheets are required to allow light to escape, maximizing the signal that

is available for transmission by the light guides. The 6LiF/ZnS sheets selected for the

Page 84: By AZAREE T. LINTEREUR

84

test unit construction were manufactured by Eljen Technology, Sweetwater, TX (the

sheets were a customized version of EJ-426HD2). The sheets consisted of a 500-µm

thick layer comprised of a 1:2 ratio of 6LiF:ZnS particles suspended in an organic

binder. The individual particles of 6LiF and ZnS were less than 10 µm in diameter

(Figure 4-1). The 6LiF/ZnS compound was sandwiched between two polyester sheets

(each 250-µm thick) by the manufacturer for support.

Figure 4-1. Magnified (50x) view of a section of a 6LiF/ZnS sheet (constructed by Eljen Technology) showing the individual 6LiF and ZnS pieces suspended in the binder (photo curtesy of Dr. Mary Bliss).

Zinc sulfide will respond to gamma rays as well as the heavy charged particles

created by the neutron capture in 6Li. Gamma rays and neutrons do not produce the

same number of photons in ZnS; one MeV of gamma ray energy will produce ~75,000

ZnS

LiF

Page 85: By AZAREE T. LINTEREUR

85

photons, compared to ~160,00 photons generated by thermal neutron capture [19]. The

pulse shapes produced by gamma rays and neutrons in 6LiF/ZnS are also different.

The heavy charged particles from the neutron capture deposit their energy over a short

distance in the ZnS; thus a large amount of energy is transferred to a small region. The

gamma rays release energetic electrons that, in turn, deposit small amounts of energy

over a long trail, allowing the states to quickly return to equilibrium. The same states

decay regardless of whether the excitation was caused by a neutron or a gamma ray.

Therefore, the emission wavelength of the luminescence generated from gamma rays

and neutrons is identical; however, the time it takes for the neutron-excited states to de-

excite is longer than the time required for the gamma ray-excited states. The difference

in the shape of the light pulse generated from gamma rays and neutrons allows for the

pulses to be categorized and gamma rays to be discriminated.

Light Transmission

The light emitted by the ZnS must be transmitted to the PMTs for a signal to be

generated. Two different light guides were considered: wavelength shifting plastic

(WLSP) (EJ-280 from Eljen Technology, Sweetwater, TX) and non-scintillating

polymethyl methacrylate (PMMA) (PMMA from Eljen Technology, Sweetwater, TX),

both shown in Figure 4-2. The WLSP scintillates in response to gamma rays, unlike the

PMMA (although the WLSP contains a dopant that produces significant gamma ray

suppression compared to “normal” gamma ray sensitive plastic, such as PVT). Both the

WLSP and the PMMA will transmit light based on the laws of ray tracing optics;

however, the location of origin of the light that is transmitted is different between the two

materials. The WLSP captures the light emitted by the ZnS and re-emits it isotropically

at a different (longer) wavelength with a quantum efficiency of 95% (as reported by the

Page 86: By AZAREE T. LINTEREUR

86

manufacturer). Therefore, the light that is transmitted to the PMTs originates within the

WLSP sheets. The ZnS emission spectrum and the absorption and emission spectra

for the WLSP sheets used for the test unit are shown in Figure 4-3.

(a)

(b)

Figure 4-2. The WLSP (a) and PMMA (b) sheets used for the bench-top test system (photos taken by the author).

Page 87: By AZAREE T. LINTEREUR

87

(a)

(b)

Figure 4-3. Emission Spectrum for the 6LiF/ZnS screens (from Eljen Technology EJ-426) (a) and the absorption and emission spectra for the WLSP (Eljen Technology EJ-280) (b) from the manufacturers specifications.

Page 88: By AZAREE T. LINTEREUR

88

The light that is incident on the WLSP-air interface with an angle greater than the

critical angle will be transmitted (as shown in Figure 4-4); the critical angle (calculated

with Snell’s Law2) for the WLSP is 39.3o relative to the normal. The PMMA will only

transmit the light that reflects off of the PMMA-air interface at an angle greater than the

critical angle (41.8o relative to the normal). Therefore, only the light that is incident on

the PMMA at an angle greater than that which will result in a critical angle at the

opposite interface will be transmitted. For the 0.7-cm thick PMMA, the incident angle

must be greater than 88.8o to generate a critical angle at the opposite interface, as light

bends towards the normal in the material with a higher reflective index, as can be seen

by tracing the ray in Figure 4-4 (a) backwards. The comparison of light transmission

illustrates that the PMMA will have a lower optical efficiency than the WLSP; however,

both light guides were tested so that not only the neutron detection efficiency, but also

the gamma ray rejection capabilities, of the two systems could be compared. The

optical efficiency will clearly be higher for short sheets than long sheets (for both the

WLSP and the PMMA) due to less light attenuation; however, physical constraints

(number and location of PMTs, for example) prevented short sheets from being used in

this configuration, as the active region in the final design had to have the same

dimensions as the ENMC. The sheets used in the test unit were the same length as

those that will be used in the complete bench-top system to more accurately reflect the

performance of the complete bench-top system.

2 Snell’s law relates the angle of incidence and the angle of reflection for light passing from one media

into another as:

1

2

2

1

)sin(

)sin(

where η = the refractive index of each media.

Page 89: By AZAREE T. LINTEREUR

89

Figure 4-4. Refracted light between two media when the incident angle is less than the critical angle and η1>η2 (a), reflected ray for an incident angle equal to the critical angle and η1>η2 (b) and total internal reflection when the incident angle is greater than the critical angle and η1>η2 (c).

Configuration

The highest performing simulated configuration consisted of 20 sheets of 6LiF/ZnS

in a cylindrical configuration. Additional simulations were carried out to compare the

optimal configuration with one that would be more practical to physically construct [44].

The initial bench top test unit was designed to be one quarter of one of the sections of

the modified system, as shown in Figure 4-5. The bench-top test unit was built with five

sheets of 6LiF/ZnS layered with six sheets of plastic light guide. The configuration was

Page 90: By AZAREE T. LINTEREUR

90

designed for testing the different light guides and determining the corresponding VCF

prior to a full bench-top system build.

Figure 4-5. 6LiF/ZnS system (a) and a modified concept for the construction of the initial systems (b) with the bench-top test unit equivalent marked.

The length of the sheets was selected to be that of the simulated length, 71.12 cm

(which also corresponds to the active area of the ENMC), to allow for the effect of the

light attenuation down the sheets of plastic to be accounted for in the measurements.

The width of the test unit was 15.24 cm, which was selected based on the simulated

slab configuration, shown in Figure 4-5, and conversations with the vendor. The

assembled test unit (in a support structure) is shown in Figure 4-6. The outside of the

unit was wrapped with Teflon tape to minimize light loss (as can be seen in Figure 4-6).

Several light guide thicknesses were tested to determine which produced the optimal

measured performance. The full system simulations indicated that the best

performance would be achieved with 0.70-cm thick light guides based on the neutron

capture, but measurements were also made with 0.50-cm and 0.90-cm thick sheets.

Page 91: By AZAREE T. LINTEREUR

91

The three light guide thicknesses were measured to establish the impact of the light

guide thickness on the efficiency of the system, due to changes in light collection.

Figure 4-6. Bench-top test unit assembled on a support structure with two PMTs and no tapered light guides (photo taken by the author).

Measurements were made with a single PMT, and with one PMT on each end of

the unit so a simultaneous trigger could be required for a signal to be recorded. The

measurements were performed both with and without the use of tapered light guides

between the detector and the PMT(s). The base of the tapered light guides matched

the dimensions of the ends of the configured unit (with the 0.7-cm thick plastic sheets)

and were tapered (based on a design selected by Eljen Technology for optimal

efficiency) to match the 5.08-cm diameter PMTs. The tapered light guides added length

and expense to the test unit, but increased the number of photons detected by the PMT,

as discussed in Chapter 5. These competing factors were considered during the

measurements. The test unit with the tapered light guides attached is shown in Figure

4-7. Due to the visible light sensitive nature of the detectors, the measurements were

made with the system wrapped in closed cell neoprene inside of a light tight box. Light

leaks were eliminated prior to any measurements, and the system was allowed a

Page 92: By AZAREE T. LINTEREUR

92

minimum of 24 hours settling time after an exposure to room light before measurements

were performed.

Figure 4-7. Test unit with a tapered light guide attached (photo taken by the author).

Data Acquisition

The photomultiplier tubes used to collect the signals were selected for a fast

response and high sensitivity to blue and green wavelengths. The measurements with

the test unit were made with negatively biased H1161 PMTs (manufactured by

Hamamatsu). The PMTs were gain matched for the dual PMT measurements. The

signals produced by the PMTs were digitized, to preserve the waveforms. The initial

testing utilized a XIA (Hayward, CA) Pixie-500 for the digitization of the pulses [52]. The

trace length was set to 4 µs (with a 1- µs offset to establish a baseline) to collect the

entire digitized neutron pulse. The neutron pulse tails extended beyond the 4 µs

window but the remaining signal was too low to trigger a new pulse and the additional

charge wasn’t necessary for PSD. The digitization rate of the Pixie-500 is 500 MHz, so

each bin of the digitized trace was 2-ns in duration. All of the traces collected were

stored for post-processing. The software used for the data collection was IGORPro

Page 93: By AZAREE T. LINTEREUR

93

V6.2 (WaveMetrics, Lake Oswego, OR). Because the traces were analyzed separately

from the data collection the filter capabilities and analysis methods of the Pixie-500 (as

applied by IGORPro) were not utilized. Although the filter settings were not relevant for

the trace analysis they can affect the how the trigger is applied; therefore, the settings

were selected to pass as many of the trigger pulses through the filter settings to the

output (produce the closest input and output rates) as possible. The Pixie-500 trigger

corresponds to one quarter of the digitized trace maximum amplitude (for example, if

the trigger is set at 25, any pulse amplitude greater than 100 will pass the trigger), in

ADC units [53]; but if the filter rise time is considerably longer than the pulse rise time

the trigger response will not be consistent. A low threshold (5 ADC units) was selected

for all of the measurements to maximize the recorded signal. A software threshold was

set during the post processing to determine the effect of raising the threshold on both

the gamma ray and neutron detection efficiency.

The Pixie-500 stores the digitized traces in a buffer, and when the buffer is full, it is

written to the output file. The dead time incurred with the digitization process is due to

the time required to write the traces. Several buffer options are available with the Pixie-

500. All of the measurements were performed with a 16/16 (or continuous) buffer. The

16/16 buffer minimizes dead time by storing traces while the buffer is being written out.

However, in the software version of IGORPro used for the data collection there are

instances where buffers will be written twice; this is a known problem, but as of yet is

unaddressed. Therefore the double buffer possibility was accounted for (by eliminating

identical buffers) in the post processing of the traces.

Page 94: By AZAREE T. LINTEREUR

94

Pulse Shape Discrimination

The digitized traces were analyzed to distinguish between the signals produced in

response to gamma rays and the signals produced in response to neutrons. All of the

data analysis for this work was performed with MATLAB® (2011b, The MathWorks,

Natick, MA). For the initial bench-top configuration, the PSD was performed with a

standard two-window technique. The PSD compared the area under the tail of the

pulse to the area under the entire pulse (Figure 4-8). The area in the two regions was

calculated by integrating the trace over specified regions of interest.

Figure 4-8. Neutron (a) and gamma ray (b) digitized traces illustrating the regions of charge integration for the PSD methodology applied. The entire pulse was integrated from arrow 1 to arrow 3 and the tail of the pulse from arrow 2 to arrow 3.

The integral ratios calculated from the traces were binned into histograms to

determine the neutron and gamma ray count rates, as shown in Figure 4-9. Note that

the data for Figure 4-9 and Figure 4-10 was collected with a neutron (252Cf) source and

a gamma ray (60Co) source measured simultaneously. The neutron source was

centered above the detector and the gamma ray source was located 10-cm from the

Page 95: By AZAREE T. LINTEREUR

95

PMT (or 25.56-cm closer to the PMT than the neutron source). The gamma ray source

was positioned closer to the PMT to obtain approximately equal neutron and gamma ray

regions in the PSD histogram.

Figure 4-9. Histogram illustrating the charge ratio region from the 60Co gamma ray traces and the 252Cf neutron traces.

A large separation region and clear distinction between the neutron and gamma

ray portions of the histogram is imperative for gamma ray discrimination. A standard

FOM for the separation between two regions that can be approximated by Gaussians is

calculated by [54] (Figure 4-10):

raygammaneutron

SFOM

_

Equation 4- 1

Page 96: By AZAREE T. LINTEREUR

96

where S is the distance between the center of the neutron region and the gamma ray

region, and δ is the full-width-half-maximum of each of the regions (as shown in Figure

4-10).

The minimum FOM for adequate PSD is 1.27 (as can be calculated by requiring greater

than 3σ separation between the Gaussians) [21].

The two window PSD technique is relatively easy to implement, and can be

performed quickly, but can be inadequate for data trains with piled-up pulses (i.e.,

distinguishing between a neutron and two piled up gamma rays can be challenging for

the two window PSD method). Methods of PSD that rely upon filtering the data through

various templates are possible alternatives to the two window PSD technique [55].

However, those methods were not applied to this data.

Figure 4-10. Parameters for a standard FOM calculation illustrating gamma ray and neutron separation.

Page 97: By AZAREE T. LINTEREUR

97

CHAPTER 5 MEASUREMENT RESULTS

The neutron detection efficiency and gamma ray rejection capabilities were

measured with the different test unit configurations. The configurations tested are

summarized in Table 5-1. The first sets of measurements were performed to compare

the neutron detection efficiency and the gamma ray rejection capability between the

PMMA and WLSP (using the 0.7-cm thick light guides). The next set of measurements

compared the neutron detection efficiency between the 0.5, 0.7 and 0.9-cm thick WLSP

sheets. Measurements were then performed with different PMT configurations, and

with the tapered light guides.

Table 5-1. Test unit measurement configuration summary. LG refers to measurements with the tapered light guide (as shown in Figure 4-7).

Light Guide PMT Configuration

PMMA 0.7 cm 1 PMT

WLSP 0.5 cm 1 PMT WLSP 0.7 cm 1 PMT WLSP 0.9 cm 1 PMT PMMA 0.7 cm 2 PMTs WLSP 0.5 cm 2 PMTs WLSP 0.7 cm 2 PMTs WLSP 0.9 cm 2 PMTs WLSP 0.7 cm 1 PMT with LG WLSP 0.7 cm 2 PMTs with LG

Several different sources were used for the measurements with the test unit. The

neutron source measurements were performed with 252Cf; two different 252Cf sources

were used, one with a source strength of 20 ± 3 µCi on December 15, 2003 (source A)

and one with a source strength of 21.9 ± 1.3 µCi on October 1, 2009 (source B). The

gamma ray measurements were performed with 60Co and 137Cs sources. The 60Co

Page 98: By AZAREE T. LINTEREUR

98

source had a strength of 9.4 ± 1.4 µCi on June 1, 2003, and the 137Cs source was 10 ±

1.5 mCi on October 1, 1996.

The top of the detector (the top piece of light guide) was 3.8 cm from the top of the

detector holder when the 0.5-cm thick light guides were used. The source was raised

for the measurements with the thicker light guides to preserve the source to detector

distance.

Neutron Measurements

The first set of neutron measurements were made with the 0.7-cm thick PMMA. A

single PMT was coupled directly to the end of the detector with a silicon rubber pad.

Data were collected with the source located in three different positions (1, 2, and 3 as

shown in Figure 5-1). The neutron and gamma ray count rates were calculated by

integrating the neutron and gamma ray regions of the charge ratio histograms

generated with the traces collected for each measurement (as discussed in Chapter 4).

The integrated regions, for all the traces, were channel 0 – 300 for the entire trace and

channel 15 – 300 for the tail of the trace, corresponding to 0 – 600 ns and 30 – 600 ns

respectively (it should be noted that similar PSD results were obtained with regions

extending to 400 ns). The length of the window for the tail pulse was selected based on

the width of the gamma ray pulses. As can be seen in Figure 5-2, a comparison of a

neutron and gamma ray pulse illustrates that the majority of the gamma ray signal

occurs within the first 30 ns, therefore, any charge in the region beyond 30 ns will be the

result of a neutron. Note that the peak heights have been aligned for this figure, not the

trigger location, which accounts for the slight off-set in the pulse rise-times.

Page 99: By AZAREE T. LINTEREUR

99

Figure 5-1. Horizontal source positions for the bench-top test unit measurements.

Figure 5-2. Example gamma ray and neutron traces recoded with the Pixie-500, with peak heights aligned, zoomed in on the x-axis to show detail.

The PMMA measurements were compared to the measurements for the same

configuration built with the 0.7–cm thick WLSP; the histograms obtained from the two

systems with the 252Cf centered on the detector (position 3) are shown in Figure 5-3.

Measurements were made with and without lead shielding around the source to

minimize the any gamma ray signal. It was found that the gamma ray contribution from

the 252Cf source was negligible even without shielding, as is evident in the minimal

Page 100: By AZAREE T. LINTEREUR

100

signal in the charge ratio histogram below approximately 0.4 (the region where the

gamma ray contribution would have been apparent) in Figure 5-3.

Figure 5-3. Charge ratio histogram of the traces collected with the 0.7-cm thick WLSP and the 0.7-cm thick PMMA in response to a 252Cf source centered on the detector.

The neutron and gamma ray count rates for the measurements were estimated by

integrating over the gamma ray and neutron regions for the charge ratio histograms (0

to 0.5 for the gamma ray region and 0.5 to 1 for the neutron region). A summary of the

measurement results (both the neutron and gamma ray count rates) with the 0.7-cm

thick light guides is presented in Table 5-2. Also presented in Table 5-2 are the

absolute neutron detection efficiency estimates, which were calculated for each of the

different configurations (the source strength on the dates of the measurements with the

PMMA and the 0.7-cm thick WLSP was 8.0x103 ± 1.2x103 n/s). The statistical errors

associated with the measurements are shown in all of the tables, but error bars are not

included on any of the figures for clarity (and for most of the histogram regions of

Page 101: By AZAREE T. LINTEREUR

101

interest the error associated with each bar is too small to be observed). Note that for

the absolute neutron detection efficiency measurements the error was dominated by the

source uncertainty. The PMMA neutron detection efficiency demonstrated a higher

dependence upon source location than the WLSP measurements. The superior light

transmission properties of the WLSP compared to the PMMA produce a system that is

less dependent on source position. The highest neutron detection efficiency measured

with the WLSP was with the source in the center location, as the WLSP was able to

benefit from the increased neutron interaction area. Unlike the WLSP, the PMMA

configuration had higher absolute neutron detection efficiency when the source was

positioned closer to the PMT compared to when the source was centered over the

detector. The greater neutron detection efficiency dependence on the source position

of the PMMA system than the WLSP system is due to greater light attenuation with the

PMMA light guides than with the WLSP light guides.

Table 5-2. Results from the 252Cf measurements with the 0.7-cm thick PMMA and WLSP with a single PMT coupled directly to the end of the detector. The source position is given in parenthesis for each of the measurements (corresponding to the source locations marked in Figure 5-1).

Measurement Configuration

Neutron Count Rate (cps)

Gamma Ray Count Rate (cps)

Absolute Neutron Detection Efficiency

PMMA (BG) 1.00 ± 0.04 5.30 ± 0.09 N/A PMMA 252Cf (1) 161.2 ± 0.5 22.7 ± 0.2 0.020 ± 0.003 PMMA 252Cf (2) 126.6 ± 0.5 22.6 ± 0.2 0.016 ± 0.002 PMMA 252Cf (3) 84.0 ± 0.4 17.8 ± 0.2 0.010 ± 0.002

WLSP (BG) 2.60 ± 0.05 13.5 ± 0.1 N/A WLSP 252Cf (1) 268.5 ± 0.6 33.0 ± 0.2 0.033 ± 0.005 WLSP 252Cf (2) 321.6 ± 0.6 36.2 ± 0.2 0.040 ± 0.006 WLSP 252Cf (3) 264.2 ± 0.5 32.1 ± 0.2 0.033 ± 0.005

The second set of measurements was made with the same detector configurations

(0.7-cm thick PMMA and WLSP) and two PMTs (one on each end, both coupled to the

Page 102: By AZAREE T. LINTEREUR

102

detector surface with a silicon rubber pad). Each PMT was connected to a separate

input channel of the Pixie-500 (both set with the same trigger and energy filter settings).

The Pixie-500 was configured such that output traces were recorded only if both PMTs

were triggered within 13.33 ns of each other (13.33 ns is the smallest window that can

be set for coincidences between channels in the Pixie-500, the user specified

coincidence window time is added to a preset (by Igor Pro) processing time of 66 ns). It

should be noted that for these measurements coincidence refers to a temporal

coincidence between two PMTs, not a temporal coincidence between two neutrons.

The coincident measurements slightly decreased the neutron detection efficiency, but

resulted in a greater suppression of the gamma ray response, as the lower intensity

gamma ray signal is less likely to be detected by both PMTs than the neutron signal.

The comparison between the single PMT and the coincident PMT measurements for the

PMMA and WLSP detector configurations are shown in Figure 5-4 and Figure 5-5. The

PMMA configuration suffered from a greater reduction in the recorded neutron count

rate when operated in coincidence mode than did the WLSP configuration. As

discussed in Chapter 4, the WLSP has better light transmission than the PMMA, which

is also evident in the higher source position dependence of the neutron detection

efficiency observed with the PMMA configuration (Table 5-2). Therefore, there is a

lower probability of obtaining a signal at both PMTs from a single neutron capture in the

6LiF/ZnS when the light guide is PMMA than when the light guide is WLSP. The

neutron and gamma ray count rates for the coincident measurements for both systems

are compared in Table 5-3. Note the suppression of the count rate in the gamma ray

regions for the coincident configuration. The results indicate that a coincident

Page 103: By AZAREE T. LINTEREUR

103

measurement technique may be a method for suppressing the gamma ray count rate

from samples that produce a large number of gamma rays.

Figure 5-4. Charge ratio histogram of the traces collected with a 252Cf source in the center of the detector (position 2) constructed with the 0.7-cm thick PMMA and a single PMT (green) and with two PMTs in coincidence (red).

Table 5-3. PMMA and WLSP coincident PMT measurement results with a 252Cf source centered on the detector (position 2, as marked in Figure 5-1). The error reported is statistical.

Measurement Configuration

Neutron Count Rate (cps)

Gamma Ray Count Rate (cps)

Absolute Neutron Detection Efficiency

PMMA (BG) 0.30 ± 0.02 0.2 ± 0.01 N/A PMMA 252Cf (2) 36.2 ± 0.3 7.0 ± 0.2 0.0044 ± 0.0006

WLSP (BG) 1.90 ± 0.05 7.4 ± 0.09 N/A WLSP 252Cf (2) 270.8 ± 2.3 23.6 ± 0.7 0.034 ± 0.005

Page 104: By AZAREE T. LINTEREUR

104

Figure 5-5. Charge ratio histogram of the traces collected with a 252Cf source positioned in the center of the detector (position 2) constructed with the 0.7-cm thick WLSP and a single PMT (blue) and with two PMTs in coincidence (red).

A series of comparison measurements was performed with the 0.5-cm, 0.7-cm and

0.9-cm thick WLSP sheets. The thinner sheets of WLSP have less volume in which the

gamma rays can interact, improving the gamma ray rejection capabilities of the system,

but the thinner sheets also lose more light, decreasing the neutron detection efficiency.

The WLSP sheets do not suffer from the same rate of light loss as the PMMA sheets,

but the thinner sheets still demonstrate lower neutron detection efficiency than the

thicker sheets. It should also be noted that the thinner sheets provide less source

moderation than the thicker sheets. The lower source moderation results in a lower

simulated die-away time; but to determine the optimal configuration the decrease in die-

away time must be balanced against the decrease in neutron detection efficiency. The

comparison of the neutron and gamma ray count rates, and the absolute neutron

detection efficiencies, for the three different WLSP light guide thicknesses is shown in

Page 105: By AZAREE T. LINTEREUR

105

Table 5-4. The measurements with the 0.9-cm thick WLSP sheets were made at a later

date than the measurements with the 0.5-cm and 0.7-cm thick WLSP sheets. Therefore

the source activity at the time of the 0.9-cm measurements was lower than with the

other two WLSP thicknesses (on the dates of the measurements with the 0.5-cm and

0.7-cm thick WLSP the source strength was 8.0x103 ± 1.2x103 n/s and on the dates of

the measurements with the 0.9-cm thick WLSP the source strength was 5.5x103 ±

8.3x102 n/s). The lower source activity for the 0.9-cm WLSP measurements accounts

for the similar count rates reported between the 0.7-cm and 0.9-cm WLSP sheets, but

the higher neutron detection efficiency with the 0.9-cm thick WLSP.

Table 5-4. Measurement summary for a single PMT coupled directly to the detector with the three different WLSP thicknesses tested. The 252Cf measurements were with the source centered over the detector (position 2 in Figure 5-1). The count rate error reported is statistical, the error on the absolute neutron detection efficiency is dominated by the source uncertainty.

Measurement Configuration

Neutron Count Rate (cps)

Gamma Ray Count Rate (cps)

Absolute Neutron Detection Efficiency

WLSP 0.5 cm BG 3.0 ± 0.06 11.0 ± 0.1 N/A WLSP 0.7 cm BG 2.6 ± 0.05 13.5 ± 0.1 N/A WLSP 0.9 cm BG 7.0 ± 0.15 19.1 ± 0.25 N/A

WLSP 0.5 cm 252Cf 259.6 ± 0.5 30.8 ± 0.2 0.032 ± 0.005 WLSP 0.7 cm 252Cf 321.6 ± 0.6 36.2 ± 0.2 0.040 ± 0.006 WLSP 0.9 cm 252Cf 332.0 ± 1.1 39.2 ± 0.37 0.045 ± 0.007

The 0.9-cm thick WLSP light guide produced the highest efficiency of the three

thickness measured. The measured efficiency with the 0.9-cm thick WLSP light guides

was 15% higher than with the 0.7-cm thick WLSP light guides. The increase in

efficiency is due both to the additional neutron moderation and the improved light

transmission. Therefore, the improvement in the neutron detection efficiency with the

0.9-cm thick WLSP light guides is not expected to increase uniformly as the number of

sheets increases and polyethylene is included in the design. The simulations with the

Page 106: By AZAREE T. LINTEREUR

106

entire system predicted an 18% increase in the die-away time with the thicker light

guides. Thus, although the best performance for the bench-top test unit was achieved

with the 0.9-cm thick WLSP, the 0.7-cm thick WLSP was selected for the development

of the complete bench-top unit.

The effect of the tapered light guides on the end of the detector (as shown in

Figure 4-7) was measured with the 0.7-cm thick WLSP. The light guides added a total

of 20-cm of length (10-cm each light guide), increasing the overall size of the system.

The neutron detection efficiency with the use of light guides was improved by 38% for a

single PMT, and 17% for the coincident PMT measurements. The coincident PMT

signal improvement estimate is conservative. The detector configuration was modified

to accommodate the additional length of the dual light guides, and a correction was

applied to the measurements based on comparison measurements between the two

configurations, but the correction was conservatively calculated. Based on these

measurements, the complete bench-top configuration will be designed with the use of

tapered light guides between the detector surface and the PMTs.

Gamma Ray Measurements

The gamma ray measurements were performed with 60Co and 137Cs sources.

High intensity gamma ray measurements were made using the 137Cs source alone and

in conjunction with a 252Cf neutron source to determine the effect of the gamma ray

signal on the neutron detection efficiency. Gamma rays generate fewer photons in ZnS

than the reaction products from a neutron capture in the 6LiF, therefore the pulses are

more likely to be attenuated before being detected by the PMTs. Because of this, the

measurements with the 60Co source demonstrated a stronger change in the recorded

count rate with source position than the neutron source measurements. Due to the

Page 107: By AZAREE T. LINTEREUR

107

positional sensitivity of the gamma ray measurements, requiring a coincident signal

between a PMT at each end of the detector significantly attenuated the gamma ray

response with both the PMMA and the WLSP light guides. The 60Co measurement

results with the 0.7-cm thick PMMA and WLSP are tabulated in

Table 5-5. The false neutron identification rate (rate of gamma rays identified as

neutrons) can be reduced by increasing the threshold, or raising the location of the cut

for the neutron region. However, both of those options for decreasing the false neutron

identification rate come at the expense of decreasing the neutron detection efficiency

(as discussed below).

Table 5-5. PMMA and WLSP (0.7-cm thick) measurement results with a 2.7 µCi 60Co gamma ray source. The source position is shown in parenthesis (corresponding to those marked in Figure 5-1) and the coincidence measurements are marked with a C. The error reported is statistical.

Measurement Configuration

Neutron Count Rate (cps)

Gamma Ray Count Rate (cps)

PMMA (BG) 1.00 ± 0.04 5.30 ± 0.09

PMMA 60Co (1) 1.80 ± 0.04 14.5 ± 1.0

PMMA 60Co (2) 1.20 ± 0.04 7.4 ± 0.9

PMMA 60Co (3) 1.10 ± 0.03 6.4 ± 0.8

PMMA C (BG) 0.30 ± 0.02 0.20 ± 0.01 PMMA C 60Co (3) 0.30 ± 0.02 0.20 ± 0.01

WLSP (BG) 2.10 ± 0.05 6.50 ± 0.08 WLSP 60Co (1) 3.10 ± 0.06 25.6 ± 0.2 WLSP 60Co (2) 2.50 ± 0.05 17.7 ± 0.1 WLSP 60Co (3) 2.40 ± 0.05 16.3 ± 0.1

Coincidence (BG) 2.10 ± 0.05 6.50 ± 0.08 WLSP C 60Co (3) 2.10 ± 0.05 6.00 ± 0.08

High gamma ray count rate measurements were made with a 6.9 mCi ± 1.03 mCi

(on the day of the measurements) 137Cs source and the 0.7-cm thick PMMA and WLSP

light guides to assess the effects of gamma ray pile up on the test unit. Single PMT

measurements suffered from pile up effects (with both the PMMA and WLSP

Page 108: By AZAREE T. LINTEREUR

108

configurations) at a lower gamma ray flux than the coincident PMT measurements. Two

different vertical source positions were used to generate two different incident gamma

ray rates. The percentage of emitted gamma rays incident upon the surface of the

detector for each position was simulated with MCNPX, and the simulated percentages

were used to estimate the incident gamma ray rate on the detector surface. The

estimates for the incident gamma ray rates on the detector surface for the two positions

(on the top of the light tight box and at a height of 34.3 cm) were 5.9x107 γ/s and

8.5x106 γ/s, respectively. It should be noted that a better performance prediction could

be obtained with a more uniform gamma ray exposure. Testing limitations prevented

the bench-top test unit from being measured under a uniform gamma ray flux; however,

that is a measurement that will be made with the complete bench-top unit. As can be

seen in Figure 5-6 for the system with PMMA light guides, and Figure 5-7 for the system

with WLSP light guides, there is a high rate of gamma ray misidentifications when

measurements are made with one PMT. For the WLSP the gamma rays are piled up to

a degree (as shown in Figure 5-7) that the two window PSD technique identifies the

majority of the traces as neutrons. Example traces from the measurements with the

WLSP and a single PMT are shown in Figure 5-8; it is evident that the large number of

pulses in the trace will produce a tail charge greater than zero, even if the triggering

pulse was the result of a gamma ray interaction. Therefore, the charge ratio histograms

will not be an effective technique for distinguishing neutron pulses from gamma ray

pulses under high count rate conditions. However, as was seen with the 60Co

measurements, the gamma ray signal is largely suppressed for both the WLSP and the

PMMA in coincidence mode (Figure 5-9 and Figure 5-10).

Page 109: By AZAREE T. LINTEREUR

109

Figure 5-6. PMMA (0.7-cm thick) response with a single PMT to a gamma ray flux of 5.9x107 γ/s (blue) and 8.5x106 γ/s (red) (note that the response from a neutron source would be expected between 0.5 and 1 Qtail/Qtotal).

Figure 5-7. WLSP (0.7-cm thick) response with a single PMT to a gamma ray flux of 5.9x107 γ/s (blue) and 8.5x106 γ/s (red) (note that the response from a neutron source would be expected between 0.5 and 1 on the x-axis). Note the difference in the vertical scale between the PMMA and the WLSP.

Page 110: By AZAREE T. LINTEREUR

110

Figure 5-8. Trace examples showing the system response to a high gamma ray rate.

Figure 5-9. PMMA (0.7-cm thick) response to a gamma ray flux of 5.9x107 γ/s with a single PMT (blue) and with two PMTs in coincidence (red) (note that the coincident response is too low to be seen on this scale).

Page 111: By AZAREE T. LINTEREUR

111

Figure 5-10. WLSP (0.7-cm thick) response to a gamma ray flux of 5.9x107 γ/s with a single PMT (blue) and with two PMTs in coincidence (red).

In addition to the137Cs only measurements, data was collected with the detector

configurations simultaneously exposed to the 137Cs source and a 252Cf source. These

measurements were used to determine the PSD capabilities of the detector in the

presence of both gamma rays and neutrons. The 252Cf source used for these

measurements was source B (9.4 ± 0.6 µCi on the dates the measurements were

performed). A distinct gamma ray and neutron region are visible with the PMMA light

guide configurations for measurements made with an incident gamma ray flux of

5.9x107 γ/s and one PMT; however, there is clearly a large component of the gamma

ray signal in the neutron region (Figure 5-11). The PSD FOM for this configuration is

0.85, less than what is required for basic PSD (which is 1.27). The PSD FOM obtained

with an incident gamma ray flux of 8.5x106 γ/s is 2.08; while this level of PSD is

adequate for most applications the stringent accuracy requirements for multiplicity

Page 112: By AZAREE T. LINTEREUR

112

counting require not only an adequate PSD FOM but also consideration of any potential

misidentified gamma rays. As can be seen in Table 5-6, there is a 5% higher neutron

count rate with a gamma ray flux of 8.5x106 γ/s than what is measured with the same

neutron source and no gamma ray source (besides background), and a 226% higher

neutron count rate when the incident gamma ray flux is 5.9x107 γ/s. The neutron

detection rate with two PMTs in coincidence and an incident gamma ray flux of 5.9x107

γ/s and 8.5x106 γ/s is 2% and 9% lower, respectively, than without the 137Cs source

present. These changes in the neutron count rate are higher than what would be

acceptable for assays requiring 1% measurement accuracy. Assay measurements with

the complete system will require that additional gamma ray suppression techniques be

implemented.

Figure 5-11. Charge ratio histograms with the 0.7-cm thick PMMA and a single PMT in response to a 252Cf source (4.0x104 n/s) and an incident gamma ray flux of 5.9x107 γ/s (blue) and 8.5x106 γ/s (red).

Page 113: By AZAREE T. LINTEREUR

113

Figure 5-12. Charge ratio histograms with the 0.7-cm thick PMMA and two PMTs in coincidence in response to a 252Cf source (4.0x104 n/s) and an incident gamma ray flux of 5.9x107 γ/s (blue) and 8.5x106 γ/s (red). Note that the y-axis has been scaled down compared to the other PMMA images to show histogram detail.

Measurements with the WLSP and the incident gamma ray flux of 5.9x107 γ/s and

the 252Cf neutron source were not performed due to dead-time issues with the detector.

For this system, the gamma ray and neutron measurements were limited to those with

an incident gamma ray flux of 8.5x106 γ/s, as shown in Figure 5-13. The PSD FOM with

the single PMT was 1.4. Note that the PSD FOM was not calculated for any of the

coincident measurements as there was no clear gamma ray region. The measured

neutron count rate was 9% higher with the gamma ray source present and a single PMT

system, than without the gamma ray source. The increase in the neutron count rate is

due to gamma ray traces being identified as neutrons. For the coincident PMT

measurements the neutron count rate was 5% lower with the gamma ray source than

without. The decrease in the neutron detection efficiency, even with the gamma ray

Page 114: By AZAREE T. LINTEREUR

114

signal suppressed by the coincident signal requirement, was due to the increase in the

dead-time of the system produced by the time required to process the incoming signals

for the required trigger pattern (a coincident pattern). As with the PMMA configuration,

the changes in the neutron detection efficiency in the presence of gamma rays are

higher than what would be acceptable for the high precision assay measurements

required for material accountancy. The performance of the two systems is compared in

Table 5-6. It should be noted that the detector electronics suffered from large dead-time

rates (greater than 50%) for all of these experimental measurements. This is primarily

due to the data acquisition process for these experiments, where the signal is digitized,

and saved for post-analysis. For a full scale system, the pulse processing would need

to be performed in real-time, and therefore the dead-time would be much smaller (not

saving each digitized pulse). The dead-time could be reduced by increasing the trigger

threshold during data acquisition, but that would result in a decrease in the neutron

detection efficiency. The required gamma ray discrimination rate must be determined

based on the effect on assay precision, and the threshold set accordingly. The gamma

ray misidentification rate on the assay precision is considered in Chapter 6.

Page 115: By AZAREE T. LINTEREUR

115

Figure 5-13. Charge ratio histograms with the 0.7-cm thick WLSP and a single PMT in response to a 252Cf source (4.0x104 n/s) and an incident gamma ray flux of 8.5x106 with a single PMT (blue) and with two PMTs in coincidence (red).

Page 116: By AZAREE T. LINTEREUR

116

Table 5-6. Measurement summary with the 0.7-cm thick PMMA and 0.7-cm thick WLSP. Coincident measurements are marked with a “C”, the “H” in parenthesis indicates an incident gamma ray rate of 5.9x107 γ/s and the “L” in parenthesis indicates an incident gamma ray rate of 8.5x106 γ/s. In all cases the source was centered above the detector. The error reported is statistical.

Measurement Configuration

Neutron Count Rate (cps)

Gamma Ray Count Rate (cps)

Gamma Ray Discrimination

PMMA (BG) 1.0 ± 0.04 3.7 ± 0.08 N/A WLSP (BG) 2.8 ± 0.06 13.5 ± 0.15 N/A

PMMA C (BG) 0.3 ± 0.02 0.2 ± 0.02 N/A WLSP C (BG) 2.0 ± 0.06 5.8 ± 0.1 N/A

PMMA 137Cs (H) 653.3 ± 7.1 2786.5 ± 14.6 1.1x10-5 ± 1.2x10-7

PMMA 137Cs (L) 31.4 ± 0.7 352.5 ± 2.5 3.7x10-6 ± 8.8x10-8

WLSP 137Cs (H) 10721.0 ± 53.0 1459.0 ± 19.6 1.8x10-4 ± 9.0x10-7

WLSP 137Cs (L) 404.0 ± 4.9 2323.0 ± 11.7 4.8x10-5 ± 5.8x10-7

PMMA C 137Cs (H) 0.5 ± 0.09 1.2 ± 0.14 8.4x10-9 ± 1.5x10-9

WLSP C 137Cs (H) 584.1 ± 7.9 548.6 ± 7.7 9.8x10-6 ± 1.3x10-7

Gamma Ray and Neutron

Configuration *εabs, **εabs,γ/εabs

PMMA 252Cf, 137Cs (H) 1403.7 ± 11.3 2797.2 ± 15.9 **2.26 ± 0.02 PMMA 252Cf, 137Cs (L) 652.0 ± 4.0 396.5 ± 3.1 **1.05 ± 0.01 WLSP 252Cf, 137Cs (L) 1732.0 ± 12.1 2176.2 ± 13.6 **1.09 ± 0.01

PMMA C 252Cf, 137Cs (H) 210.3 ± 2.1 55.7 ± 1.1 **0.91 ± 0.01 PMMA C 252Cf, 137Cs (L) 224.7 ± 2.1 42.9 ± 0.9 **0.98 ± 0.01 WLSP C 252Cf, 137Cs (L) 1152.5 ± 8.0 65.0 ± 1.9 **0.95 ± 0.01

PMMA 252Cf 622.2 ± 3.6 73.2 ±1.2 *1.5x10-2 ± 1.2x10-4

PMMA C 252Cf 230.2 ± 2.2 38.5 ± 0.9 *5.7x10-3 ± 6.1x10-5

WLSP 252Cf 1592.4 ± 7.6 79.7 ± 1.7 *4.0x10-2 ± 2.7x10-4

WLSP C 252Cf 1217.0 ± 8.3 51.7 ± 1.7 *3.0x10-2 ± 2.6x10-4

Trace Variations

In addition to the pulses shown in Figure 5-2, a third class of traces was recorded

(with all of the systems measured). These traces had a less definitive shape than the

standard neutron pulses, and exhibited less decrease in amplitude over the trace

length, as can be seen in Figure 5-14 (note the similarity to the traces with the piled up

gamma rays shown in Figure 5-8). The traces were generated in response to the

neutron source (they were evident in an intensity proportional to the source strength

Page 117: By AZAREE T. LINTEREUR

117

when compared to background measurements); however, they do not appear to be

complete traces. The quantized packets in the absence of a clear neutron envelope,

illustrated in Figure 5-14, minimize the ability of the dual window PSD technique to

separate between the traces generated in response to a neutron and those generated in

response to multiple gamma rays.

Figure 5-14. Example of the two neutron trace types collected with all of the systems measured. The red trace contains less charge and does not have as well defined shape as the blue trace.

Measurements were performed3 to eliminate variations in the light emission of the

ZnS over the trace collection period on the shape of the traces recorded. A 6LiF/ZnS

sample was excited with a laser and the emission spectrum was measured as a

function of time (over a duration of 3 ms). Figure 5-15 demonstrates that the spectral

3 These measurements were performed by Dr. Wang using EMSL, a national scientific user facility

sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory.

Page 118: By AZAREE T. LINTEREUR

118

shape of the ZnS light emission does not change with time after excitation. The

uniformity of the emission over time indicates that the PMT response will not be

affected, regardless of the section of pulse detected, and does not account for the

difference in the shape of the recorded traces.

Figure 5-15. Emission spectrum of the 6LiF/ZnS sheets from the time of excitation to 3.0 ms in 0.27 ms steps.

The potential effect of the polyester support sheets on the emission spectrum of

the ZnS was investigated by measuring the emission spectrum with and without the

polyester film present. The 6LiF/ZnS sheets were excited with a laser, at three different

wavelengths, both with and without the polyester substrate present. The resulting

emission spectra (observed from the same side as excited by the laser) demonstrated a

decrease in intensity of the output on the side with the polyester compared to the side

Page 119: By AZAREE T. LINTEREUR

119

without the polyester (although the shape of the emission spectra was similar). The

decrease was much more pronounced with the shorter excitation wavelengths. The

difference in the intensity of the emission spectra between the sample side with

polyester and the sample side without polyester, as a function of the excitation

wavelength, indicates the lower intensity of the polyester side emission is primarily due

to the attenuation of the exciting laser, not the attenuation of the emission spectrum (as

the emission spectrum does not change with the energy of the excitation laser) (Figure

5-16). The emission spectrum of the 6LiF/ZnS sheets (as reported by Eljen Technology,

Sweetwater, TX), as was shown in Figure 4-3, illustrates that the maximum emission

occurs at ~450 nm. Therefore, as the most significant attenuation of the laser occurred

when the wavelength was below 350 nm, the light generated by the sheets will only be

minimally affected by the polyester backing.

The elimination of both time variance of the ZnS emission and the effect of the

polyester substrate on the wavelengths of interest (the emission wavelengths) indicate

that the pulses without the clear neutron structure are due to either the light collection

properties of the system or the ZnS emission itself. A CsI scintillator was tested with the

Pixie-500 system, and pulses without a distinct neutron envelope were not observed.

Therefore, it is unlikely that the electronics are introducing artifacts into the signal.

Page 120: By AZAREE T. LINTEREUR

120

(a)

(b)

(c)

Figure 5-16. Emission spectra from the 6LiF/ZnS without the polyester interface (left) and from the polyester coated 6LiF/ZnS (right) for three different excitation wavelengths: 380 nm (a) 342 nm (b) and 300 nm (c).

Page 121: By AZAREE T. LINTEREUR

121

Model Validation

One of the primary functions of the bench-top test unit was to determine the

validation correction factor (VCF) for a system with sheets for light guides, not fibers (as

was in the IAT system that was used for the initial VCF used in the full system

simulations). The VCF for the sheet configuration, once determined with the test bench-

top unit, could be applied to the full system simulations to obtain a more accurate

performance estimate for each of the potential configurations. To calculate the VCF a

model of the bench-top unit was constructed, and the simulated results compared to the

measured results. The measured neutron detection efficiencies for several

configurations were compared to the simulated neutron detection efficiencies, producing

the VCFs shown in Table 5-7.

The same simulation methodology as was utilized for the full system simulations

was applied to the bench-top unit simulations. The number of neutron captures in the

6LiF was tallied (using a F4 capture tally), but the reaction products were not tracked,

nor was the light propagation followed down the light guides. The bench-top model

(Figure 5-17) included the complete bench-top system (six sheets of a plastic light

guide, and five sheets 6LiF/ZnS supported on polyester sheets), the plastic support

system, the light-tight box, and the table upon which the unit was positioned. The rest

of the room components were far from the detector, and the contributions to the

simulated results considered negligible. Each of the three light guide thicknesses

measured (0.5 cm, 0.7 cm and 0.9 cm) were simulated.

Page 122: By AZAREE T. LINTEREUR

122

Figure 5-17. Simulated bench-top detector inside the light tight box (top views) and shown with components labeled in the cross-section view (bottom).

Table 5-7. Validation correction factors for the different bench-top test units measured. All of the VCFs presented are for measurements and simulations with the 252Cf source centered on the light-tight box, the coincident measurements are noted by “Coin.”. The error reported is dominated by the source uncertainty.

Measurement Configuration VCF

IAT Reference System 0.57 ± 0.04 PMMA 0.7 cm 0.42 ± 0.06

PMMA Coin. 0.7 cm 0.12 ± 0.02 WLSP 0.5 cm 0.98 ± 0.15

WLSP Coin. 0.5 cm 0.78 ± 0.12 WLSP 0.7 cm 1.07 ± 0.16

WLSP Coin. 0.7 cm 0.90 ± 0.14 WLSP 0.9 cm 1.07 ± 0.17

WLSP Coin. 0.9 cm 0.92 ± 0.14

The validation correction factors greater than one indicate that either the chemistry

of the 6LiF/ZnS sheets doesn’t contain enough 6Li, or gamma rays are being

misidentified as neutrons in the measured results. As was discussed in Chapter 3, the

composition of the 6LiF/ZnS sheets was simulated based on the vendor supplied

6LiF/ZnS ratio (1:2), 6Li atom density, and previously reported binder compositions.

Page 123: By AZAREE T. LINTEREUR

123

However, the 6LiF/ZnS sheets used to construct the bench-top test unit consisted of a

custom proprietary blend. Inaccuracies in the modeled 6LiF/ZnS composition, and the

binder quantity, would clearly impact the simulated results. Future measurements will

be performed to obtain a more accurate estimate of the atom densities in the 6LiF/ZnS

sheets. The current VCFs for the bench-top test unit suggest that the simulated results

are under-predicting the efficiency that can be achieved with the 6LiF/ZnS sheets

manufactured by Eljen Technology. The same results (within statistics) were obtained

with a lead shielded 252Cf source, which indicates that the discrepancy is not solely due

to gamma rays being categorized as neutrons during post analysis PSD. However, the

effect of gamma rays on the measured results is considered further in Chapter 6. The

VCFs will be recalculated with the complete bench-top system; the test unit VCFs

indicate that the performance that can be achieved with a 6LiF/ZnS based multiplicity

counter will be better than predicted.

Post processing pulse height thresholds can be implemented to improve the

gamma ray rejection capabilities of the system. However, the improvement in gamma

ray rejection comes at the expense of the neutron detection capability. This can clearly

be illustrated by comparing the calculated VCF with the gamma ray rejection capability

of the bench-top test unit for different post processing pulse height thresholds. A

comparison is shown in Figure 5-18 for the 0.7-cm thick WLSP light guide configuration

operated in coincidence mode (temporal coincidence between two PMTs).

Page 124: By AZAREE T. LINTEREUR

124

Figure 5-18. Gamma ray rejection and VCF for different pulse height thresholds applied to the 252Cf and 137Cs coincidence measurements with the 0.7-cm thick WLSP light guides.

The necessary gamma ray rejection for high precision assay measurements is

considered in Chapter 6. The required gamma ray rejection will determine the

appropriate VCF to apply to the full system simulations.

Based on the measurement results of the four systems constructed, the highest

neutron detection efficiency was achieved with the 0.9-cm thick WLSP. The system

constructed with the PMMA produced the best gamma ray discrimination, as PMMA

does not scintillate in response to gamma rays, unlike WLSP. However, the lower

neutron detection efficiency of this system eliminated it as the optimal option for the

complete bench-top system configuration. The final choice for the complete bench-top

system, considering the neutron detection efficiency, the gamma ray rejection capability,

Page 125: By AZAREE T. LINTEREUR

125

and the simulated die-away time, was the 0.7-cm thick WLSP sheets. The simulations

of the complete system demonstrated an increase in the die-away time with the 0.9-cm

thick WLSP light guides that would not be compensated for in the FOM by the increase

in efficiency if it is not linear. Further, the improvement due to the increased moderation

will be diminished with the addition of polyethylene in the final system design.

Page 126: By AZAREE T. LINTEREUR

126

CHAPTER 6 THEORETICAL CONSIDERATIONS: GAMMA RAY EFFECTS

Neutrons and gamma rays can both be emitted by isotopes that decay via fission.

The 3He neutron detectors used in traditional multiplicity counters are sensitive only to

neutrons except at high gamma ray doses. The lack of gamma ray sensitivity allows the

unknown sample parameters to be extracted based on the neutron multiplicity

moments, as was shown in Chapter 2. However, not all of the 3He alternative detectors

considered for use in multiplicity counters are capable of the same level of gamma ray

rejection that can be achieved with 3He. As was seen in Chapter 5, the 6LiF/ZnS bench-

top test unit will produce a signal in response to gamma rays. The gamma ray signal

can be minimized with a pulse height threshold during the PSD post processing. A

pulse height threshold will decrease the gamma ray sensitivity and the number of

misidentified gamma rays, but it will also decrease the neutron detection efficiency,

which will affect the statistics on the recorded singles, doubles and triples and thus

decrease the accuracy of the measurement. The effect of gamma ray detections on the

singles, doubles and triples can be determined by modifying the equations used to

extract the sample parameters such that they account for potential gamma ray

contributions. The change in the calculated assay variables (F, M and α are considered

here, although the unknown parameters could be any three of the assay variables) for

different gamma ray sensitivities is one of the factors to consider when selecting a pulse

height threshold.

The gamma ray sensitivity is likely to be low in the detectors selected for use in

neutron multiplicity counters, but the assay precision goal is to calculate the sample

mass within 1% in less than 1000 s [5], which could be influenced by even a small

Page 127: By AZAREE T. LINTEREUR

127

contribution from gamma rays in 3He alternative-based counters. The equations

necessary to consider contributions from the neutrons and the gamma rays are shown

below.

Neutron Moments

The formulas used to extract the sample parameters from the measured

distributions were discussed in Chapter 2, and will be briefly revisited here. The

measured foreground and background distributions (fk and bk) can be related to the

unknown sample parameters. The unknown sample parameters can be related to the

emitted neutron multiplicity distribution, which when corrected for detector parameters

can be used to extract information about the sample being assayed. For the purposes

of these equations, all of the moments are expressed in terms of the source event rate,

with the inclusion of (α,n) reactions.

The singles, doubles, and triples for a detector that is only sensitive to neutrons

were given in Chapter 2 as [6]:

)1(1 SfnMFU

Equation 6- 1

))1(1

1(

212

1

2

22

sfi

i

Sfn

d MM

FfD

Equation 6- 2

)]1(1

13))1(3(

1

1[

61

2

2

2

1

3122

1

3

33

sfi

i

isfisf

i

Sfn

t MMM

FfT

Equation 6- 3

where νsfk = the factorial moments of the neutrons generated by spontaneous fission event νik = the factorial moments of the neutrons generated by an induced fission event F = the spontaneous fission event rate

Page 128: By AZAREE T. LINTEREUR

128

α = the ratio of (α,n) to spontaneous fission neutrons =

M = the sample multiplication (which accounts for additional neutrons in the

sample due to induced fission) = 11

1

ii

i

p

p

εn = neutron detection efficiency

Note that in these equations the substitutions for the factorial moments of the emitted

probability distribution have been made, and fd and ft represent the double and triple

gate fractions, respectively.

However, if gamma rays are also detected (and trigger the shift register), these

formulas must be modified to include the gamma ray contributions. The additions to

the equations that must be made to account for the correlated gamma ray contributions

can be seen by starting with the basic forms for the singles, doubles, and triples. The

structure of the singles, doubles, and triples equations with only neutron detections

considered are (in terms of the factorial moments of the emitted neutron probability

distribution, νk):

11 nCU

Equation 6- 4

2

2

2 nCD

Equation 6- 5

3

3

3 nCT

Equation 6- 6

where C1, C2, and C3 are simply constants that encompass the source rate, gate

fractions, and normalization factors. Each of the equations will have to be modified

based on the gamma ray efficiency and the moments of the gamma ray distribution (µk),

as follows:

Page 129: By AZAREE T. LINTEREUR

129

)( 111 nCU

Equation 6- 7

)( 2

2

2

2

2 nCD

Equation 6- 8

)( 3

3

3

3

3 nCT

Equation 6- 9

The above equations include neutron and gamma ray contributions; however, they

only account for independent neutron and gamma ray detections. The possibility of

detecting a double event that consists of one neutron and one gamma ray, and the

possibility of detecting a triple event that consists of two neutrons and one gamma ray

or one neutron and two gamma rays must also be considered. The joint moment of the

distribution of neutron and gamma ray quanta that could produce a detection of one

neutron and one gamma ray is represented by jn,γ. The joint moment of the distribution

of neutron and gamma ray quanta that could produce a detection of two neutrons and

one gamma ray is represented by jn,n,γ; similarly the joint moment for one neutron and

two gamma rays is represented by jn,γ,γ. Then the final equations for D and T will have

the form of:

)( ,2

2

2

2

2 nnn jCD

Equation 6- 10

)( ,,

2

,,

2

3

3

3

3

3 nnnnnn jjCT

Equation 6- 11

The gamma ray and joint moments have to be expressed in terms of source

parameters before their effect on the assay results can be determined.

Page 130: By AZAREE T. LINTEREUR

130

Gamma Ray Moments

The factorial moments of the gamma ray distribution can be derived following the

same methodology as was used to derive the neutron moments, and are given by

Pazsit [56]. The source of the terms in the equations can be better illustrated with the

use of a diagram, as was shown in Figure 2-3 to Figure 2-4 for the neutrons. The

diagrams (Figure 6-1 to Figure 6-3) are based on the discussion in Oberer’s Thesis [27],

but here (α,n) reactions are also considered. It is assumed that the gamma rays

themselves do not induce additional gamma rays (the gamma ray chains are non-

multiplying); however, gamma rays will be produced as a result of induced fissions

along the neutron chain. Therefore, the neutron chains must be followed to account for

all of the gamma rays. The gamma ray moments derived by Pazsit [56] are given in

terms of source events. If the sample is not comprised of a pure metal (e.g., the sample

is an oxide) a source event could be either spontaneous fission or an (α,n) reaction.

Therefore, as with the neutron moments, the moments of the gamma ray emission

probability distribution must be weighted to account for the different source events. For

the purposes of this work, only gamma rays produced as a result of either spontaneous

or induced fission are considered. There are other potential sources of gamma rays

that are not considered here. One of the potential sources of gamma rays are those

released simultaneously with alpha emission, the probability associated with this

emission for the isotopes of interest is quite low, and neglected in the following

equations [57]. Gamma rays could also be emitted by the target nucleus if it is left in an

excited state after the (α,n) reaction. This effect could be included as a gamma ray

emission associated with the neutron generated by the (α,n) reaction, but is not included

in this work. Another source of gamma rays that is not accounted for are those emitted

Page 131: By AZAREE T. LINTEREUR

131

as a result of inelastic neutron scatters [27]; the equations are currently limited to source

events, although scattering is an effect that could be considered. Gamma ray

attenuation by the sample itself is not addressed here, but is an additional effect that

could be added.

The same general notation is used for the gamma ray and joint moments as was

used for the moments of the neutron distribution:

νk = the factorial moments of the neutrons generated in a sample

νsfk = the factorial moments of the neutrons generated by spontaneous fission

events

νik = the factorial moments of the neutrons generated by induced fission

events

µsk = the factorial moments of the gamma ray source distribution

µsfk = the factorial moments of the gamma rays generated by spontaneous

fission events

µik = the factorial moments of the gamma rays generated by induced fission

events

S = F + Sα = the total source event rate

F = the spontaneous fission event rate

= the ratio of (α,n) to spontaneous fission neutrons =

pi = the probability that a neutron induces fission within the sample

M = the sample multiplication (which accounts for additional neutrons in the

sample due to induced fission) = 11

1

ii

i

p

p

εn = neutron detection efficiency

εγ = gamma ray detection efficiency

The equation for the first factorial moment of the gamma ray probability distribution

for source events is given as (modified from Pazsit [56]):

1

1)1(

1

11

11

i

iSf

Sfs

M

S

F

S

F

Equation 6- 12

Page 132: By AZAREE T. LINTEREUR

132

The three terms (note that the (1 + α) factor produces two terms) in Equation 6- 12

correspond to the three potential sources of single gamma rays available for detection,

as illustrated in Figure 6-1.

Figure 6-1. Single gamma ray sources for the first factorial moment of the gamma ray probability distribution. The solid lines represent multiplying chains and the dashed lines represent non-multiplying chains. The gray circles represent induced fissions from which a gamma ray is available for detection (which is represented with an open circle).

The second factorial moment of the gamma ray probability distribution is:

)]1

1

1

12(

1

1)1(

1

1

1

12[

2

1

2

12

1

1

2

12

1

1

2

1

2

12

1

1

1122

i

ii

i

iii

i

sf

i

isf

sf

i

iSfSfS

MMMM

M

S

F

S

F

Equation 6- 13

The five source terms in Equation 6- 13 correspond to the five potential origins of

double gamma rays available for detection illustrated in Figure 6-2.

Page 133: By AZAREE T. LINTEREUR

133

Figure 6-2. Double gamma ray sources for the second factorial moment of the gamma ray probability distribution. The solid lines represent multiplying chains and the dashed lines represent non-multiplying lines.

The third factorial moment of the gamma ray probability distribution is:

))]1

1

1

12(

1

1

1

1(3

1

13(

1

1)1()

1

1

1

12

(1

13

1

1))

1

1

1

12

(1

1

1

1(3

1

13[

2

1

2

12

1

1

2

12

1

1

2

1

2

121

1

1123

1

1

2

1

2

12

1

1

2

1

2

2

1

12

3

1

3

13

2

1

2

12

1

1

2

1

2

1

1

2

1

2

121

1

11233

i

ii

i

iii

i

i

i

iii

i

iiii

i

sf

i

ii

i

ii

i

i

isf

i

isf

i

ii

i

ii

i

i

sf

i

isfSf

i

isfSfSfS

MMMM

MMMM

MMMM

MMM

S

F

S

F

Equation 6- 14

The eight source terms in Equation 6- 14 correspond to the eight potential sources

of triple gamma rays available for detection, illustrated in Figure 6-3.

Page 134: By AZAREE T. LINTEREUR

134

Figure 6-3. Triple gamma ray sources for the third factorial moment of the gamma ray probability distribution. The solid lines represent multiplying chains and the dashed lines represent non-multiplying lines.

Joint Distributions

The joint distributions, or the moments for the probability distribution comprised of

neutrons and gamma rays, are also required to fully account for the potential gamma

ray effect. The joint moments were derived by Pazsit [30] and Oberer [27]. The given

joint moments were modified to include the effect of (α,n) reactions and to be

consistently expressed in terms of the source rate. The joint moment of interest for the

doubles rate is jn,γ, which represents the moment of the distribution of joint neutron and

gamma ray quanta that would make a neutron and a gamma ray available for detection.

Page 135: By AZAREE T. LINTEREUR

135

))1

1)(1(

1

1

1

1( 2

1

1111

1

2

1

111 i

i

iiisf

i

sf

i

isfSfn

MMM

MMMM

S

F

S

Fj

Equation 6- 15

As with the neutron and gamma ray moments, each of the terms in Equation 6- 15 can

be related back to a source event using a diagram. Due to the complexity of the images

they are not included here.

Two joint moments are required for the triples expression; one for the distribution

that would make two neutrons and one gamma ray available for detection, jnnγ, and one

for the distribution that would make one neutron and two gamma rays available for

detection, jnγγ. Similar to the doubles expression, the origin of each of the terms of the

joint moments can be shown in a diagram (not included).

)))]1

1(

1

12

1

1(

1

1)

1

1((

1

1)1(

)1

1)

1

1(

1

12(

1

1)

1

1([

1

1211

1

2

2

1

122

1

1

2

3

2

1

21

2

21

1

1

2

2

2

1

1

1

1211

1

2

2

1

13

2

2

1

1

2

21

i

iiii

ii

iii

i

ii

i

iiii

i

sf

i

i

i

i

iiii

i

sf

i

isfi

i

sfsfSfnn

MMM

MMM

M

MMM

MM

M

MMM

MMM

M

MM

MM

S

FM

S

F

S

Fj

Equation 6- 16

Page 136: By AZAREE T. LINTEREUR

136

))]1

1

1

12(

1

1

)1

1(

1

12(

1

1

))1

1(

1

1

1

1(2(

1

1)1(

))1

1(

1

12)

1

1

1

12(

1

1(

1

1))

1

1

(1

1

1

1(2[

2

1

2

12

1

1

2

12

1

1

1211

2

1

12

2

1

2

13

1

1211

1

1

1

12112

1

1

1

1211

2

1

1

2

1

2

12

1

1

2

12

1

2

2

1

2

13

1

12

11

1

1

1

12112

i

ii

i

iii

i

i

iiii

i

ii

i

ii

i

iiii

i

i

i

iiiii

i

sf

i

iiii

i

i

i

ii

i

iii

i

sf

i

isf

i

ii

ii

i

sf

i

isfSfsfSfn

MMMM

MMM

MMM

MMM

MMMM

M

MMM

MM

MMM

MM

MM

MM

S

FMM

S

FM

S

F

S

Fj

Equation 6- 17

Final Formulas

The neutron, gamma ray and joint moments can now be inserted into Equation 6-

7, Equation 6- 10 and Equation 6- 11 to produce equations for the detected and counted

singles, doubles and triples as follows:

))]1(1

1()1([

1

1111

i

iSfSfSfn

M

S

F

S

FMSU

Equation 6- 18

))]1

1)(1(

1

1

1

1(

))1

1

1

12(

1

1)1(

1

1

1

12())1(

1

1([

2

2

1

1111

1

2

1

111

2

1

2

12

1

1

2

12

1

1

2

1

2

12

1

1

112

2

12

1

2

22

i

i

iiisf

i

sf

i

isfSfn

i

ii

i

iii

i

sf

i

isf

sf

i

iSfSfsfi

i

Sfn

d

MMM

MMMM

S

F

S

F

MMMM

M

S

F

S

FMM

S

FSfD

Equation 6- 19

Page 137: By AZAREE T. LINTEREUR

137

)))]]1

1

1

12(

1

1

)1

1(

1

12(

1

1))

1

1

(1

1

1

1(2(

1

1)1(

))1

1(

1

12)

1

1

1

12(

1

1(

1

1))

1

1

(1

1

1

1(2[

)))]1

1(

1

12

1

1(

1

1)

1

1((

1

1)1(

)1

1)

1

1(

1

12(

1

1)

1

1([

)))]1

1

1

12(

1

1

1

1(3

1

13(

1

1)1()

1

1

1

12

(1

13

1

1))

1

1

1

12

(1

1

1

1(3

1

13([

))]1(1

13))1(3(

1

1([[

6

2

1

2

12

1

1

2

12

1

1

1211

2

1

12

2

1

2

13

1

12

11

1

1

1

12112

1

1

1

1211

2

1

1

2

1

2

12

1

1

2

12

1

2

2

1

2

13

1

12

11

1

1

1

12112

2

1

1211

1

2

2

1

122

1

1

2

3

2

1

21

2

21

1

1

2

2

2

1

1

1

1211

1

2

2

1

13

2

2

1

1

2

21

2

2

1

2

12

1

1

2

12

1

1

2

1

2

121

1

1123

1

1

2

1

2

12

1

1

2

1

2

2

1

12

3

1

3

13

2

1

2

12

1

1

2

1

2

1

1

2

1

2

121

1

1123

3

1

2

2

2

1

3122

1

3

33

i

ii

i

iii

i

i

iiii

i

ii

i

ii

i

ii

ii

i

i

i

iiiii

i

sf

i

iiii

i

i

i

ii

i

iii

i

sf

i

isf

i

ii

ii

i

sf

i

isfSfsfSfn

i

iiii

ii

iii

i

ii

i

iiii

i

sf

i

i

i

i

iiii

i

sf

i

isfi

i

sfsfSfn

i

ii

i

iii

i

i

i

iii

i

iiii

i

sf

i

ii

i

ii

i

i

isf

i

isf

i

ii

i

ii

i

i

sf

i

isfSf

i

isfSfSf

sfi

i

isfisf

i

Sfn

t

MMMM

MMM

MMM

MM

MMM

MMM

MMM

MM

MMM

MM

MM

MM

S

FMM

S

FM

S

F

S

F

MMM

MMM

M

MMM

MM

M

MMM

MMM

M

MM

MM

S

FM

S

F

S

F

MMMM

MMMM

MMMM

MMM

S

F

S

F

MM

S

FM

SfT

Equation 6- 20

Page 138: By AZAREE T. LINTEREUR

138

If εγ = 0 in the above equations forms identical to Equation 6- 15 to Equation 6- 17

will be obtained. It should be noted that the formulas for U, D and T assume that the

neutron and gamma ray die-away times are the same. The die-away time depends on

the detector design, but it is unlikely to be the same for neutrons and gamma rays. The

effect of different die-away times could be considered in future work, the gamma ray

die-away time could be determined with MCNPX simulations of a gamma ray source in

the sample chamber of the final design. If εγ > 0 the formulas used to calculate M, F

and α (Equation 2-19, Equation 2-21 and Equation 2-22) will no longer be valid. The

effect on M, F and α, calculated assuming that εγ = 0 (i.e., the equations assume there

are no gamma rays present), if the singles, doubles and triples include contributions

from the correlated gamma ray moments is considered below.

Assay Affect

A detector with εγ > 0 cannot be used to accurately calculate the sample mass if

the singles, doubles and triples are assumed to be generated only by neutron

detections. The effect of the gamma ray efficiency on the calculated mass for different

values of M and α is shown in Figure 6-4, for a detector with the same parameters as

the simulated 6LiF/ZnS based multiplicity counter (a neutron detection efficiency of 43%

and a linear die-away time of 8 µs). The data for Figure 6-4 was generated by

calculating the singles, doubles and triples from Equation 6- 18 to Equation 6- 20 for a

range of gamma ray efficiencies, and then calculating the mass using Equation 2-21,

which assumes εγ = 0. The known mass in Figure 6-4 was the mass used for the

calculation of the singles, doubles and triples rates. It should be noted that the

calculated values for M and α also change when εγ > 0, but those dependencies are not

shown here (for more detail see Appendix B).

Page 139: By AZAREE T. LINTEREUR

139

Figure 6-4 demonstrates that the impact of correlated gamma rays being detected

and counted as part of the correlated events cannot only be significant, but will vary

depending on the parameters of the sample being assayed.

Figure 6-4. The effect of the gamma ray efficiency on the calculated mass for a 10 g 240Pu sample with different values of M and α if the gamma ray distributions are not accounted for in the calculations for F, M and α. Note that the values for M and α in the legend are the starting values, but as the gamma efficiency changes the calculated values for M and α will also change.

The PSD criteria applied during post processing can be selected to minimize the

effect of the gamma ray efficiency. Recall that for this detector system, PSD is used to

eliminate the gamma ray contribution to the signal. Therefore, gamma ray efficiency is

less of an issue than gamma rays that are misidentified as neutrons. As was shown in

Figure 5-18, raising the pulse height threshold will improve the gamma ray rejection

(which is the capability of concern for the bench-top model). However, this

improvement in gamma ray rejection is accompanied by a decrease in the neutron

Page 140: By AZAREE T. LINTEREUR

140

detection efficiency. The gamma ray rejection performance goal for the bench-top test

unit was selected to be better than 10-6. Achieving the target gamma ray rejection will

depend on the data acquisition parameters, and the post processing thresholds. The

initial measurements with gamma ray sources demonstrated that the performance goal

could readily be achieved. The effect of the correlated gamma ray moments on the

calculated mass for the gamma ray rejection levels likely to be achieved with the bench-

top system was considered by letting εγ equal the gamma ray misidentification factor,

and is shown in Figure 6-5. Note that in the gamma ray efficiency region shown in

Figure 6-5 there is a smaller difference between the actual and calculated mass for a

simulation with an α > 0. This is due to the fact that for α > 0 there is a larger

contribution to the singles rates from the neutron moments than the gamma ray

moments (at low gamma ray efficiencies), which produces a smaller discrepancy in the

calculated mass value than with simulations where α = 0. As the gamma ray detection

efficiency increases, so does the gamma ray contribution to the signal, and the effect of

M > 1 will become the more significant contribution to the difference in the actual and

calculated mass.

Page 141: By AZAREE T. LINTEREUR

141

Figure 6-5. Detail of the likely region of gamma ray efficiency of interest from Figure 6-4 for the 6LiF/ZnS based bench-top system.

The impact of correlated gamma rays for an efficiency (or for this system, a

gamma ray misidentification factor) below 0.2% is relatively low (less than 2% for the

simulated scenarios); however, the assay precision goal is to generate a mass estimate

within 1% of the actual value in a short measurement time. Initial measurements with

the test unit demonstrated that a gamma ray rejection below 10-5 could be achieved with

the unit operated in coincidence mode and PSD applied. For a gamma ray rejection of

10-5, the effect of the gamma ray moments on the calculated mass would be

approximately 0.009% (as simulated for a sample with M = 1 and α = 0, the affect of the

source parameters on the results is further considered in Appendix B). The pulse height

threshold necessary to achieve the gamma ray rejection of 10-5 would not have a

significant impact on the VCF (and therefore the neutron detection efficiency) as was

shown in Figure 5-18. However, the measurements with a gamma ray source used to

Page 142: By AZAREE T. LINTEREUR

142

determine the gamma ray rejection capability were made with an incident gamma ray

flux of 5.9 x 107, which is similar to the gamma ray flux that would be generated in a 10

mg sample of Pu (depending on the source isotopic composition) as approximated from

Table 3A.2 in Doyle [5]. It should be noted that the gamma ray flux estimate does not

include any potential shielding in the counter design, or self-shielding by the source

itself. The dead-time in the electronics used in the measurements reported here to

collect the traces needs to be minimized before higher count rate measurements are

performed. Measurements will need to be performed to confirm a similar gamma ray

rejection can be achieved with the full system and higher count rate sources.

A closed form solution for M, F and α when the gamma ray distributions are

included in the equations for the singles, doubles and triples (Equation 6- 18, Equation

6- 19 and Equation 6- 20) would be non-trivial to obtain, and would require solving an

equation in the fifth power for the multiplication (M). However, solutions for M, F and α

can be generated for measured singles, doubles and triples by solving the equations

iteratively using a least squares method to compare the measured U, D and T to

calculated values. The least squares method (implemented using a MatLab® script) is

an efficient means of addressing the impact of εγ > 0 on a measurement, as less than 1-

s is required to compute an answer. The proposed technique should be applied to data

acquired with the complete bench-top system, using known sources, to determine if an

improvement in the accuracy of the calculated mass could be realized. The electronic

thresholds could be adjusted to produce different gamma ray efficiencies for testing the

ability of the modified singles, doubles and triples equations to adequately calculate the

Page 143: By AZAREE T. LINTEREUR

143

sample parameters. The PSD parameters could also be relaxed to study the effects of

the misidentified gamma rays on the assay predictions.

Page 144: By AZAREE T. LINTEREUR

144

CHAPTER 7 SUMMARY AND FUTURE WORK

The shortage of 3He has driven an interest in identifying alternatives for neutron

detection applications. This research effort explored 3He free multiplicity counter

configurations. The work performed encompassed three separate areas: simulations,

measurements, and theoretical corrections. The simulations compared the

performance achieved with 10B-based detectors in a multiplicity counter configuration to

a traditional Epithermal Neutron Multiplicity Counter. The simulation methodology

applied for the 10B-lined proportional counters included tracking the correlated neutron

capture reaction products, a new MCNPX feature. Measurements were performed to

validate the simulation methodology. Parallel to this project, simulations to identify the

best performing 6LiF/ZnS multiplicity counter design within the physical constraints were

performed. The simulation results showed that the target performance could not be

achieved in a practical configuration with the 10B-based detectors. However, the

simulated performance with the final 6LiF/ZnS model exceeded the Epithermal Neutron

Multiplicity Counter capability. Therefore, 6LiF/ZnS sheets were selected as the

technology for use in the construction of a prototype test unit.

The test unit demonstrated that a thermal neutron detector could be developed

with 6LiF/ZnS sheets layered with a plastic light guide. The design used the light guides

to both transmit light to photomultiplier tubes and thermalize the incident neutrons,

which will minimize the amount of additional moderator required. Two different light

guide materials, and three different thicknesses, were tested with several

photomultiplier tube configurations. The final configuration selected for the

development of a complete bench-top system was 0.7-cm thick wave-length shifting

Page 145: By AZAREE T. LINTEREUR

145

plastic light guides layered with 6LiF/ZnS sheets, and photomultiplier tubes coupled to

each end of the detector with tapered light guides.

The gamma ray sensitivity of 6LiF/ZnS is higher than the gamma ray sensitivity of

3He. Thus, the potential effect of gamma ray detections on the accuracy of a mass

estimate was considered. The equations for the singles, doubles and triples were

adapted to include the correlated gamma ray and joint (to account for mixed gamma ray

and neutron detections) moments. The variation in the predicted mass was simulated

as a function of gamma ray efficiency. Potential options for minimizing error in the

calculations were presented. These effects have not previously been considered

because of the high level of gamma ray discrimination achievable with 3He. However,

as 3He replacements are explored, the validity of the assumption that the gamma ray

contributions to the measured distributions are negligible will have to be re-evaluated.

Based on the results of this research effort a complete bench-top system will be

built. Measurement results will be compared to simulated values to determine the

appropriate validation correction factor for a full system. Future work should consider

modifications to the electronics to reduce the dead-time produced by the current method

of pulse digitization with a XIA Pixie-500 waveform digitizer. Further, more

sophisticated methods of pulse-shape discrimination will have to be implemented when

pile-up becomes an issue. Different threshold levels should be applied to the post

processing analysis of data collected with the complete bench-top system to compare

the predicted mass values for different gamma ray efficiencies. The mass should be

calculated both with and without accounting for the gamma ray moments to verify that

Page 146: By AZAREE T. LINTEREUR

146

the least squares solution is valid for improving assay accuracy in systems that respond

to gamma rays, as well as neutrons.

Additional future work should examine the effects of the assumptions in the

equations for the gamma ray moments that were included in this research effort. The

gamma rays from inelastic neutron scatters, gamma rays released by nuclei excited by

alpha particles, and gamma rays emitted with the alpha particles, should all be

considered. Another modification that should be made to the equations is to account for

the different die-away times for the neutrons and gamma rays in a complete system.

Traditional shift register electronics cannot process the Pixie-500 pulses.

Furthermore, gamma ray rejection based on post-processing pulse-shape discrimination

means that a virtual shift register will have to be utilized for multiplicity measurements.

A MatLab® virtual list-mode shift register was developed (Appendix C) and tested

compared to traditional shift register outputs, using data collected with a 3He system.

The virtual shift register will have to be adapted for the 6LiF/ZnS bench-top system

outputs, but is expected to provide an adequate method for obtaining multiplicity data.

While there are still significant measurements to be made with this technology,

the initial results demonstrate that a 6LiF/ZnS based system has the potential to be a

viable near-term alternative to 3He for use in neutron multiplicity counters.

Page 147: By AZAREE T. LINTEREUR

147

APPENDIX A DERIVATION OF EQUATIONS

The derivations for the equations used in this work [23] [6] are shown below.

Probability Generating Functions

An example of a probability generating function (PGF), and how it can be used to

obtain an expectation value, is considered here for the probabilities associated with a

fair die. The values (x) that can be obtained with a six sided die are:

Z = 1, 2, 3, 4, 5, 6 where Z is the variable (the number on the die). Then the

probability of generating any one of these variables is P(Z=x) = 1/6 (where x is any one

of the possible values). A PGF that is a polynomial with coefficients that are the

probabilities of the different outcomes can be identified as:

6543210

6

1

6

1

6

1

6

1

6

1

6

10)( uuuuuuuuf

The first term of the polynomial represents the probability of obtaining a 0 (note

that the polynomial could be extended beyond u6 but all of the terms would be equal to

0). Note that the probabilities for any discrete distribution could be used for this

example. So a general PGF is given by:

x

xuxZP

uZPuZPuZPuZPuZPuZPuf

)(

...)5()4()3()2()1()0()( 543210

Equation A-1

Consider again the PGF for a fair die, it is apparent that

)0()0( ZPf , and

116

11

6

11

6

11

6

11

6

11

6

110)1( xxxxxxxf

Page 148: By AZAREE T. LINTEREUR

148

In general x

xZPf 1)()1(

Equation A-2

The first derivative of f(u) can be taken, and the result is:

5432

6543210

6

16

6

15

6

14

6

13

6

12

6

10

6

1

6

1

6

1

6

1

6

1

6

10)(

uuuuu

udu

du

du

du

du

du

du

du

du

du

du

du

du

duf

du

d

If the derivative is evaluated at u=1 then:

x

xZxPfdu

d)()1(

The expectation value of a function is given by:

x

xZPxfZfE )()())((

Equation A-3

So )()()1( ZExZxPfdu

d

x

Which is the definition of the first factorial moment of P(Z). The second derivative,

evaluated at u=1, is to the second factorial moment, or the variance, and so on.

)()()1()1(2

2

ZVarxZPxxfdu

d

x

The general expression for a factorial moment is given by:

)()!(

!max

xPkx

xx

k

k

Equation A-4

The second property of PGF required to develop an expression for the emitted

neutron probability distribution is as follows. Consider the PGF gi(u) for u with the

conditional probability P(x,i), which is the probability distribution of obtaining the value x

Page 149: By AZAREE T. LINTEREUR

149

under the condition i. Then let Qi be the probability of obtaining the condition i, the PGF

for x (without condition i) is given by:

0

)()(i

ii ugQuf

Equation A-5

because

0 00 000

)(),(),()(i x

x

i

x

x

i

x

i

x

i

ii uxPuQixPQuixPugQ

Emitted Neutron Distribution Derivation

The detected distribution can be derived from the emitted neutron probability

distribution as follows. The number of neutrons that escape the sample must be

determined before the detected distribution can be derived. Let R(n) be the probability

that n neutrons leave the system for one source event; this expression is the probability

that n neutrons are generated by a source event weighted to account for the number

that escape and are available for detection. The PGF for the distribution R(n) can be

defined as:

0

)()(n

nunRuH

Equation A-6

The expression for the probability distribution of neutrons generated by a source

event, including neutrons produced by (α,n) reactions is:

1)()(S

Sq

S

FP sf

Equation A-7

Where F = the fission rate, from which neutrons are emitted with a probability

distribution qsp(ν), Sα = the rate of (α,n) reactions, from which only one neutron can be

obtained, and S = the source rate = F + Sα. The required distribution is that for the

neutrons which escape the sample and are available for detection. Neutrons are

Page 150: By AZAREE T. LINTEREUR

150

independent and indistinguishable, therefore the neutrons that escape per source event

(which generates n neutrons) are simply the percentage that escapes per neutron,

raised to the nth power. The expression to describe the number of neutrons that escape

the system for one starting neutron is given as follows.

The neutrons that are captured prior to escaping the sample (and are not available

for detection) will induce fission, given by a probability, pi. Given that pi is the probability

a neutron induces a fission the probability that the neutron escapes (without inducing a

fission), and can be detected is given by (1-pi). When a neutron induces a fission it will

generate n neutrons with a probability piqi(n) where qi(n) is the probability of obtaining n

neutrons through induced fission. Let r(n) be the probability that n neutrons leave the

system because of one source neutron, then a PGF for the number of neutrons leaving

the system based on a single source neutron can be defined as:

0

1 )()(n

nunruh

Equation A-8

If there is more than one neutron in the system then the PGF is hn(u), which is

equal to h1(u)n, because neutrons are assumed to be independent and

indistinguishable. If multiplication is included:

n

n

iini nrnqppnr ))(()()1()(0

,1

, then the PGF h1(u) is given by:

0

1

00

1 )()())(()()1()(n

n

n

ii

nn

n

iii uhnqpunrnqpupuh

Equation A-9

Page 151: By AZAREE T. LINTEREUR

151

Where

0 0

11 )()()()(n n

n

ii

n

ii uhnqpuhnqp and

0

1 )()(n

n

i uhnq is the PGF for the

number of neutrons emitted by an induced fission event, fi(h1(u)), under the second

property of PGFs given above.

The expression for the number of neutrons that escape the sample because of

one starting neutron can now be used to obtain an expression for H(u) (the PGF for the

probability distribution of neutrons that leave the system due to one source event). The

probability of n neutrons leaving the source is given by P(ν) (the probability of ν

neutrons being emitted by a source event) multiplied by the sum of all r(n) over n (the

probability that n neutrons leave the system per source neutron) to the νth power.

0

1

0 00

)]()[()()()()(

uhPunrPunRuH n

nn

n

Equation A-10

The derivative of this point generating function is the first factorial moment of the

neutron distribution that escapes the sample, which is what is required to determine the

detected distribution.

Substituting Equation A-7 for P(ν) produces:

0

11 )]())[(()(

uhqS

F

S

SuH sf

The second component of the expression is the PGF for the number of neutrons

that are available for detection due to a spontaneous fission event, fsf[h1(u)]. Then,

)]([)()( 11 uhfS

Fuh

S

SuH sf

The derivative of H(u) is:

du

udh

du

uhdf

S

F

du

udh

S

S

du

udH sf )()]([)()( 111

Page 152: By AZAREE T. LINTEREUR

152

1

1 )]([sf

sf

du

uhdf (from the first property of PGFs given above)

And the derivative of h1(u) can be calculated from Equation A-9:

du

udhpp

du

uhdfp

du

upd

du

udhiii

i

i

i )()1(

)]([)1()( 111

Equation A-11

Then

ii

i

p

p

du

udh

1

1)(1

Equation A-12

which is the definition of M.

Now ν1 can be expressed as:

11

)(sfM

S

FM

S

S

du

udH

S, F and Sα are not all known parameters, so ν1 is expressed in terms of α, a

source parameter that can be calculated with multiplicity analysis, which is given by:

1sfF

S

Equation A-13

Then

)1(11 sfMS

F

Equation A-14

Note that the first factorial moment used in Ensslin et al. [6] is given for the

neutrons emitted per spontaneous fission, not per source event, so there is no source

term normalization and )1(11 sfM .

The higher order derivatives of H(u) can be taken to obtain the second and third

factorial moments.

Page 153: By AZAREE T. LINTEREUR

153

Detected Neutron Distribution Derivation

The factorial moments of the emitted neutron distribution are not the same as the

detected and counted factorial moments. The emitted distributions must be corrected

for the detector efficiency and the gate fractions (the components of the emitted

distributions that are present in the counting intervals). Unlike the derivation of the

factorial moments of the emitted distribution, a closed form solution for the factorial

moments of the detected distribution can be derived (in terms of the factorial moments

of the emitted distribution) without the use of PGFs. The detected distribution can be

expressed in terms of the emitted neutron distribution, corrected for efficiency, as given

in Ensslin et al. [6]:

max

)1()()(n

nn

nPnC

Equation A-15

where

n

is the binomial coefficient and is given by

)!(!

!

nn

.

The total number of neutrons counted will depend not only on the detected

distribution, but also on the number of detected neutrons that are within the counting

interval (the “gate fraction”). The probability of obtaining a trigger (given n neutrons) is:

dttnf )(

Where f(t) is the detector response function given in Bohnel [22] for an event that

occurs at time t as tetf

1

)( .

The probability that one of the remaining neutrons is captured in the window from

the pre-delay (PD) to the end of the gate (G) is given by:

Page 154: By AZAREE T. LINTEREUR

154

GPDt

PDt

t dssfp )(

Equation A-16

If you look over all time, the probability of obtaining a trigger and counting j

additional neutrons is:

0

1

, )1(1

)( dtppj

ntfnp jn

t

j

tjt

Equation A-17

So the total probability of counting j neutrons of the detected distribution in a gate

after a trigger is given by:

N

jn

jn

t

j

t dtppj

ntfn

Z

nCjr

1 0

1)1(1

)()(

)(

Equation A-18

Where Z represents a normalization constant. The factorial moments of the

distribution r(j) are the factorial moments of the correlated detected distribution that are

measured and counted. If the factorial moments of r(j) are related back to the sample

parameters they can be used to determine the unknown sample information. This can

be done by recognizing that the measured singles rate is equal to the zeroth correlated

moment times the total trigger rate, the doubles are equal to the first moment times the

trigger rate, and so on.

By definition, the first factorial moment of a probability distribution must equal one,

which can be used to determine Z. As given in Equation A-4 the factorial moments of a

probability distribution are given by:

Page 155: By AZAREE T. LINTEREUR

155

)()!(

!max

xPkx

xx

kx

k

, so

max

0 1 0

1max

0

max

0

0 )1(1

)()(

)()()!0(

!

j

N

n

jn

t

j

t

jj

dtppj

ntfn

Z

nCjrjr

j

jr

The binomial theorem can be applied to the terms dependent on j which yields:

)1( tt pp =1

Then the integral of f(t) over the given limits is 1, so

1)(

1

0

N

n Z

nnCr

Therefore

N

n n

nnN

n nPnnnCZ

1

max

1

)1()()(

via proof by induction (shown

below) the limits of the summation can be changed as follows:

max

0 0

)1()(

n

nn

nPnZ then

max

0 0

)1()(

n

nn

nnPZ and

0

)1(n

nn

nn

Equation A-19

(Relationship A, shown below) then

1

max

0

max

0

)()(

imumimum

PPZ

Relationship A (proof):

...)1())!2(!2

!(2)1()

)!1(!1

!(10

)1()!(!

!)1(

2211

00

n

nn

n

nn

nnn

nn

Let ν=3, then

Page 156: By AZAREE T. LINTEREUR

156

3366363

366)21(3)1())!0(!3

!3(3)1()

)!1(!2

!3(2)1()

)!2(!1

!3(1

33232

3322031221

Applying Relationship A and the binomial theorem allows the first factorial moment

to be derived as follows:

max

1 2 0

1max

1

max

1 2 0

1

1

max

max

1 2 0

1

1

max

1

max

1

1

)1(1

)()1()(

)1(1

)(

)1()(

)1(1

)()(

)()()!1(

!

j

N

n

jn

t

j

t

n

nn

j

N

n

jn

t

j

t

n

nn

j

N

n

jn

t

j

t

jj

dtppj

ntf

nnP

j

dtppj

ntfn

nP

j

dtppj

ntfn

nCjjjrjr

j

jr

Through a change of limits (shown valid with a proof by induction such as the

example shown below) the terms dependent upon j can be grouped, and Relationship A

applied. Then,

N

n

t

n

nn dtptfn

Pnnr2 0

max

1

1 )()1()()1(1

The integral of the terms dependent upon t can be moved outside of the

summation, the summation limits can be changed (the change is shown valid with a

proof by induction such as the example shown below) and the terms within the

summation grouped via dependence so that:

001

1 )1()1()()(1

n

nnN

n

tn

nnPdtptfr

The second summation is the variance of a distribution, and equal to:

Page 157: By AZAREE T. LINTEREUR

157

nn

nn

nn

n

nn

n

nn

nnnnn

n

nnnn

nnn

)1()!()!2(

)!2()1()1(

)!(!

!

)!2(

!

)1()!(!

!)1()1()1(

2

22

2

00

Now let k=ν-2 and l=n-2, then

lklk

l lkl

k

)1()!(!

!)1(

0

2

Which via the binomial theorem = ν(ν-1)ε2x1

So then,

2

01

1 )1()()(1

N

n

t Pdtptfr

Earlier n =2 was stated, so then

01

2

2

1 )( dtptfr t

This is the first moment of the measured distribution (note that similar steps can be

used to obtain r2). Solving the integrals yields the gate fractions, and then rk can be

used in the equations for the singles, doubles and triples to relate the measured

parameters to the source parameters.

)1(2 1

2

2

1

GPD

eer

Equation A-20

2

1

3

3

2 )]1([3

GPD

eer

Equation A-21

Page 158: By AZAREE T. LINTEREUR

158

101 SrSU s

Equation A-22

111 rSRrD

Equation A-23

2!2

212 rSRrT

Equation A-24

Where S ≡ the source rate. The substitution for r1 and r2 can be made which

produces the following expressions:

)1(2

)1(2

2

2

2

2

1

GPDGPD

eeS

eeS

D

23

323

3

)]1([6

)]1([6

GPDGPD

eeF

eeF

T

Substitution for v1, v2, and v3 can be made to produce expressions in terms of F,

M, and α.

Proof by Induction for Change of Limits (Example)

For a given distribution defined as:

M

n

M

n

nf0

),(

Demonstrate that the limits can be changed as follows:

M

n

M

n

M

n

nfnf0 00

),(),(

Let

M

n

M

n

nfS0

),(

then for

M = 0: )0,0(),(0

0

0

fnfSn n

Page 159: By AZAREE T. LINTEREUR

159

Now let

M

n

nfS0 0

' ),(

then for

M = 0: )0,0(),(0

0 0

' fnfSn

So for M = 0 S = S’.

Now let M = M + 1:

1

010

1

0

1

0

1

0

1

0

1

1

)1,(),1(),()1,(),(

)1,(),(),(

M

n

M

M

M

n

M

n

M

n

M

n

M

n

M

n

M

n

M

n

M

n

M

MnfMfnfMnfnf

MnfnfnfS

M

M

Mf1

),1( is not allowed, therefore

1

0

1 )1,(M

n

M MnfSS

1

0

1

00 0

1

0 0

1

0 0

'

1 )1,(')1,(),(),(),(M

n

M

n

M

n

M

n

M

n

M MnfSMnfnfnfnfS

So for M = M + 1 SM+1 = S’M+1.

Therefore the change of limits will not change the value of the summation.

Page 160: By AZAREE T. LINTEREUR

160

APPENDIX B SAMPLE PARAMETER EFFECT ON THE CALCULATED MASS

The influence of the individual sample parameters on the predicted mass was

examined through a set of simulations. The three sample parameters assumed to be

unknown for these considerations were M, α and F. The M and α variables were

individually held constant while the other variable and F were allowed to vary. The

difference between the known sample mass and the calculated sample mass was

calculated with each of the scenarios for different gamma ray efficiencies. The

calculations were performed with MatLab® using the equations from Chapter 6. The

effect of not allowing M to vary on the difference between the actual sample mass and

the simulated mass is shown in Figure B-1. Figure B-2 shows the effect of holding α

constant on the difference between the actual and simulated mass. The figures

demonstrate that a larger discrepancy is produced if M is not allowed to vary, which is

consistent with the results shown in Chapter 6. The multiplication has a larger effect on

the gamma ray contributions as the gamma ray efficiency increases than α. Therefore,

an inaccurate assumption for M has a larger impact on the calculated mass value.

Simulations with additional values for M and α could be performed to see how the

variation in the calculated mass is affected.

Page 161: By AZAREE T. LINTEREUR

161

Figure B-1. The change in the calculated mass if M is held constant (M=1) and alpha (α) and the gamma ray efficiency (εγ) are varied.

Page 162: By AZAREE T. LINTEREUR

162

Figure B-2. The change in the calculated mass if alpha (α) is held constant (α=0) and the Multiplication (M) and the gamma ray efficiency (εγ) are allowed to vary.

Page 163: By AZAREE T. LINTEREUR

163

APPENDIX C VIRTUAL LIST MODE SHIFT REGISTER

Traditional shift registers group the perturbations in the pulse train that arrive at

the shift register into multiplicities. When each perturbation in the pulse train arrives at

the trigger the number of signals in the counter gate are grouped and the appropriate

multiplicity scaler increments by one. There is a second trigger at a time after the first

trigger that is long when compared to the die-away time (the delay time is typically

about 4 µs). When one of the perturbations in the pulse train arrives at the second

trigger the number of pulses that are currently in the counter window are grouped and

the appropriate accidental scaler is incremented by one. The multiplicity distributions

are then grouped to calculate the foreground and background factorial moments of the

distribution.

Figure C-1. Shift register diagram.

Example calculations for the singles, doubles and triples from data obtained with

12 3He tubes arranged in 4 polyethylene blocks (3 tubes per block) and a JSR shift

register operated in 2150 mode are shown in Table C-1.

Page 164: By AZAREE T. LINTEREUR

164

Table C-1. Example distribution from a JSR shift register in multiplicity mode and the corresponding factorial moments and singles, doubles and triples

P(ν) R+A A

0 3895 4571

1 1745 1338

2 575 389 3 150 87

4 33 18

5 6 3 6 1 0.4 7 0 0 8 0 0 ν0 1 1 ν1 0.55 0.39 ν2 0.41 0.25

Singles=U= sum(A) 6406 Doubles=U*( ν1(R+A)-ν1(A)) 1051

Triples=U*( ν2(R+A)-ν2(A)-2*ν1(A)*(ν1(R+A)- ν1(A)))/2

105

The factorial moments were calculated with the formula:

)()!(

!max

Pkk

k

Note that the distributions were normalized for the factorial moment calculations.

Digitized pulse trains that require the application of PSD techniques cannot be fed

directly into a traditional shift register. A list mode shift register, which can be used to

group the time-stamped neutron pulses must be used. A list mode shift register (built in

MatLab®) was structured as follows to group individually time-stamped pulses into

multiplicity distributions. A predelay, gate window, and delay time were selected. The

time-stamps with each pulse were fed into the algorithm. The shift register was

constructed to be forward looking, each pulse activated a window to open after the

predelay and the number of pulses with time-stamps less than the trigger pulse time

plus the length of the window were grouped and the appropriate R+A multiplicity was

Page 165: By AZAREE T. LINTEREUR

165

incremented by one. Every time a gate opened a second gate was opened after the

delay time and the number of pulses with time stamps within the second gate were

grouped and the appropriate A multiplicity was incremented by one. An example

distribution from data collected with the same 3He system as was used to collect the

data shown in Table C-1 is shown in Table C-2 for the distribution generated with the list

mode shift register. The singles, doubles and triples calculated with this data are also

shown. The results, below, were found to be in good agreement to the results

calculated with a traditional shift register for the same detector.

Table C-2. Probability distributions generated with a virtual shift register from the data collected in list mode and the corresponding factorial moments and singles, doubles and triples.

P(ν) R+A A

0 3896 4685

1 1774 1202

2 574 341 3 143 77

4 30 15

5 5 3 6 1 0.3 7 0 0 8 0 0 ν0 1 1 ν1 0.55 0.39 ν2 0.41 0.25

Singles=U= sum(A) 6323 Doubles=U*( ν1(R+A)-ν1(A)) 1310

Triples=U*( ν2(R+A)-ν2(A)-2*ν1(A)*(ν1(R+A)- ν1(A)))/2

101

The difference in the singles, doubles and triples calculated with the distributions

from the traditional shift register and the list mode shift register are due to the slightly

different gate locations (the list mode shift register is “forward looking”). There is also

dead-time present in the electronics used to produce the time-stamped pulses for use in

Page 166: By AZAREE T. LINTEREUR

166

the list mode shift register that affects the distributions. The discrepancy was not of

concern for this analysis, but could be minimized with the use of electronics with less

dead-time, and by altering the gate locations in the virtual shift register.

Page 167: By AZAREE T. LINTEREUR

167

LIST OF REFERENCES

[1] F.M. Khan, The Physics of Radiation Therapy, Lippincott Williams & Wilkins, 2003.

[2] J.T. Bushberg, J.A. Seibert, E. M. Leidholdt Jr. and J.M. Boone, The Essential Physics of Medical Imaging, 2nd Edition, Lippincott Williams & Wilkins, 2002.

[3] F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, John Wiley & Sons, Inc., 1986.

[4] G. F. Knoll, Radiation Detection and Measurement, 3rd Edition, John Wiley & Sons, Inc., 2000.

[5] J. E. Doyle, Nuclear Safeguards, Security and Nonproliferation, Elsevier, 2008.

[6] N. Ensslin, W.C. Harker, M.S. Krick, D.G. Langner, M.M. Pickrell and J.E. Stewart, Application Guide to Neutron Multiplicity Counting, Los Alamos National Laboratory Report LA-13422-M (1998).

[7] J.P. Lestone, M.E. Abhold, J. Halbig, H.O. Menlove, P. Polk, P.M. Rinard, J. Sprinkle, P. Staples and R. Holbrooks, An Underwater Instrument for Breeder Reactor Spent Fuel Assemblies, Los Alamos National Laboratory Report LA-UR-98-1588 (1998).

[8] Safeguards Techniques and Equipment 2003 Edition, IAEA, 2003.

[9] R. D. Evans, The Atomic Nucleus, McGraw-Hill, Inc., 1955

[10] J. E. Turner, Atoms, Radiation, and Radiation Protection, 2nd Edition, John Wiley & Sons, Inc., 1995

[11] R. T. Kouzes, The 3He Supply Problem, Pacific Northwest National Laboratory Report PNNL-SA-18388 (2009).

[12] E.R. Siciliano, J.L. Rogers, J.E. Schweppe, A.T. Lintereur and R.T. Kouzes, Uranium Neutron Coincidence Collar Model Utilizing 3He, Pacific Northwest National Laboratory PNNL-21581 (2012).

[13] J.H. Ely, E.R. Siciliano and M. T. Swinhoe, Alternatives to Helium-3 for Neutron Multiplicity Detectors, Proceedings of the 52nd Annual Meeting of the Institute of Nuclear Materials Management, July 17-21 2011, Palm Springs, California, USA. Paper 603.

[14] D.S. McGregor, S.M. Vernon, H.K. Gersch, S.M. Markham, S.J. Wojtczuk and D.K. Wehe, IEEE Trans. Nucl. Sci. 47 (2000) 1364.

[15] J.F. Ziegler and J.P. Biersack, SRIM-2013 Code (IBM Company, 2013).

Page 168: By AZAREE T. LINTEREUR

168

[16] J. Glodo, W. Brys, G. Entine, W.M. Higgins, E.V.D. van Loef, M.R. Squillante and K.S. Shah, Cs2LiYCl6:Ce Neutron Gamma Detection System, IEEE Nuclear Science Symposium Conference Record, October 28 – November 3 2007, Honolulu, Hawaii, USA.

[17] I. Sen, D. Penumadu, M. Williamson, L.F. Miller, A.D. Green and A.N. Mabe, IEEE Trans. Nucl. Sci. 58 (2011) 1386.

[18] M. Bliss, R.L. Brodzinski, R.A. Craig, B.D. Geelhood, M.A. Knopf, H.S. Miley, R.W. Perkins, P.L. Reeder, D.S. Sunberg, R.A. Warner and N.A. Wogman, Glass-Fiber-Based Neutron Detectors for High- and Low-Flux Environments, Proceedings SPIE

[19] C.W.E. van Eijk, Rad. Meas. 38 (2004) 337.

[20] K.D. Ianakiev, M.T. Swinhoe, A. Favalli, K. Chung and D.W. MacArthur, Nucl. Instr. and Meth. A 652 (2011) 417.

[21] N. Zaitseva, B.L. Rupert, I. Pawwlczak, A. Glenn, H.P. Martinez, L. Carmen, M. Faust, N. Cherepy and S. Payne, Nucl. Instr. and Meth. A 668 (2012) 88.

[22] K. Bohnel, Die Plutoniumbestimmung in Kernbrennstoffen mit der Neutronenkoinzidenzmethode, KfK 2203, Kernforschungszentrum Karlsruhe, 1975.

[23] K. Bohnel, Nucl. Sci. Eng. 90 (1985) 72.

[24] J.M. Verbeke, C. Hagmann and D. Wright, Simulation of Neutron and Gamma Ray Emission from Fission and Photofission, Lawrence Livermore National Laboratory UCRL-AR-228518 (2010).

[25] J.W. Boldeman and M.G. Hines, Nucl. Sci. Eng. 91 (1985) 114.

[26] J.K. Halbig, S.C. Bourret, P.R. Collinsworth, W.J. Hansen and M.S. Krick, Recent Developments in Multiplicity Counting Hardware at Los Alamos, Los Alamos National Laboratory LA-UR-91-3571 (1991).

[27] R.B. Oberer, Fission Multiplicity Detection with Temporal Gamma-Neutron Discrimination from Higher Order Time Correlation Statistics, Ph.D. Thesis, Georgia Institute of Technology, 2002.

[28] N. Ensslin, M.S. Krick, D.G. Lagner, M.M. Pickrell, T.D. Reilly and J.E. Stewart, Passive Neutron Multiplicity Counting, Los Alamos National Laboratory LA-UR-07-1402 (2007).

[29] W. Hage and D.M. Cifarelli, Nucl. Instr. and Meth. A 236 (1985) 165.

[30] I. Pazsit and L. Pal, Neutron Fluctuations, Elsevier Ltd., 2008.

Page 169: By AZAREE T. LINTEREUR

169

[31] D. Reilly, N. Ensslin, H. Smith and S. Kreiner, Passive Nondestructive Assay of Nuclear Materials, Los Alamos National Laboratory LA-UR-90-732 (1991).

[32] M. Krick and B. Harker, INCC Software Users Manual, Los Alamos National Laboratory LA-UR-10-6227 (2010).

[33] M.S. Krick and J.E. Swansen, Nucl. Instr. and Meth. 219 (1984) 384.

[34] D.G. Langner, M.S. Krick, N. Ensslin, G.E. Bosler and N. Dytlewski, Neutron Multiplicity Counter Development, Los Alamos National Laboratory LA-UR-91-1569 (1991).

[35] D.G. Langner, N. Ensslin and M.S. Krick, Pyrochemical Neutron Multiplicity Counter Design, Los Alamos National Laboratory LA-UR-2255 (1990).

[36] J.E. Stewart, H.O. Menlove, D.R. Mayo, W.H. Geist, L.A. Carrillo and G.D. Herrera, The Epithermal Neutron Multiplicity Counter Design and Performance Manual: More Rapid Plutonium and Uranium Inventory Verifications by Factors of 5-20, Los Alamos National Laboratory LA-13743-M (2000).

[37] J.L. Lacy, A. Athanasiades, L. Sun, C.S. Martin, G.J. Vazquez-Flores and S. Mukhopadhyay, Performance of a Straw-Based Portable Neutron Coincidence/Multiplicity Counter, IEEE Nuclear Science Symposium Conference Record, October 23-29 2011, Valencia, Spain.

[38] D. Henzlova, L.G. Evans, H.O. Menlove, M.T. Swinhoe, C.D. Rael, I.P. Martinez and J.B. Marlow, 3He Replacement for Nuclear Safeguards Applications Part II: Benchmarking and Simulation Results, Proceedings of the 52nd Annual Meeting of the Institute of Nuclear Materials Management, July 17-21 2011, Palm Springs, California, USA.

[39] A. Enqvist, K.J. Weinfurther, M. Flaska and S.A. Pozzi, Trans. Nucl. Sci. 58 (2011) 2413.

[40] M.C. Browne, A.P. Belian, H.R. Dye, N. Ensslin, W.H. Geist, E.C. Horley, K.D. Ianakiev, M.R. Kusner, D.R. Mayo, P.A. Russo and M.R. Sweet, Prototype Neutron-Capture Counter for Fast-Coincidence Assay of Plutonium in Residues, Proceedings of the 23rd ESARDA Annual Meeting Symposium on Safeguards and Nuclear Material Management, May 8-10 2001, Bruges, Belgium.

[41] A.P. Belian, M.C. Browne, N. Ensslin, W.H. Geist, K.D. Ianakiev, D.R. Mayo, V. Mittal, P.A. Russo and M.R. Sweet, Characterizing the Detector Response and Testing the Performance of a New Well Counter for Neutron Coincidence Measurements of Plutonium Residues, Proceedings of the 42nd Annual Meeting of the Institute of Nuclear Material Management, July 15-19 2001, Indian Wells, California, USA.

Page 170: By AZAREE T. LINTEREUR

170

[42] J.C. Barton, C.J. Hatton and J.E. McMillan, J. Phys. G: Nucl. Part. Phys. 17 (1991) 1885.

[43] G.W. Phillips, D. J. Nagel and T. Coffey, A Primer on the Detection of Nuclear and Radiological Weapons, Center for Technology and National Security Policy National Defense University (2005). Online at: http://www.ndu.edu/ctnsp/publications.html

[44] J.H. Ely, E.R. Siciliano, M.T. Swinhoe and A.T. Lintereur, Modeling and Simulation Optimization and Feasibility Studies for the Neutron Detection without Helium-3 Project, Pacific Northwest National Laboratory PNNL-22228 (2013).

[45] X-5 Monte Carlo Team, MCNP – A General Monte Carlo N-Particle Transport Code, Version 5, Los Alamos National Laboratory LA-UR-03-1987 (2003).

[46] D.B. Pelowitz, J.W. Durkee, J.S. Elson, M.L. Fensin, J.S. Hendircks, M.R. James, R.C. Johns, G.W. McKinney, S.G. Mashnik, J.M. Verbecke, L.S. Waters and T.A. Wilcox, MCNPX 2.7.0 Extensions, Los Alamos National Laboratory LA-UR-11-02295 (2011).

[47] J.S. Hendricks, G.W. McKinney, M.L. Fensin, M.R. James, R.C. Johns, J.W. Durkee, J.P. Finch, D.B. Pelowitz, L.S. Waters, M.W. Johnson, MCNPX 2.6.0 Extensions, Los Alamos National Laboratory LA-UR-08-2216 (2008).

[48] A.T. Lintereur, J.H. Ely, E.R. Siciliano and M.T. Swinhoe, Helium-3 Alternative Neutron Detectors for Multiplicity Counters, Proceedings of the 53rd Annual Meeting of the Institute of Nuclear Materials Management, July 15-19 2012, Orlando, Florida, USA.

[49] E.R. Siciliano and R.T. Kouzes, Boron-10 Lined Proportional Counter Wall Effects, Pacific Northwest National Laboratory PNNL-21368 (2012).

[50] K. Anderson, T. Bigault, J. Birch, J. Buffet, J. Correa, P. Van Esch, B. Guerard, R. Hall-Wilton, L. Hultman, C. Hoglund, J. Jensen, A. Khaplanov, O. Kirsten, F. Piscitelli and C. Vettier, Multi-Grid Boron-10 Detector for Large Area Applications in Neutron Scattering Science, arXiv:1209.0566v1 [physics.ins-det] (2012).

[51] A.T. Lintereur, J.H. Ely, R.T. Kouzes, J.L. Rogers and E.R. Siciliano, Boron-10 Lined Proportional Counter Model Validation, IEEE Nuclear Science Symposium Conference Record, October 27-November 3 2012, Anaheim, California, USA.

[52] PIXIE-500 User’s Manual V2.20, XIA LLC, Hayward, CA (2011).

[53] PIXIE-4 User’s Manual V2.20, XIA LLC, Hayward, CA (2011).

[54] N. Zaitseva, A. Glenn, L. Carman, R. Hatarik, S. Hamel, M. Faust, B. Schabes, N. Cherepy and S. Payne, IEEE Trans. Nucl. Sci. 58 (2011) 3411.

Page 171: By AZAREE T. LINTEREUR

171

[55] S. Robinson, A. Lintereur, J. Ely, M. Woodring, J. Stave, M. Bliss, E. Siciliano and M. Swinhoe, Neutron Multiplicity Counter Development with 6LiF/ZnS, Proceedings of the 54th Annual Meeting of the Institute of Nuclear Materials Management, July 14-18 2013, Palm Springs, California, USA. In Press.

[56] I. Pazsit and S.A. Pozzi, Nucl. Instr. and Meth. A 555 (2005) 340.

[57] E. Browne and R.B. Firestone, Table of Radioactive Isotopes, John Wiley & Sons Inc., 1986.

Page 172: By AZAREE T. LINTEREUR

172

BIOGRAPHICAL SKETCH

Azaree Lintereur received her bachelor’s degree in physics from the University of

Wisconsin Stevens Point and her master’s degree in medical physics from the

University of Florida. Azaree’s research for her master’s degree was in the exploration

of BiI3 for room-temperature gamma ray spectroscopy, culminating in the master’s

project “Theoretical Room Temperature Gamma-Ray Spectroscopy Ability of Bismuth

Tri-Iodide”. Azaree performed the research for her doctorate at Pacific Northwest

National Laboratory, where she has worked on projects involving the identification of

3He-alternative thermal neutron detectors. Azaree has presented her research at the

IEEE Nuclear Science Symposium, SPIE Hard X-Ray, Gamma-Ray, and Neutron

Detector Physics Conference, the IEEE Symposium on Radiation Measurements and

Applications, and the Annual Meeting of the Institute of Nuclear Material Management.