bpi 2011 workshop r2 as presented

34
BPI Conference & Exhibition Long Beach, 2 Nov 2011 Practical, Robust Single-Use Scale-up, From Benchtop to Production

Upload: ken-clapp

Post on 14-Jul-2015

405 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: BPI 2011 Workshop R2 As Presented

BPI Conference & ExhibitionLong Beach, 2 Nov 2011

Practical, Robust Single-Use Scale-up, From Benchtop to Production

Page 2: BPI 2011 Workshop R2 As Presented

Outline

• Introduction

• XDR-10 Product Highlights

• XDR Design Space

• Comparative Process Data

• Questions & Discussion• Questions & Discussion

Page 3: BPI 2011 Workshop R2 As Presented

FlexFactory® Biomanufacturing Facility

Equipment Platform

Services Platform

Integration & Process Know-How

FlexFactory

Page 4: BPI 2011 Workshop R2 As Presented

Proven Technology – FlexFactory/XDR

• Representative application data and history

Page 5: BPI 2011 Workshop R2 As Presented

Product Definition

XDR-10™ is…a small scale version of the XDR-2000 allowing “linear scalability” up to 2000L in the same single-use platform while maintaining constant power and shear from bench top to production.

(Patent Pending)

Page 6: BPI 2011 Workshop R2 As Presented

Major Uses

1. Process Development 2. GMP Production

• Seed train for larger scale

• Satellite bioreactor – scale down model

• Larger scale trouble-shooting

• GMP standard

• IQ/OQ validation

• Process scale up & scale down

• Tech transfer

• Process optimization

• Inoculum scale-up• IQ/OQ validation

• Easy to handle

• Consistent automation platform

• Toxicity test

• Toxicity test

• Consistent materials

Page 7: BPI 2011 Workshop R2 As Presented

XDR 10 - Vessel

Tubing Manager

Light Source Blocked

Vessel

Heating Blanket

Exhaust Filter Heater

Viewing Window

Probe Support

Heating Blanket

Probe ports

Agitator Motor

Heating Blanket

Page 8: BPI 2011 Workshop R2 As Presented

XDR 10 - Controller

Touch Screen (17”)

Industrial

pH/DO Transmitter

E-stop/ Reset

Process Pumps

Process Pumps

[Front Panel]

Shown with optional 4th pump (WM313);

standard option includes two (2) WM114 and one (1) WM313 pumps

E-stop/ Reset

Page 9: BPI 2011 Workshop R2 As Presented

XDR GMP Single-Use Bioreactors

50 L

200 L

500 L

1000 L

2000 L

10 L

Page 10: BPI 2011 Workshop R2 As Presented

XDR Single-Use BioreactorDesign Rational

• Scalable and turn-key, intended for GMP manufacturing

• KLA to support 100x106 cells/mL & maintain CO2 <100mm Hg

• Lowest shear configuration

•• Mixing, or blend times < 1 minute

• Simple design – low mass impeller, robust configuration

• Optimized sparge position – below the impeller in the shear field

• Flexibility in sparger configuration

Page 11: BPI 2011 Workshop R2 As Presented

System Characterization

Page 12: BPI 2011 Workshop R2 As Presented

XDR: Unique Impeller Design

• Optimal impeller-to-sparger orientation

• Tank bottom tank location for uniformity gas distribution – analogous to conventional

• Impeller profile optimized to achieve scalable mixing times

• No seals - reduced contamination risk.•

• Low profile for ease of installation and small storage needs

Page 13: BPI 2011 Workshop R2 As Presented

Type Detail Np

Power #

Rushton 90o turbine

(4 or 6 blade)

4.2 - 5.2

EE 45o pbt (2 or 3 blade) 1.15 – 2.00

XDR: Impeller – Design Comparison

EE 45 pbt (2 or 3 blade)

(abec, app, BB)

1.15 – 2.00

XDR M40E 40o pitched blade

(3 or 4 blade)

0.72 – 1.50

A315 34-38o hydrofoil

(3 or 4 blade)

0.30 – 0.75

Page 14: BPI 2011 Workshop R2 As Presented

Common bioreactor “degrees of freedom” process control tools

Agitation

Sparge slpm

Sparge Composition

Headspace Overlay

Normalized Performance

Target

1.5

CO2

Interfacial Shear

Hydrodynamic Shear

CO2

Interfacial Shear

Hydrodynamic Shear

Scale-Up/Tech Transfer Obstacles

1.0

0.5

Page 15: BPI 2011 Workshop R2 As Presented

XDRs include 2 additional process control tools for better performance = “6 degrees of freedom”

Normalized Performance

Target

1.5

CO2 Stripping Sparger

Multiple Sparge Elements

Agitation

Sparge slpm

CO2

Interfacial Shear

Hydrodynamic Shear

CO2

Interfacial Shear

Hydrodynamic Shear

Scale-Up/Tech Transfer Obstacles

1.0

0.5

Sparge slpm

Sparge Composition

Headspace Overlay

Page 16: BPI 2011 Workshop R2 As Presented

XDR GMP Single-Use Bioreactorside-by-side performance assessment

Tit

er

0 2 4 6 8 10 12 14

Batch Age (day)

Tit

er

Solid= 500L Stainless Dashed= XDR500

Page 17: BPI 2011 Workshop R2 As Presented

XDR GMP Single-Use Bioreactorside-by-side performance assessment

8%

10%

12%

14%

dC

O2 (

%)

0%

2%

4%

6%

8%

0 2 4 6 8 10 12 14

Batch Age (day)

dC

O2 (

%)

Solid= 500L Stainless Dashed= XDR500

Page 18: BPI 2011 Workshop R2 As Presented

The XDR Mass transfer predictability

Sintered Sparger

35

40

The XDR Mass transfer predictability

drilled hole sparger

35

40

KLaPredicted and measured to confirm scale-up performance

Data show the model is a good predictor of performance across scales

0

5

10

15

20

25

30

35

0 10 20 30 40

Predicted KLA, (1/h)

Ob

serv

ed

KL

A,

(1/h

)

KLA Predicted

XDR200

XDR500

XDR1000

XDR2000

0

5

10

15

20

25

30

35

0 10 20 30 40

Predicted KLA, (1/h)

Ob

serv

ed

KL

A,

(1/h

)

XDR200

XDR2000

XDR50

Page 19: BPI 2011 Workshop R2 As Presented

Impact of XDR Sparger Selection on KLA

15

20

25

KL

A (

1/h

)

SS Type-2 (EE)

SS Type-3 (Hydrofoil)

SS Type-1 (Rushton/pb)

Improved KLa using XDR Sparge FlexibilityXDR Paradigm Shift – Multiple Spargers Increase Process Options

0

5

10

15

0 20 40 60 80 100 120

Agitation rate, P/V (W/m^3)

KL

A (

1/h

) SS Type-1 (Rushton/pb)

XDR 1.0 mm dh

XDR 2 µ

XDR 20 µ

XDR 0.5 mm dh

Page 20: BPI 2011 Workshop R2 As Presented

XDR10 at 10L Vw, 2 micron sparge

300

400

500

P/V

(W

/m^

3)

Design Space applicationsReview DS goals and applications

Design Space Goals:

1. Establish equipment operating conditions

(Find the acceptable range)

2. Make specific RPM & Aeration recommendations

(S-U equivalence)

P/V vs. KLa:

1. Shear Limit:ACKUP-S12)

Most commonly used – Eddy scaleShear Limit

Process O2 limit

CO2 limit

Interfacial/foam limit

Bounded

0

100

200

0 10 20 30 40 50 60 70 80 90 100

KLA (1/h)

P/V

(W

/m^

3)

Vs=0.00008 m/s (0.13slpm) Vs=0.0005 m/s (1.0slpm)

Most commonly used – Eddy scale

2. Minimum Mixing Limit: (see BACKUP-S13/14)

Assures uniform gas/solids dispersion

3. O2 Limit:

Minimum KLa to sustain Process OUR

4 CO2 Limit:

Process dCO2 boundary (Typ. 100 mmHg)

5 Interfacial Foam Limit: (BACKUP-S15-17)

for drilled hole; exit velocity < 40 m/s

for sintered disk; SLPM/disk ≤ 3 SLPM

DESIGN SPACE

Minimum Mixing Limit

kLa=A(P/V)α * (Vs)β

KLa

Bounded

design

space

Page 21: BPI 2011 Workshop R2 As Presented

XDR GMP Single-Use BioreactorFlexibility- working volume range

• Performance equivalence demonstrated on an equal P/V basis for:

• XDR200

• XDR500

XDR Min Volume (L)

Max Volume (L)

10 4.5* 10

50 10 50

The XDR 5/1 volume range

• XDR500

• XDR2000

50 10 50

200 40 200

500 100 500

1,000 200 1,000

2,000 400 2,000

* XDR-10 has min working volume of 4.5L (2.2:1 turn down)

Page 22: BPI 2011 Workshop R2 As Presented

XDR-10 Design Space Agitation and aeration requirements: 20x106 cells/mL

XDR10 at 10L Vw, 2 micron sparge

200

300

400

500

P/V

(W

/m^

3)

XDR10 at 4L Vw, 2 Micron sparge

200

300

400

500

P/V

(W

/m^

3)

0

100

0 10 20 30 40 50 60 70 80 90 100

KLA (1/h)

10L bb (2) pbt (250rpm, 0.0095vvm, 67%O2, 100mmHg)

Equal P/V (112rpm, 0,015 vvm, 61%O2, 100mmHg))

Vs=0.00008 m/s (0.13slpm)

Vs=0.0005 m/s (1.0slpm)

0

100

0 10 20 30 40 50 60 70 80 90 100

KLA (1/h)

10L bb (2) pbt (250rpm, 0.0095vvm, 67%O2, 100mmHg)

Vs=0.0005 m/s (1.0slpm)

Vs=0.00003 m/s (0.06slpm)

Equal P/V TT (82rpm,0.015vvm,100%O2, 100mmHg)

10L basic brx XDR10 (10L) XDR10 (4L)

P/V (W/m^3) 48 48 48

Impeller shear (1/s) 13.5 10.7 7.8

Bulk shear (1/s) 23.6 10.6 7.7

Kla (1/h) Kla (1/h)

Page 23: BPI 2011 Workshop R2 As Presented

Design Space XDR10 to XDR50 SU20x106 cells/mL

XDR10 at 10L Vw, 2 micron sparge

300

400

500

P/V

(W

/m^

3)

XDR50 at 50L Vw, 2 Micron sparge

200

250

300

P/V

(W

/m^

3)

0

100

200

0 10 20 30 40 50 60 70 80 90 100

KLA (1/h)

P/V

(W

/m^

3)

10L bb (2) pbt (250rpm, 0.0095vvm, 67%O2, 100mmHg)

Equal P/V (112rpm, 0,015 vvm, 61%O2, 100mmHg))

Vs=0.00008 m/s (0.13slpm)

Vs=0.0005 m/s (1.0slpm)

0

50

100

150

0 10 20 30 40 50

KLA (1/h)

P/V

(W

/m^

3)

Vs=0.0013 m/s (8 slpm)

Vs=0.00012 m/s (0.7 slpm)

XDR50 =P/V:(90 rpm, 0.024vvm, 74%O2, 100mmHg)

XDR10 P/V=48 (112rpm, 0,015 vvm, 61%O2, 100mmHg))

Kla (1/h) Kla (1/h)

Page 24: BPI 2011 Workshop R2 As Presented

Design Space XDR10 to XDR200 SU20x106 cells/mL

XDR10 at 10L Vw, 2 micron sparge

300

400

500

P/V

(W

/m^

3)

XDR200 at 200L, 2 Micron sparger

60

80

100

P/V

(W

/m^

3)

0

100

200

0 10 20 30 40 50 60 70 80 90 100

KLA (1/h)

P/V

(W

/m^

3)

10L bb (2) pbt (250rpm, 0.0095vvm, 67%O2, 100mmHg)

Equal P/V (112rpm, 0,015 vvm, 61%O2, 100mmHg))

Vs=0.00008 m/s (0.13slpm)

Vs=0.0005 m/s (1.0slpm)

0

20

40

0 10 20 30 40 50 60

KLA (1/h)P

/V (

W/m

^3)

Vs=0.0013 m/s (20 slpm)

Vs=0.000259 m/s (3.9 slpm)

XDR200=P/V (157 rpm, 0.011vvm, 53%O2, 100 mmHg)

XDR10 P/V=48 (112rpm, 0,015 vvm, 61%O2, 100mmHg))

Kla (1/h) Kla (1/h)

Page 25: BPI 2011 Workshop R2 As Presented

Design Space XDR10 to XDR500 20x106 cells/mL

XDR10 at 10L Vw, 2 micron sparge

300

400

500

P/V

(W

/m^

3)

XDR500, 2 micron sparge

60

80

100

P/V

(W

/m^

3)

32

0

100

200

0 10 20 30 40 50 60 70 80 90 100

KLA (1/h)

P/V

(W

/m^

3)

10L bb (2) pbt (250rpm, 0.0095vvm, 67%O2, 100mmHg)

Equal P/V (112rpm, 0,015 vvm, 61%O2, 100mmHg))

Vs=0.00008 m/s (0.13slpm)

Vs=0.0005 m/s (1.0slpm)

0

20

40

0 10 20 30 40 50

KLA (1/h)P

/V (

W/m

^3)

XDR10 P/V=48 (112rpm, 0,015 vvm, 61%O2, 100mmHg))

Equal P/V (150rpm, 0,011 vvm, 35%O2, 100mmHg)

Vs=0.0002 m/s (5.7slpm)

Vs=0.00073 m/s (20.0slpm)

Kla (1/h) Kla (1/h)

Page 26: BPI 2011 Workshop R2 As Presented

Design Space XDR10 to XDR1000 SU20x106 cells/mL

XDR10 at 10L Vw, 2 micron sparge

300

400

500

P/V

(W

/m^

3)

XDR1000, 2 micron sparge

60

80

100

P/V

(W

/m^

3)

0

100

200

0 10 20 30 40 50 60 70 80 90 100

KLA (1/h)

P/V

(W

/m^

3)

10L bb (2) pbt (250rpm, 0.0095vvm, 67%O2, 100mmHg)

Equal P/V (112rpm, 0,015 vvm, 61%O2, 100mmHg))

Vs=0.00008 m/s (0.13slpm)

Vs=0.0005 m/s (1.0slpm)

0

20

40

0 10 20 30

KLA (1/h)P

/V (

W/m

^3)

XDR10 P/V=48 (112rpm, 0,015 vvm, 61%O2, 100mmHg))Equal P/V (140rpm, 0,007 vvm, 44%O2, 100mmHg)Vs=0.0002 m/s (5.7slpm)Vs=0.00055 m/s (24.0slpm)XDR1000 drive limitEqual MAX XDR2000 P/V (120rpm, 0,007 vvm, 46%O2, 100mmHg)

Kla (1/h) Kla (1/h)

Page 27: BPI 2011 Workshop R2 As Presented

Design Space XDR10 to XDR2000 SU20x106 cells/mL

XDR10 at 10L Vw, 2 micron sparge

300

400

500

P/V

(W

/m^

3)

XDR2000, 20 micron sparge

30

40

50

P/V

(W

/m^

3)

0

100

200

0 10 20 30 40 50 60 70 80 90 100

KLA (1/h)

P/V

(W

/m^

3)

10L bb (2) pbt (250rpm, 0.0095vvm, 67%O2, 100mmHg)

Equal P/V (112rpm, 0,015 vvm, 61%O2, 100mmHg))

Vs=0.00008 m/s (0.13slpm)

Vs=0.0005 m/s (1.0slpm)

0

10

20

0 5 10 15

KLA (1/h)P

/V (

W/m

^3)

XDR10 P/V=48 (112rpm, 0,015 vvm, 61%O2, 100mmHg))

Max P/V=33 (112rpm, 0,011 vvm, 47%O2, 100mmHg)

Vs=0.0003 m/s (22.0slpm)

Vs=0.0005 m/s (36.0slpm)

XDR2000 drive limit

Kla (1/h) Kla (1/h)

Page 28: BPI 2011 Workshop R2 As Presented

Confidential

Page 29: BPI 2011 Workshop R2 As Presented
Page 30: BPI 2011 Workshop R2 As Presented
Page 31: BPI 2011 Workshop R2 As Presented
Page 32: BPI 2011 Workshop R2 As Presented
Page 33: BPI 2011 Workshop R2 As Presented
Page 34: BPI 2011 Workshop R2 As Presented

Thank you

DISCUSSION