brief overview: mission- and aircraft-level thermal

10
1 8 7 2 Virginia Tech ARPA-E Kick-off Meeting: REEACH Program - 27 January 2021 db-1 ARPA-E Kick-off Meeting: Energy Storage and Power Generation System Integration Panel Brief Overview: Mission- and Aircraft-level Thermal Management Systems Dr. Michael von Spakovsky Robert E. Hord, Jr. Professor in Mechanical Engineering Mechanical Engineering Department (0170) Center for Energy Systems Research Virginia Tech Blacksburg, VA 24060

Upload: others

Post on 13-Jun-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Brief Overview: Mission- and Aircraft-level Thermal

1 8 7 2

Virginia Tech

ARPA-EKick-offMeeting:REEACHProgram-27January2021db-1

ARPA-EKick-offMeeting:EnergyStorageandPowerGenerationSystemIntegrationPanel

BriefOverview:Mission-andAircraft-levelThermalManagementSystems

Dr.MichaelvonSpakovskyRobertE.Hord,Jr.ProfessorinMechanicalEngineering

MechanicalEngineeringDepartment(0170)CenterforEnergySystemsResearch

VirginiaTechBlacksburg,VA24060

Page 2: Brief Overview: Mission- and Aircraft-level Thermal

1 8 7 2

Virginia Tech AircraftThermalManagementSubsystem(TMS):

Source/Sink(EnergyStorage)Issues

ARPA-EKick-offMeeting:REEACHProgram-27January2021db-2

q  Numerousheatsources:―  Cabin/cockpit―  Air-cooledavionics―  Liquid-cooledavionics―  Engine―  EPS+(generators,motors,

pumps,compressors,e-actuators,powernetwork,controllers,etc.)

q  Limitedheatsinks(energystorage):―  Ramair―  Engine―  Environment

q  MEA/AEA,DEW,andISRaddingtoandincreasingthesizeandintensitiesofheatsources

q  Survivability,compositematerials,etc.areeliminatingheatsinksorshrinkingtheircapacities ClearedforPublicRelease:88ABW-2014-4186/RQ-14-664,3SEPT2014

ColdPAOLoop

HotPAOLoop

EnvironmentalControl

Sub-system

VaporCompressionSub-SystemFuelLoop

Sub-System

RamAir

RamAir

Cabin/Cockpit

AvionicsEPS+

AvionicsEPS+

Propulsion Sub-system

heatsourceheatsink

TMSBoundary

Environment

activecooling

intermediateheatsink

Page 3: Brief Overview: Mission- and Aircraft-level Thermal

1 8 7 2

Virginia Tech TMSTrendsandTechnicalIssues

ARPA-EKick-offMeeting:REEACHProgram-27January2021db-3

q  Integratedaircraft-andmission-levelTMSdesigniscriticaldueto§  increasedheatloads§  decreasedthermalenergystorageand

rejectioncapabilities

q  Nonlinearheatloadandsinktrendsdrivenby§  MEAsandAEAs§  increasedfuelefficienciesleadingtoless

on-boardfuel§  increasedengineefficienciesleadingto

higherT’sandhigherheatloads§  high-Pfuelpumpswithhigherheatloads§  needforgreatermaneuverability(e.g.,

fueldraulicactuatorsforthrustvectoring)§  compositematerials(e.g.,forless

weight,survivability,etc.)§  DirectedEnergyWeapons(DEWs)and

highpowerISRsensors

Criticalityoftheincreasedheatloadfortypicalstate-of-the-artmilitaryaircraft(ClearedforPublicRelease,AFRLRZ09-0609)

§  safety(i.e.,fuelassinknotavailableforcommercialaircraftandbecomingmorelimitedformilitaryaircraft)

q  TMSbecomingmainelectricpowerconsum-erandelectricalpowersubsystem(EPS)requiringgreaterTMScapabilities

ClearedforPublicRelease:88ABW-2014-4186/RQ-14-664,3SEPT2014

Page 4: Brief Overview: Mission- and Aircraft-level Thermal

1 8 7 2

Virginia Tech AircraftThermalManagementSystem(TMS):

NeedforMission-/Aircraft-levelIntegratedDesign

ARPA-EKick-offMeeting:REEACHProgram-27January2021db-4

AFS-A PS ECS VC/PAOS FLS ES CHS OLS FCS

Weight (lbm) 14980.8 5418.3 1297.1 1608.1 491.5 929.5 325.3 37.8 429.3

% empty weight 58.7% 21.2% 5.1% 6.3% 1.9% 3.6% 1.3% 0.1% 1.7%

OptimizedAAFTMSrepresentsonly13%to11.5%ofthetotalemptyweightoftheaircraftyetplaysacriticalroleinensuringthermallimitsarenotbreached

Mission-andaircraft-leveloptimizedsupersonicair-to-air

fighter(AAF)results:1st

ILGOiteration

Source:adaptedfromK.Smith,2009,M.S.Thesis,VirginiaTech.

Wetasopposedtodryweight

values

AFS-A PS ECS VC/PAOS FLS ES CHS OLS FCS

Weight (lbm) 9628.4 3678.8 749.5 909.9 280.4 899.5 325.3 37.8 404.4

% empty weight 56.9% 21.7% 4.4% 5.4% 1.7% 5.3% 1.9% 0.2% 2.4%

Mission-andaircraft-leveloptimizedsupersonicAAFresults:

Globaloptimum

OptimizingtheTMSindependentlyofotheraircraftsub-systemsandthemissionwillsignificantlyaltertheTMSresultsandmaycausethermallimitsto

bebreached

Remainingwithinthermallimitsmakesthedifferencebetweenachievingamissionornot

ClearedforPublicRelease:88ABW-2014-4186/RQ-14-664,3SEPT2014

AAFandTMSreduction:53.4%

and43%

Page 5: Brief Overview: Mission- and Aircraft-level Thermal

1 8 7 2

Virginia Tech Aircraft-andMission-levelMDO:

OptimalUseofFLSasHeatSink

Fueltanktemperatureversustimeovertheentiremissionfortheoptimalvehicle

toff–takeoffscc1–1stsubsoniccruise/climbcap–combatairpatrolcacc–combataccelerationscc2–2ndsubsoniccruise/climbloit–loiter

298

300

302

304

306

308

310

312

314

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

Time (Sec)

Tem

pera

ture

(K)

With AFS degrees of freedom Without AFS degrees of freedom

scc1

cap

cacc

scc2

loit

toff

Source:adaptedfromD.Rancruel,2002,M.S.Thesis,VirginiaTech.

ARPA-EKick-offMeeting:REEACHProgram-27January2021db-5

ClearedforPublicRelease:88ABW-2014-4186/RQ-14-664,3SEPT2014

Page 6: Brief Overview: Mission- and Aircraft-level Thermal

1 8 7 2

Virginia Tech TMSSynergieswiththe

ElectricalPowerSubsystem(EPS)

ARPA-EKick-offMeeting:REEACHProgram-27January2021db-6

q  EPS-TMSdesignoptimizationwouldtakeadvantageofbenefitsresultingfromthermal-electricalenergymanagementto§  reducepeakpowerdemands§  reduceoverallinstalledenergyconversion,

storage,andtransportcapacities

q  EPS-TMSdesignoptimizationwouldquantifythebenefitsofsynergiestoimproveTMS(VCSandACM)performancevia,e.g.,§  electronicstocontrolthepressuresatwhich

compressorscutinandout§  electronicexpansionvalvesfortemperature

control§  separatehighandlowpressureelectronic

switchestopreventcompressors,etc.fromoperatingoutsideofsafelimits

§  electroniccontrolstoadjustcompressoroperationfordifferingcoolingloadsandreducedenergyconsumption

©2007TheBoeingCompany

q  EPS-TMSdesignoptimizationwouldquantifythebenefitsofsynergiesfortheEPS§  forlocalizedtemperaturecontrolof

powerelectronics(e.g.,thermoelectricgeneratorsandcoolers,heatpipes,…)

§  foraircraftmonitoringandpredictivemaintenance(e.g.,engineandaircraftskinoverheating,deicing,etc.)

§  forelectricallydrivenECSs(e.g.,usingfuelcells,…)

ClearedforPublicRelease:88ABW-2014-4186/RQ-14-664,3SEPT2014

Page 7: Brief Overview: Mission- and Aircraft-level Thermal

1 8 7 2

Virginia Tech EPSLocalCoolingTechniques

db-7ARPA-EKick-offMeeting:REEACHProgram-27January2021

ManylocalcoolingchoicesfortheEPS,allofwhichmustultimatelyinterfacewiththeTMS,particularlyduetosurvivabilityrequirementsandtheuseofcompositematerials:

q  Heatspreadingq  Aircooling

§  piezofans§  syntheticjetcooling(topright)§  nano-lightning(bottomleft)

q  LiquidCooling§  heatpipes§  coldplates(topleft)§  microchannels§  electrohydrodynamic(bottom

right)§  electrowetting

q  Liquidmetalcooling

q  Spraycoolingq  Liquidjetimpingementq  Thermo-chemical

accumulators

q  Immersioncoolingq  Solidstatecooling

§  thermoelectric§  superlattice§  heterostructure§  thermionic§  thermotunneling Source:adaptedfromDr.WernerJ.A.Dahm,ASU,Thermal

Sciences&MaterialsWorkshop,Kettering,OH,16-17August2011.

ClearedforPublicRelease:88ABW-2014-4186/RQ-14-664,3SEPT2014

Page 8: Brief Overview: Mission- and Aircraft-level Thermal

1 8 7 2

Virginia Tech HeatPipesforHighExternalThermalLoads

8

q  ExamplesofheatpipesforthermallymanagingtheheatloadsatleadingedgesincludeD-Shapedheatpipes,I-coreheatpipes,andheatspreaders.

q  D-shapedandI-coreheatpipesarebuiltdirectlyintothematerialthatformstheleadingedge(seebelow).Thedisadvantageisthatitcanleadtodeformationoftheheatpipesduringthemanufacturingprocesswhentheleading-edgematerialisbentintoitsfinalshape.

q  Twotypesofheatspreadersareshownbelow,aperiodicverticalI-truss-system(left)andaperiodictriangular-truss-system(right)

q  Bothprovidestructuralsupporttotheleadingedge,increasingthebendingstiffnessandcompressivestrength,whilethetriangular-trusssystemallowsforflowinmultipledirections,facilitatingtheflowofvapor. Source:S.D.Kasen,ThermalManagement

atHypersonicLeadingEdges,Ph.D.dissertation,UniversityofVirginia(2013)

ARPA-EKick-offMeeting:REEACHProgram-27January2021

Page 9: Brief Overview: Mission- and Aircraft-level Thermal

1 8 7 2

Virginia Tech PhaseChangeMaterialsforHighInternal

ThermalLoadsq  PCMenergystoragecanaddresscriticalthermalloadsonhighperformanceaircraftsinceit

providesameansforcoolingincreasedthermalloadsduetothe§  Increaseduseofcompositesontheaircraftskin;§  Increasedpowerrequirementsfornewsystems(e.g.,MEA/AEA,DEWs,ISRsensors,etc.);§  Reducedornoorrestrictedfuelonboard.

q  PCMsarecontainedintankswithinteriormatricesmadeofhighconductingmaterials(e.g.,carbonfoam)tohelpdistributeheattothePCM.

Source:Reed,W.C.,vonSpakovsky,M.R.,andRaj,P.,ComparisonofHeatExchangerandThermalEnergyStorageDesignsforAircraftThermalManagementSystems,AIAASciTec(2016).

Pentadecane Hexadecane Octadecane

EffectiveThermalConductivity W/m/K 220.16 165.12 165.12

EffectiveDensity kg/m^3 1054.4 1057.1 1098.3

PhysicalparametersofPCMmaterials.

Pentadecane Hexadecane Octadecane

MeltTemperature °C 10 18 27ThermalConductivity W/m/K 0.2 0.15 0.15

Density kg/m^3 768 770 800LatentHeatofFusion kJ/kg 205 237 244

PhysicalparametersofPCM-carbonfoamcomposite.

ARPA-EKick-offMeeting:REEACHProgram-27January2021

Page 10: Brief Overview: Mission- and Aircraft-level Thermal

1 8 7 2

Virginia Tech SomeConclusions

ARPA-EKick-offMeeting:REEACHProgram-27January2021db-10

q  Numberofheatsourceshasalwaysbeenlarge,whilethenumberofheatsinkshasalwaysbeenlimited

q MEA/AEA,DEW,ISR,increasedengineefficiencies,high-Pfuelpumps,theneedforgreatermaneuverability,etc.areaddingtoandincreasinginahighlynon-linearfashionthesizeandintensitiesofheatsources

q  Survivability,compositematerials,increasedfuelefficiencies,safety,etc.areeliminatingheatsinksorshrinkingtheircapacities

q  Reachingthermallimitsarerealthreatstothecompletionofmissionsandtothedesignandconstructionofcomplexmissions

q  TMSisbecomingthemainelectricpowerconsumerandtheEPSisrequiringgreaterTMScapabilities

q  Using“dryweight”toassessTMSviabilitymustbereplacedwithanassessmentof“wetweight”inordertoaddresstheseriousissueofthermallimits.

q  Assessmentmustbedoneasearlyinthedesignprocessaspossible,i.e.,duringtheconceptualdesignphase

q  Theneedforamission-andaircraft-levelMDA/MDOconceptualdesignframeworkisacute.

ClearedforPublicRelease:88ABW-2014-4186/RQ-14-664,3SEPT2014