boundary conditions

33
EE 217 Lecture 2 Boundary Conditions 1s1415 Revision August 2015

Upload: mclp2000

Post on 26-Jan-2016

222 views

Category:

Documents


3 download

DESCRIPTION

Electromagnetics lecture

TRANSCRIPT

Page 1: Boundary Conditions

EE 217

Lecture 2 Boundary Conditions

1s1415 Revision August 2015

Page 2: Boundary Conditions

Solution to Maxwell’s Equations

β€’ Unknown: 𝑬𝑬, 𝑫𝑫 or 𝑯𝑯, 𝑩𝑩 at a certain region in space β€’ Maxwell’s equations Differential equations β€’ Solution to differential equations

– General solution – Particular solution

β€’ Boundary (initial) conditions

2

Page 3: Boundary Conditions

Boundary Conditions

Electrostatic Boundary Conditions

3

Page 4: Boundary Conditions

Fields at a Boundary

β€’ Fields can be split into normal and tangential components at the boundary

4 Pozar. Microwave Engineering. 4th ed. p. 12.

Page 5: Boundary Conditions

Gauss’s Law at Boundary

β€’ 𝒏𝒏� Normal vector β€’ Δ𝑆𝑆 Area of circle β€’ πœŒπœŒπ‘†π‘† Surface charge density (C/m2) β€’ 𝐷𝐷𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛 Electric flux normal to boundary

5 Pozar. Microwave Engineering. 4th ed. p. 13.

Page 6: Boundary Conditions

Gauss’s Law at Boundary

οΏ½ 𝑫𝑫 β‹… 𝑑𝑑𝒔𝒔𝑆𝑆

= 𝑄𝑄 = οΏ½ πœŒπœŒπ‘‘π‘‘πœŒπœŒπ‘‰π‘‰

β€’ Let β„Ž β†’ 0, tangential component through cylinder wall becomes irrelevant

6 Pozar. Microwave Engineering. 4th ed. p. 13.

Page 7: Boundary Conditions

Gauss’s Law at Boundary

οΏ½ 𝑫𝑫 β‹… 𝑑𝑑𝒔𝒔𝑆𝑆

= 𝑄𝑄 = οΏ½ πœŒπœŒπ‘‘π‘‘πœŒπœŒπ‘‰π‘‰

𝐷𝐷𝑛𝑛𝑛Δ𝑆𝑆 βˆ’ 𝐷𝐷𝑛𝑛𝑛Δ𝑆𝑆 = πœŒπœŒπ‘†π‘†Ξ”π‘†π‘† 𝒏𝒏� β‹… π‘«π‘«πŸπŸ βˆ’ π‘«π‘«πŸπŸ = πœŒπœŒπ‘†π‘†

7

Pozar. Microwave Engineering. 4th ed. p. 13.

Page 8: Boundary Conditions

Gauss’s Law at Boundary

8

β€’ Normal electric flux at boundary

𝐷𝐷𝑛𝑛𝑛 βˆ’ 𝐷𝐷𝑛𝑛𝑛 = πœŒπœŒπ‘†π‘† 𝒏𝒏� β‹… π‘«π‘«πŸπŸ βˆ’ π‘«π‘«πŸπŸ = πœŒπœŒπ‘†π‘†

β€’ Normal magnetic flux at boundary

– There is no free magnetic charge

𝐡𝐡𝑛𝑛𝑛 = 𝐡𝐡𝑛𝑛𝑛 𝒏𝒏� β‹… π‘©π‘©πŸπŸ = 𝒏𝒏� β‹… π‘©π‘©πŸπŸ

Page 9: Boundary Conditions

Faraday’s Law at Boundary

β€’ 𝒏𝒏� Normal vector β€’ Δ𝑙𝑙 Length of rectangular path β€’ 𝑀𝑀𝑆𝑆𝑛𝑛 Magnetic surface current density (V/m) β€’ 𝐸𝐸𝑑𝑑𝑛, 𝐸𝐸𝑑𝑑𝑛 Electric field tangential to boundary

9

Page 10: Boundary Conditions

Faraday’s Law at Boundary

οΏ½ 𝑬𝑬 β‹… 𝑑𝑑𝒍𝒍𝐢𝐢

= βˆ’πœ•πœ•πœ•πœ•πœ•πœ•οΏ½ 𝑩𝑩 β‹… 𝑑𝑑𝒔𝒔𝑆𝑆

βˆ’ οΏ½ 𝑴𝑴 β‹… 𝑑𝑑𝒔𝒔𝑆𝑆

β€’ Let β„Ž β†’ 0, βˆ«π‘©π‘© β‹… 𝑑𝑑𝒔𝒔 β†’ 0 𝐸𝐸𝑑𝑑𝑛Δ𝑙𝑙 βˆ’ 𝐸𝐸𝑑𝑑𝑛Δ𝑙𝑙 = βˆ’π‘€π‘€π‘†π‘†Ξ”π‘™π‘™ π‘¬π‘¬πŸπŸ βˆ’ π‘¬π‘¬πŸπŸ Γ— 𝒏𝒏� = 𝑴𝑴𝑺𝑺

10

Page 11: Boundary Conditions

Faraday’s Law at Boundary

11

β€’ Tangential electric field at boundary

𝐸𝐸𝑑𝑑𝑛 βˆ’ 𝐸𝐸𝑑𝑑𝑛 = βˆ’π‘€π‘€π‘†π‘† π‘¬π‘¬πŸπŸ βˆ’ π‘¬π‘¬πŸπŸ Γ— 𝒏𝒏� = 𝑴𝑴𝑺𝑺 β€’ Tangential magnetic field at boundary

– Apply Ampere’s law

𝐻𝐻𝑑𝑑𝑛 βˆ’ 𝐻𝐻𝑑𝑑𝑛 = 𝐽𝐽𝑆𝑆 𝒏𝒏� Γ— π‘―π‘―πŸπŸ βˆ’ π‘―π‘―πŸπŸ = 𝑱𝑱𝑺𝑺

Page 12: Boundary Conditions

Boundary Conditions

12

𝒏𝒏� β‹… π‘«π‘«πŸπŸ βˆ’ π‘«π‘«πŸπŸ = πœŒπœŒπ‘†π‘†

𝒏𝒏� β‹… π‘©π‘©πŸπŸ = 𝒏𝒏� β‹… π‘©π‘©πŸπŸ

π‘¬π‘¬πŸπŸ βˆ’ π‘¬π‘¬πŸπŸ Γ— 𝒏𝒏� = 𝑴𝑴𝑺𝑺

𝒏𝒏� Γ— π‘―π‘―πŸπŸ βˆ’ π‘―π‘―πŸπŸ = 𝑱𝑱𝑺𝑺

Page 13: Boundary Conditions

2 Lossless Dielectric Materials

13

𝒏𝒏� β‹… π‘«π‘«πŸπŸ βˆ’ π‘«π‘«πŸπŸ = πœŒπœŒπ‘†π‘† = 0

𝒏𝒏� β‹… π‘©π‘©πŸπŸ = 𝒏𝒏� β‹… π‘©π‘©πŸπŸ

π‘¬π‘¬πŸπŸ βˆ’ π‘¬π‘¬πŸπŸ Γ— 𝒏𝒏� = 𝑴𝑴𝑺𝑺 = 0

𝒏𝒏� Γ— π‘―π‘―πŸπŸ βˆ’ π‘―π‘―πŸπŸ = 𝑱𝑱𝑺𝑺 = 0

Page 14: Boundary Conditions

2 Lossless Dielectric Materials

14

𝒏𝒏� β‹… π‘«π‘«πŸπŸ = 𝒏𝒏� β‹… π‘«π‘«πŸπŸ

𝒏𝒏� β‹… π‘©π‘©πŸπŸ = 𝒏𝒏� β‹… π‘©π‘©πŸπŸ

𝒏𝒏� Γ— π‘¬π‘¬πŸπŸ = 𝒏𝒏� Γ— π‘¬π‘¬πŸπŸ

𝒏𝒏� Γ— π‘―π‘―πŸπŸ = 𝒏𝒏� Γ— π‘―π‘―πŸπŸ β€’ Normal components of 𝑫𝑫 and 𝑩𝑩 are continuous β€’ Tangential components of 𝑬𝑬 and 𝑯𝑯 are continuous

Page 15: Boundary Conditions

PC (1) to Lossless Dielectric (2)

β€’ Electrons (charges) inside a perfect conductor? – Electrons will repel each other, will try to get as far away as

possible from each other – But they can’t get out of the conductor – No charges remain inside, all charges are on the surface – No electric fields inside conductor (try Gauss’s Law)

15 Conductor cross section Conductor cross section

Page 16: Boundary Conditions

PC (1) to Lossless Dielectric (2)

β€’ Electrons (charges) inside a perfect conductor? – What about current? – Electrons will repel each other, will try to get as far away as

possible from each other – No current inside, only surface current – No magnetic field inside conductor (try Ampere’s law)

16 Conductor cross section Conductor cross section

Page 17: Boundary Conditions

PC (1) to Lossless Dielectric (2)

17

𝒏𝒏� β‹… π‘«π‘«πŸπŸ βˆ’ π‘«π‘«πŸπŸ = πœŒπœŒπ‘†π‘†, π‘«π‘«πŸπŸ = 0

𝒏𝒏� β‹… π‘©π‘©πŸπŸ = 𝒏𝒏� β‹… π‘©π‘©πŸπŸ, π‘©π‘©πŸπŸ = 0

π‘¬π‘¬πŸπŸ βˆ’ π‘¬π‘¬πŸπŸ Γ— 𝒏𝒏� = 𝑴𝑴𝑺𝑺 = 0, π‘¬π‘¬πŸπŸ = 0

𝒏𝒏� Γ— π‘―π‘―πŸπŸ βˆ’ π‘―π‘―πŸπŸ = 𝑱𝑱𝑺𝑺, π‘―π‘―πŸπŸ = 0

Page 18: Boundary Conditions

PC (1) to Lossless Dielectric (2)

18

𝒏𝒏� β‹… π‘«π‘«πŸπŸ = πœŒπœŒπ‘†π‘†

𝒏𝒏� β‹… π‘©π‘©πŸπŸ = 0,

𝒏𝒏� Γ— π‘¬π‘¬πŸπŸ = 0

𝒏𝒏� Γ— π‘―π‘―πŸπŸ = 𝑱𝑱𝑺𝑺 β€’ Perfect conductor A.K.A. electric wall β€’ Tangential components of 𝑬𝑬 are β€œshorted out”

Page 19: Boundary Conditions

Boundary Conditions

Boundary Conditions for AC Fields

19

Page 20: Boundary Conditions

Continuity for AC Fields

β€’ Time-varying case: 𝑬𝑬 and 𝑯𝑯 are interdependent

𝛻𝛻 Γ— 𝑬𝑬 = βˆ’πœ•πœ•π‘©π‘©πœ•πœ•πœ•πœ•

βˆ’π‘΄π‘΄π’”π’”

𝛻𝛻 Γ— 𝑯𝑯 =πœ•πœ•π‘«π‘«πœ•πœ•πœ•πœ•

+ 𝑱𝑱𝒔𝒔

β€’ Normal and tangential components are interdependent

β€’ At a general boundary, – Can solve tangential component continuity – Solution can be checked using normal components – 𝑫𝑫 can be discontinuous! How?

20

Page 21: Boundary Conditions

Boundary Conditions

Good Conductors

21

Page 22: Boundary Conditions

Good Conductor

β€’ Good but not perfect – 𝜎𝜎 is large but finite

β€’ Conduction current follows Ohm’s law: 𝑱𝑱 = πœŽπœŽπ‘¬π‘¬

β€’ Ampere’s law (phasor simplification): 𝛻𝛻 Γ— 𝑯𝑯 = 𝑗𝑗𝑗𝑗𝑫𝑫 + 𝑱𝑱 𝛻𝛻 Γ— 𝑯𝑯 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑬𝑬 + πœŽπœŽπ‘¬π‘¬

𝛻𝛻 Γ— 𝑯𝑯 = 𝑗𝑗𝑗𝑗𝑗𝑗 + 𝜎𝜎 𝑬𝑬 β‰ˆ πœŽπœŽπ‘¬π‘¬ – For a good conductor, 𝑗𝑗𝑗𝑗 β‰ͺ 𝜎𝜎

22

Page 23: Boundary Conditions

Good Conductor

β€’ Using the 𝛻𝛻 β‹… 𝛻𝛻 Γ— 𝑨𝑨 = 0, 𝛻𝛻 β‹… 𝛻𝛻 Γ— 𝑯𝑯 = 𝑗𝑗𝑗𝑗𝑗𝑗 + 𝜎𝜎 𝛻𝛻 β‹… 𝑬𝑬 = 0

𝛻𝛻 β‹… 𝑬𝑬 = 0

β€’ Thus, inside a good conductor, 𝛻𝛻 β‹… 𝑗𝑗𝑬𝑬 = 𝛻𝛻 β‹… 𝑫𝑫 = 𝜌𝜌 = 0

– Zero charge density

23

Page 24: Boundary Conditions

Field Penetration

β€’ Faraday’s law (phasor simplification), 𝛻𝛻 Γ— 𝑬𝑬 = βˆ’π‘—π‘—π‘—π‘—π‘©π‘© βˆ’π‘΄π‘΄ 𝛻𝛻 Γ— 𝑬𝑬 = βˆ’π‘—π‘—π‘—π‘—π‘—π‘—π‘―π‘―

β€’ Using the 𝛻𝛻 Γ— 𝛻𝛻 Γ— 𝑨𝑨 = 𝛻𝛻 𝛻𝛻 β‹… 𝑨𝑨 βˆ’ 𝛻𝛻𝑛𝑨𝑨, 𝛻𝛻 Γ— 𝛻𝛻 Γ— 𝑬𝑬 = 𝛻𝛻 𝛻𝛻 β‹… 𝑬𝑬 βˆ’ 𝛻𝛻𝑛𝑬𝑬 = βˆ’π‘—π‘—π‘—π‘—π‘—π‘— 𝛻𝛻 Γ— 𝑯𝑯

β€’ Since 𝛻𝛻 β‹… 𝑬𝑬 = 0, 𝛻𝛻𝑛𝑬𝑬 = 𝑗𝑗𝑗𝑗𝑗𝑗 𝛻𝛻 Γ— 𝑯𝑯

β€’ Substituting 𝛻𝛻 Γ— 𝑯𝑯 = πœŽπœŽπ‘¬π‘¬, 𝛻𝛻𝑛𝑬𝑬 = π‘—π‘—π‘—π‘—π‘—π‘—πœŽπœŽπ‘¬π‘¬

24

Page 25: Boundary Conditions

Field Penetration

β€’ Leading to 𝜎𝜎 𝛻𝛻𝑛𝑬𝑬 = 𝜎𝜎 π‘—π‘—π‘—π‘—π‘—π‘—πœŽπœŽπ‘¬π‘¬

𝛻𝛻𝑛𝑱𝑱 = π‘—π‘—π‘—π‘—π‘—π‘—πœŽπœŽπ‘±π‘± β€’ Similarly,

𝛻𝛻 Γ— 𝑯𝑯 = πœŽπœŽπ‘¬π‘¬ 𝛻𝛻 Γ— 𝛻𝛻 Γ— 𝑯𝑯 = 𝛻𝛻 𝛻𝛻 β‹… 𝑯𝑯 βˆ’ 𝛻𝛻𝑛𝑯𝑯 = 𝜎𝜎 𝛻𝛻 Γ— 𝑬𝑬

𝛻𝛻𝑛𝑯𝑯 = π‘—π‘—π‘—π‘—π‘—π‘—πœŽπœŽπ‘―π‘― – Very similar differential equation as 𝑱𝑱 and 𝑬𝑬

25

Page 26: Boundary Conditions

Field Penetration

β€’ Consider a plane conductor of infinite depth (π‘₯π‘₯) – Semi-infinite solid for π‘₯π‘₯ > 0 – No field variations along 𝑦𝑦 and 𝑧𝑧 – We expect variation along π‘₯π‘₯, as the fields penetrates

β€’ Let 𝑬𝑬 be polarized in the 𝑧𝑧 direction 𝛻𝛻𝑛𝑬𝑬 = π‘—π‘—π‘—π‘—π‘—π‘—πœŽπœŽπ‘¬π‘¬

𝑑𝑑𝑛𝐸𝐸𝑧𝑧𝑑𝑑π‘₯π‘₯𝑛

= π‘—π‘—π‘—π‘—π‘—π‘—πœŽπœŽπΈπΈπ‘§π‘§ = πœπœπ‘›πΈπΈπ‘§π‘§

β€’ Looking at 𝜏𝜏,

πœπœπ‘› = π‘—π‘—π‘—π‘—π‘—π‘—π‘—π‘—π‘—πœŽπœŽ β†’ 𝜏𝜏 = 1 + 𝑗𝑗 π‘—π‘—π‘—π‘—π‘—π‘—πœŽπœŽ =1 + 𝑗𝑗𝛿𝛿

26

Page 27: Boundary Conditions

Field Penetration

β€’ Solving for 𝐸𝐸𝑧𝑧 using 𝜏𝜏, 𝐸𝐸𝑧𝑧 = πΆπΆπ‘›π‘’π‘’βˆ’πœπœπœπœ + πΆπΆπ‘›π‘’π‘’πœπœπœπœ

– Where 𝐢𝐢𝑛 and 𝐢𝐢𝑛 are constants – 𝐢𝐢𝑛 needs to be zero, why? – 𝐢𝐢𝑛 is the value of 𝐸𝐸𝑧𝑧 at the conductor surface, π‘₯π‘₯ = 0

β€’ Using the expansion of 𝜏𝜏,

𝐸𝐸𝑧𝑧 = 𝐸𝐸0π‘’π‘’βˆ’π‘›+𝑗𝑗𝛿𝛿 𝜏𝜏 β†’ 𝐸𝐸𝑧𝑧 = 𝐸𝐸0𝑒𝑒

βˆ’πœπœπ›Ώπ›Ώπ‘’π‘’βˆ’π‘—π‘—πœπœπ›Ώπ›Ώ

β€’ Similarly for 𝑯𝑯 and 𝑱𝑱, 𝐻𝐻𝑦𝑦 = 𝐻𝐻0𝑒𝑒

βˆ’πœπœπ›Ώπ›Ώπ‘’π‘’βˆ’π‘—π‘—πœπœπ›Ώπ›Ώ , 𝐽𝐽𝑧𝑧 = 𝐽𝐽0𝑒𝑒

βˆ’πœπœπ›Ώπ›Ώπ‘’π‘’βˆ’π‘—π‘—πœπœπ›Ώπ›Ώ

27

Page 28: Boundary Conditions

Field Penetration

β€’ Note: Assumed time dependence 𝐸𝐸𝑧𝑧 π‘₯π‘₯, πœ•πœ• = Re 𝐸𝐸𝑧𝑧 π‘₯π‘₯ 𝑒𝑒𝑗𝑗𝑗𝑗𝑑𝑑

𝐸𝐸𝑧𝑧 π‘₯π‘₯, πœ•πœ• = Re 𝐸𝐸0π‘’π‘’βˆ’πœπœπ›Ώπ›Ώπ‘’π‘’βˆ’

π‘—π‘—πœπœπ›Ώπ›Ώ 𝑒𝑒𝑗𝑗𝑗𝑗𝑑𝑑 = Re 𝐸𝐸0𝑒𝑒

βˆ’πœπœπ›Ώπ›Ώπ‘’π‘’π‘—π‘— π‘—π‘—π‘‘π‘‘βˆ’πœπœπ›Ώπ›Ώ

𝐸𝐸𝑧𝑧 π‘₯π‘₯, πœ•πœ• = 𝐸𝐸0π‘’π‘’βˆ’πœπœπ›Ώπ›Ώ cos π‘—π‘—πœ•πœ• βˆ’

π‘₯π‘₯𝛿𝛿

– Amplitude decreases exponentially as π‘₯π‘₯ increases – Same behavior for 𝐻𝐻𝑦𝑦 and 𝐽𝐽𝑧𝑧

28

Page 29: Boundary Conditions

Field Penetration

29 Ramo. Fields and Waves in Communication Electronics. 3rd ed. p. 152.

Page 30: Boundary Conditions

Skin Depth

β€’ Depth at which the fields have decreased to 1 𝑒𝑒⁄ (36.9%) of the values at the conductor surface

β€’ Skin depth, 𝛿𝛿

𝛿𝛿 =1π‘—π‘—π‘—π‘—π‘—π‘—πœŽπœŽ

– Decreases with 𝑗𝑗, 𝜎𝜎. Value for ideal conductor?

30

𝜎𝜎 𝛿𝛿𝑠𝑠 @ 10 GHz

Aluminum 3.816 Γ— 107S 8.14 Γ— 10βˆ’7m

Gold 4.098 Γ— 107S 7.86 Γ— 10βˆ’7m

Copper 5.813 Γ— 107S 6.60 Γ— 10βˆ’7m

Silver 6.173 Γ— 107S 6.40 Γ— 10βˆ’7m

Page 31: Boundary Conditions

Internal Impedance

β€’ Total current (per unit width) in the semi-infinite conductor

𝐽𝐽𝑠𝑠𝑧𝑧 = οΏ½ 𝐽𝐽𝑧𝑧𝑑𝑑π‘₯π‘₯∞

𝜏𝜏=0= οΏ½ 𝐽𝐽0𝑒𝑒

βˆ’π‘›+𝑗𝑗𝛿𝛿 πœπœπ‘‘π‘‘π‘₯π‘₯∞

𝜏𝜏=0=

𝐽𝐽0𝛿𝛿1 + 𝑗𝑗

β€’ Using Ohm’s law at the surface,

𝐸𝐸𝑧𝑧0 =𝐽𝐽0𝜎𝜎

β€’ Impedance per unit length and unit width

𝑍𝑍𝑠𝑠 =𝐸𝐸𝑧𝑧0𝐽𝐽𝑠𝑠𝑧𝑧

=𝐽𝐽0 πœŽπœŽβ„

𝐽𝐽0𝛿𝛿 1 + 𝑗𝑗⁄ =1 + π‘—π‘—πœŽπœŽπ›Ώπ›Ώ

– 𝐸𝐸𝑧𝑧0 is applied at the surface, 𝐽𝐽𝑠𝑠𝑧𝑧 is the resulting current

31

Page 32: Boundary Conditions

Internal Impedance

β€’ Impedance for a unit length and unit width

𝑍𝑍𝑠𝑠 =1 + π‘—π‘—πœŽπœŽπ›Ώπ›Ώ

β€’ Internal resistance (surface resistivity)

𝑅𝑅𝑠𝑠 =1πœŽπœŽπ›Ώπ›Ώ

=π‘—π‘—π‘—π‘—π‘—π‘—πœŽπœŽ

Ξ©

β€’ Internal reactance

𝑗𝑗𝐿𝐿𝑖𝑖 =1πœŽπœŽπ›Ώπ›Ώ

= 𝑅𝑅𝑠𝑠

32

Page 33: Boundary Conditions

Internal Impedance

β€’ Internal resistance (surface resistivity)

𝑅𝑅𝑠𝑠 =1πœŽπœŽπ›Ώπ›Ώ

=π‘—π‘—π‘—π‘—π‘—π‘—πœŽπœŽ

Ξ©

– Note: DC resistance, 𝑅𝑅 = π‘›πœŽπœŽπ‘™π‘™π΄π΄

– Same DC resistance per unit length and width as a plane conductor of depth 𝛿𝛿

33 http://www.caplinq.com/blog/linqstat-volume-resistivity-vs-volume-conductivity-vs-surface-resistivity_267/