oxford2011.sgthome.co.ukoxford2011.sgthome.co.uk/downloads/abstract booklet a4 .pdf2 contents monday...

87
Internaonal Conference on the Chemistry of Glasses and Glass-Forming Melts In celebraon of the 300th Annuversary of the birth of Mikhail Vasilievich Lomonosov Lady Margaret Hall University of Oxford 4–8 September 2011 ABSTRACTS

Upload: others

Post on 24-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • International Conference on the Chemistry of Glasses and Glass-Forming Melts

    In celebration of the 300th Annuversary of the birth of Mikhail Vasilievich Lomonosov

    Lady Margaret HallUniversity of Oxford

    4–8 September 2011

    ABSTRACTS

  • 2

    Contents

    MONDAY 5 SEPTEMBER - SIMKINS LEE LECTURE THEATRE7 MikhailV.Lomonosov(1711-1765):“ToGlassAllHisLabourWasApplied.”

    Tatiana Moiseeva

    8–10 Chemical Aspects of Glass Structure (ICG TC03) AdvancedSolid-StateNMRMethodsfortheCharacterisationofGlass Networks.

    Gregory Tricot SuperstructuralUnitsinPyrex–aDORNMRStudy.

    Diane Holland StructureofOxynitridePhosphateGlasses.

    Francisco Muñoz EffectofB2O3andAl2O3AdditionontheStructureofPhosphateGlasses.

    Hiromichi Takebe StructureofLi2O–B2O3andNa2O–B2O3High-AlkaliMelts:AHigh- TemperatureRamanSpectroscopyInvestigation.

    Armenak Osipov

    10–11 Theory & Computer Simulation (ICG TC03) DisorderofGlassStructureinTermsofConfigurationalEntropy.

    Akira Takada RingsandConfigurationEntropyinGlassPreparedbyMD.

    Ondrej Gedeon ACombinedMolecularDynamics,First-PrinciplesandNMRStructural StudyofSodiumSilicateGlasses.

    Oliver Villain

    12–16 Nano-Phases in Glass NucleationandGrowthofCrystallineAgNanoparticlesinGlass.

    Manfred Dubiel CrystallisationKineticsandLuminescencePropertiesofEr3+/Yb3+vdoped NaYF4Nano-Glass-Ceramics.

    Araceli de Pablos-Martin Nanoparticle-ContainingOxideGlasses:TransparentMagnets.

    Janis Kliava ASAXSStudyofthePrecipitationofFerrimagneticNanocrystalsinthe Na2O–MnO–SiO2–Fe2O3system.

    Vikram Singh Raghuwanshi RubyCopperThinLayersinFloatGlassbyUsingSprayPyrolysisorIonic ExchangeinMeltedCopperCompounds.

    Andreia Ruivo ColouringGlassesUsingNanoparticlesSynthesisedWithin

    PolyelectrolytesMultilayersAssembledThroughtheLayerbyLayerMethod.Márcia Ventura

    EffectofP2O5andMnO2onCrystallisationofZn-andZn-MnFerriteGlass- Ceramics.

    Mohamed MarzoukMONDAY 5 SEPTEMBER - TALBOT HALL16–19 Applied Glass Science In-SituSynchrotronTomographyofSoda-LimeGlassBatchMeltingReveals theInfluenceofInter-granularContactsonReactionRoutes.

    Emmanuelle Gouillart EffectofOxygenPartialPressureontheViscosityofIronOxideContaining AlkaliSlicateMelts.

    Sohei Sukenaga HydrothermalDissolutionofCopperSlagGlassesfromtheMansfeld District.

    Thomas Pfeiffer ChemicalDurabilityofaSlagGlassfromPigIronProduction:Reaction Products,SurfaceAlterationandKinetics.

    Hans Roggendorf AGlobalandNon-DimensionalApproachtoComputetheOxidesGlobal RelativeGlassFormingAbility.

    Abdelmalek Roula InhibitionoftheCorrosionofE-GlassFibresbyMalonicAcid

    Robert Jones

    19–22 Composition/Structure–Property Relationships (ICG TC22) RelationshipsBetweentheMechanicalPropertiesofSilicateGlassesand ChemicalComposition.

    Russell Hand IonicConductivityEnhancementbyHalogenatedSaltDissolutionin AgPO3-AgIGlasses.

    Ana Rodrigues NewInterpretationofOxideGlassPropertiesontheBasisoftheConstant StoichiometryGrouping(CSG)Concept.

    Oleg Yanush AnInsighttotheGermanateAnomaly:AComparativeEPRandRAMAN StudySupportedbyDFTSimulations.

    Athina Angelopoulou FluorineContainingBioactiveGlasses.

    Robert Hill

    22–24 Glass Properties (ICG TC22) Thermal,ViscosityandThermalExpansionCoefficientPropertiesfora RangeofPhosphateBasedGlasses.

  • 3

    Sharifah Shaharuddin ElectricalConductivityofQuartzGlassMeasuredbyImpedance SpectroscopyBetween600and1100°C.

    Mark Stamminger TinOxideSolubilityinSoda-LimeSilicateMelts.

    Pauline Gateau Effectsofmagnesiumforcalciumsubstitutioninphosphateglasses

    Delia Brauer

    MONDAY 5 SEPTEMBER - MONSON ROOM24–25 History & Heritage: Russian Glass History RussianGlassChemistry:FromLomonosovtoShultz

    Natalia Vedishcheva

    25–27 History & Heritage: Roman & Medieval Glass Pliny’sLostGlass:TheSearchforFlexibleGlassandtheFormationof ResearchAgendasinEarlyModernEurope.

    Vera Keller LookingforPrimaryRomanGlassProductionintheWestern Mediterranean.

    Dieter Brems TradeRoutesAcrosstheMediterranean:ASr/NdIsotopicInvestigationof RomanColourlessGlass.

    Monica Ganio GlassCoatingsonStonesofCopperSmeltingFurnaces:BronzeAge Originals andResultsofArchæologicalExperiments.

    Rainer Werthmann

    TUESDAY 6 SEPTEMBER - SIMKINS LEE LECTURE THEATRE28–30 Conditional/Lone-Pair Glass Formers TheStructuralRoleofLone-PairCationsinGlasses.

    Alex Hannon TheInfluenceofModifiersontheTelluriumEnvironmentinGlass.

    Emma Barney LeadTungstate-Phosphateglasses:StructuralStudy,Propertiesand Crystallisation.

    Ladislav Koudelka GlassFormationandStructureofGlassesintheZnO–V2O5–WO3–MoO3 System.

    Reni Iordanova

    31 Non-Oxide Glasses Short-andIntermediate-RangeOrderofPhosphorus-SeleniumGlasses.

    David Price

    31–33 Glass-Forming Melts: Thermodynamics & Equilibria TheVitreousState:AProductofChemicalEquilibria

    Natalia Vedishcheva ThermodynamicModellingandHigh-TemperatureRamanSpectroscopyof SilicateMelts.

    Olga Koroleva IstheTerm‘Polyamorphism’CorrectforNon-CrystallineSubstances?

    Victor Minaev InSituAnalysesofGlassesandSupercooledMeltsinMicroconfinement.

    Lothar Wondraczek

    TUESDAY 6 SEPTEMBER - TALBOT HALL34–38 Waste Vitrification: Chemical Structure (ICG TC05) ElementalSpeciationinNuclearWasteGlasses.

    Sergey Stefanovsky InvestigationoftheSolubilityofLanthanidesandMinor-ActinidesinSiO2– B2O3–Na2O–Al2O3–CaOGlasses.

    Abdessamad Kidari ChemicalMechanismsDuringVitrificationofModelContainmentHLW Glass.

    Amélie Monteiro VitrificationofHighMolybdenumWaste.

    Barbara Dunnett ModellingRadiation-InducedAlterationoftheNetworkTopologyofAlkali BorosilicateHigh-LevelWasteGlass.

    Leslie Dewan SpectroscopicInvestigationofGlassesProducedbyMicrowaveHeating.

    Paul Bingham StructuralFeaturesofHigh-Fe2O3andHigh-Al2O3/Fe2O3SRSHLWGlasses.

    Sergey Stefanovsky

    38–39 Waste Vitrification: Durability & Devitrification (ICG TC05) InvestigationoftheEffectonLong-TermAqueousDurabilitywithVariations intheCompositionofUKVitrifiedHLWProduct.

    Mike Harrison TheGlassDissolutionRateEquationRevisited.

    Denis Strachan CrystallisationStudyofanAluminoborosilicateGlassContainingBothRare EarthsandMolybdenum. Nolwenn Chouard

    40–42 Waste Vitrification: Glass Properties (ICG TC05) ViscousFlowandViscosityofMeltsandGlasses.

    Michael Ojovan ViscosityofSimulatedHighLevelWasteVitrifiedResidues.

  • 4

    Carl Steele ThermalBehaviourofIronAluminiumPhosphateGlassesContainingUO2·67.

    Jesús Rincón High-TemperatureDensityandHeatCapacityofaSimulatedHigh-Level RadioactiveWasteGlass.

    Toru Sugawara X-rayCTImagingofVitrifiedGlassesContainingPseudo-Radioactive Wastes.

    Keita Watanabe

    MONSON ROOM: TUESDAY 6TH SEPTEMBER - MONSON ROOM42–43 History & Heritage: Museum Collections & Scientific Background OldKingdomEgyptianFaience:SomeNewPerspectives.

    Linn Hobbs GlassFurnitureinSt.Peterburgh

    John Smith ThePrinceandthePopper:PrinceRupert’sDropsandNaturalHistoryinthe EarlyRoyalSociety.

    Anna Marie Roos WEDNESDAY 7 SEPTEMBER - SIMKINS LEE LECTURE THEATRE44–47 Crystallisation/Devitrification (ICG TC07) DynamicProcessesinaSilicateLiquidfromAbovetheMeltingPointto BelowtheGlassTransition.

    Edgar Zanotto ControlledCrystallisationofXenotime-andMonazite-TypeCrystalsin Glass-Ceramics.

    Wolfram Höland DependenceofCrystallisationProcessesofGlass-FormingMeltson Prehistory:ATheoreticalApproachtoaQuantitativeTreatment.

    Juern Schmelzer VitrificationandCrystallisationintheY2O3–Al2O3system.

    Salaheddine Alahrache TheInfluenceofSulphuronNucleationandCrystalGrowthinNa2O–SiO2 Glasses.

    Joachim Deubener EffectofAgitationonCrystallisationBehaviorofCalciumSilicateMelts.

    Noritaka Saito CrystallisationofZnOFromSupercooledMeltsandGlasses.

    Yanko Dimitriev

    48–49 Crystallisation & Glass-Ceramics (ICG TC07) EffectofSodium,PotassiumandZincSubstitutionsinLithiumDisilicate GlassandGlass-Ceramics.

    Natalia Karpukhina

    PhaseSeparationandCrystallisationMechanisminLiNbO3–SiO2Glasses.Hélène Vigouroux

    NucleationandCrystallisationofAs2Se3UndercooledMelt.Marek Liska

    50–54 Heterogeneity & Phase Separation FluctuationInhomogeneitiesinGlassesandMeltsStudiedbyLight ScatteringSpectorscopyandHighTemperatureAcousticMethods

    Oleg Yanush TheroleofCationBondValenceinthePhaseSeparationofBinarySilicate MeltsandGlasses.

    Gavin Mountjoy MicrostructureofMulticomponentBorosilicateGlassesContainingMoO3.

    Elena Kashchieva InfluenceofCoOAdditiononthePhaseSeparationandCrystallisationof GlassesoftheZnO–Al2O3–SiO2–TiO2System.

    Olga Dymshits ASAXSasaTooltoInvestigatePhaseSeparationinGlassesasShowninthe CaseofCuprousHalidePhotochromicGlasses.

    Armin Hoell SpectroscopicStudiesofPhotochromicGlasses.

    Andreia Ruivo

    WEDNESDAY 7 SEPTEMBER - TALBOT HALL55–6 New Researchers Forum: History & Applied Glass Science InterdisciplinaryStudiesofAncientGlassfromDichin,Bulgaria.

    Tom Smith ATemporalAssessmentoftheEducationalPhilosophiesReflectedinthe HistoricalArtefactsattheWelshSchoolofArchitecturalGlass,Swansea.

    Marilyn Griffiths OpticalSpectroscopyofCobaltinOxideGlasses.

    Myrtille Hunault

    56–59 New Researchers Forum: Glass Formation & Structure GlassFormationinLithiumPhosphateGlasseswithAnionicSubstitution.

    Nerea Mascaraque GlassBatchReactionsObservedattheGranularScale.

    Julien Grynberg StructureofAmorphousIronPhosphateFePO4.

    Buhsra Al Hasni LocalStructureinPb2+ContainingSilicateandGermanateGlasses.

    Oliver Alderman AmorphousStructureinThalliumGermanateBinaryGlasses.

    Nattapol Laorodphan Structure-PropertyRelationshipofIonicSulfophosphateGlasses.

  • 5

    Sindy Reibstein

    59–61 New Researchers Forum: Waste Vitrification & Glass-Ceramics DurabilityofUKNuclearWasteGlassesinNeutralandHighpHSolutions.

    Nathan Cassingham Encapsulationof β-tricalciumPhosphateinaSodiumAluminophosphate GlassMatrix.

    Andrew Grigg GammaIrradiationEffectsinGlassesIntendedfortheImmobilisationof NuclearWaste.

    Owen McGann UnderstandingtheEffectofRefractorySpinelPhasesonHLWGlass Processing.

    James Stevens NiEnvironmentanditsStructuralRoleinMgO–Al2O3–SiO2Glassesand Glass-Ceramics.

    Aymeric Dugué

    62–64 Industrial Applications ColourPredictionSoftwareforDesignersandtheGlassIndustry:AToolfor Art,DesignandConservation.

    Peter Sundberg MeltingHistoryofIn-FlightMeltedSoda-Lime-SilicaGlassesusinganOxy- FuelCombustionBurner.

    Tetsuji Yano DrainageandaLifeTimeofaSingleBubbleRisingThroughaMoltenGlass.

    Helena Kočárková NewTinOxideElectrodesforHighTemperatureApplications.

    Julien Fourcade NewHighly-ResistiveZirconiaFusedCastProductsforAlkali-FreeGlass Melting.

    Isabelle CabodiWEDNESDAY 7TH SEPTEMBER - MONSON ROOM64 History & Heritage: Stained Glass Problems TheAnalysisofIn-Situ17thCenturyPaintedGlassfromChristChurch Cathedral,Oxford.

    Rebecca Scott65 History & Heritage: Stained Glass Education & Technology AVisionFulfilled:Swansea’sStainedGlassTradition.

    Alun Adams RecoveryoftheLostTechnologyofBrightRedCopperRuby.

    Peter Wren Howard

    THURSDAY 8 SEPTEMBER - SIMKINS LEE LECTURE THEATRE66–67 Transition Metals & Colour StructuralPropertiesRelatedtoTransitionElementsinOxideGlasses: ApplicationtoGlassColouration.

    Georges Calas PhotoionisationofTransitionMetalIonsinGlasses.

    Doris Möncke TheEnvironmentofFe3+/Fe2+andDy3+IonsinOxideGlasses.

    Adrian Wright

    68–69 Rare Earth Elements PhotoluminescenceofRareearthandtransitionmetalsinglasses.

    Doris Ehrt Nd3+EnvironmentandSolubilityinMulticomponentSilicateGlasses.

    Odile Majérus Ultraviolet,Visible,ESRandInfraredSpectroscopicStudiesofCeO2-Doped LithiumPhosphateGlassesandtheEffectofGammaIrradiation.

    Mohamed Marzouk StructuralInvestigationofRare-Earth-DopedBorosilicateGlassandGel.

    Estelle Molieres

    70–71 Bio-Glass, Sol-Gel & Oxy-Halide Systems EvolutionofPEnvironmentin45S5BioglassDuringtheFirstStageofHA Formation.

    Athina Angelopoulou CrystallisationofNiobium-ContainingBioactivePhosphateGlass.

    Agnese Stunda DielectricPropertiesofSiO2–TiO2-Al2O3ThinFilmsPreparedbytheSol-Gel MethodforHumiditySensors.

    Alfonz Plško OntheBindingofHalogensinBinaryAlkali-SilicateMelts.

    Andrey Kiprianov

    THURSDAY 8TH SEPTEMBER - TALBOT HALL72–74 Glass Surfaces/Interfaces & Durability VitrificationandDurability:StrategiesforVitrifyingWastesContaining ChallengingAnions.

    Russell Hand StructuresofIron-PhosphateGlasseswithHighChemicalDurability.

    Tetsuji Yano InvestigationoftheLong-TermDissolutionofUKHLWGlassUsingHigh `SurfaceArea–to–Volume(S/V)RatioLeachTests.

    Mike Harrison Mask-EtchingasaTooltoDeterminetheChemicalResistanceofGlass Surfaces.

  • 6

    Ksenia Shandarova InterfacialReactionsandDiffusionCharacteristicsofBinaryAlloyswith SilicateGlass-Ceramics.

    Lee Gerrard

    75 Workshop on Durability & Conservation of Glass I CrizzlingGlasses:ProblemsandSolutions.

    Stephen Koob

    76 Workshop on Durability & Conservation of Glass II RoomTemperatureCorrosionofMuseumGlass:AnInvestigationusing HighResolutionSIMS.

    Sarah Fearn GlassDissolutionandCorrosionTestingofVitrifiedWasteForms

    Denis Strachan

    76 Workshop on Durability & Conservation of Glass III DurabilityofBioactiveGlasses.

    Leena Hupa

    THURSDAY 8TH SEPTEMBER - MONSON ROOM77–78 History & Heritage: Alchemy, Chemistry & Colour GlassoftheAlchemists:ARetrospectonanExhibitionatTheCorning MuseumofGlass2008.

    Dedo von Kerssenbrock-Krosig MikhailLomonosovandErikLaxmanandtheDawnofGlassTechnology.

    Kaj Karlsson79–80 History & Heritage: Glassmaking Techniques ExperimentalReproductionofIronAgeScottishGlassBeads:Linking AnalyticalTechniquestotheProductionofReplicaArtefacts.

    Martina Bertini TheyWenttoLarn’em:BritishGlassmakersHelptoEstablishJapan’sFirst Western-StyleGlassworks1873–1884.

    Sally Haden81 History & Heritage: Glass Furnaces DevelopementsofSiemensRegenerativeandTankFurnacesinSaint-Gobain intheXIXthCentury. Marie-Helene Chopinet

    82–87 Posters GlassesintheMoO3–La2O3–MgO–B2O3System.

    Lubo Aleksandrov DissolutionofSandParticlesandBubbleRemovalinaModelMelting

    Channel.Petra Cincibusová

    ViscosityandViscousFlowActivationEnergyofPbO–WO3–P2O5Glasses.Mária Chromčíková

    OpticalandStructuralCharacterisationofEu3+,Dy3+,Ho3+andTm3+-Doped PhosphateGlasses.

    Mihail Elisa RamanSpectra,StructureandThermodynamicModelofAs2S3–Sb2S3 Glasses.

    Jana Holubová BubbleRemovalfromGlassMeltswithSlowVerticalCircluations.

    M. Jebavá StructureandPropertiesofTeO2-ContainingLeadPhosphateGlasses.

    Petr Mošner TemperatureandCompositionalDependenceofNa2OactivityinSoda- Lime-SilicateMelts.

    Masahiro Seto CorrosionofBourreGlassFibersinBorateWaterSolution.

    Vojtech Soltész TheBehaviouroftheBubblesinGlassMeltsinaCentrifugalField.

    Vladislava Tonarová

  • 7

    Mikhail V. Lomonosov (1711-1765): “To Glass, all his Labour was Applied.”

    TatianaMoisevaSt.-Petersburg Scientific Center of RAS, scientific secretary of Lomonosov Commission, (St.-

    Petersburg), Publishing House ‘Lomonosov’, sub-editor (Moscow),

    MikhailLomonosov(1711-1765), thescientist, technologist,poet,artist, thefirstna-tiveRussianacademicianplayedveryimportantroleinRussianculture.ThanktohisactivityRussiacameinthecommonEuropeanculturalworldof18c.ThefamousRus-sianpoetAlexanderPushkincalledLomonosov‘thefirstRussianUniversity’.LomonosovwastheorganizerofthefirstscientificandeducationalChemicallaboratory,MoscowUniversity,thefirstfactoryofcolorglassesinRussia.BytheendofhislifeMikhailLomonosovhadbeenthechiefofallScientificDepartments,GymnasiumandtheUniversityoftheAcademyofSciences.HisprestigewasconsiderableinRussia,and his scientificworkswere known abroad, they published in several Europeanscientificjournals.LomonosovcorrespondedwithmanyfamousEuropeanscientists.LeonardEulersupportedhim.ThefirstnativeRussianacademicianbecamethehonormemberofAcademyofArts,AcademyofSciencesofBologna, theRoyalSwedishAcademy.

    Hisbiography,hisindefatigablenatureandversatileactivityexceededthelimitsofordinary life.ManyvolumeswroteaboutMikhailLomonosov,his life.Therearealotoflegends,far-fetchedstoriesabouthimandhisactions.MikhailLomonosovwasunusualfigureinRussiansocietyof18c.HisambitionwastoeducatehimselftojointhelearnedmenonwhomthetsarPeterItheGreatwascallingtotransformRussiaintoamodernnation.LomonosovwasborninasmallcoastalvillagenearArkhangelskinNorthofRussiainfamilyofprosperousfishermanandtrader.InspiteofcommonRussiantraditionshecouldget thebesteducation inRussiaandEurope.Heknewseveral languages (8-20, according different information). Hewas the reformer ofRussialanguagesandintroducedthelivingscientifictermsinit.LomonosovwrotemainofhisscientificworksinLatinandatthesametimehewasthefirstwhobegantoreadandpublishedscientificworksinRussian.Itwasveryimportantstepforadapta-tionmodernEuropeanscientificknowledgeinRussia.

    HismainscientificinterestsofLomonosovwereconnectedwithphysicalandchemi-calthemes.thedominantideasofhisscientificworksetin«276NotesonCorpuscularPhilosophyandPhysics».AppointedaprofessorbytheAcademyin1745,hetrans-latedChristianWolff'sInstitutionesphilosophiaeexperimentalis(«StudiesinExperi-mentalPhilosophy»)intoRussianandwrote,inLatin,importantworksontheMedi-tationesdeCalorisetFrigorisCausa(1747;«CauseofHeatandCold»),theTentamenTheoriaedeviAёrisElastica(1748;«ElasticForceofAir»),andtheTheoriaElectrici-

    tatis(1756;«TheoryofElectricity»).In1745hewaselectedfirstofnativeRussianfullprofessorofchemistryattheSt.-PetersburgAcademy.In 1748 Lomonosov opened the Chemical laboratory of Academy of Sciences; it then began a prodigious amount of his activity. He began to read the lectures on chemistry in Russian for the students connecting with the training. At the same time he passionately undertook many tasks and recorded in three years more than 4,000 experiments, the results of which enabled him to set up a coloured glass works and to make mosaics with these glasses. Anxious, he wrote “Discourse on the Usefulness of Chemistry”, 1751 and in 1752 an Introduction to the physical chemistry course that he was to set up in his laboratory. The theories on the unity of natural phenomena and the structure of matter he set forth in the discussion “Origin of Light and Colours”, 1756. Lomonosov combined his poetic gifts with his scientific engagement to produce scientific poetry. the “Ode” to Emperess Elizabeth and “Letter to I.I. Shuvalov Concerning the Usefulness of Glass”,1752; celebrated his fruitful union of abstract and applied science. “A Letter on the Uses of Glass” is the first Russian literary work to hail Copernicus’s heliocentrism and get metaphors to portray the of scientific ideas of the kind advanced by Huygens, Newton. This poem finished the words: “To Glass, all my Labour was Applied.”

  • 8

    Superstructural units in Pyrex – a DOR NMR study

    A.P.Howes,A.Samoson†,M.E.Smith,D.Holland*,R.DupreeDepartment of Physics, University of Warwick, Coventry CV4 7AL, UK

    †Tallinn University of Technology, Akadeemia Tee 1, Tallinn, Estonia

    N.M.VedishchevaInstitute of Silicate Chemistry, Sankt Petersburg 199034, Russia

    1Dand2D11BDouble-Rotation(DOR)NMRexperiments,incombinationwithther-modynamicmodelling,areabletoprovideuniquestructuralinformationaboutPyrexglass.ByremovingbothdipolarandquadrupolarbroadeningoftheNMRlines,highresolutionspectraareobtainedthatallowunambiguous,accuratepeakfittingtobecarriedout,ofparticularimportanceinthecaseofthe3-coordinated[BO3](B3)trigo-nalplanarenvironments.Thedataobtainedareofsufficientqualitythattheycanbeusedtotestthedistributionsofborateandborosilicatesuperstructuralunitspredictedbythethermodynamics-basedModelofAssociatedSolutions.Themodelpredictsthedominantboron-containingchemicalgroupingsinPyrexglasstobethoseassociatedwithB2O3andsodiumtetraborate(withsmalleramountsofsodiumtriborate,sodiumdiborate,sodiumpentaborate,danburiteandreedmergnerite).Excellentagreementisfoundbetweenmodelandexperimentwiththe11Bpeakswithisotropicchemicalshiftsof−1·4ppmand0·5ppmassignedtoB4speciesfromborosilicateunitsandbo-ratesuperstructuralunitsrespectively.Thepeakswithisotropicshiftsof14ppmand18.1ppmarethenassignedtoB3inboratesuperstructuralunits(mainlytriborateandpentaborate alongwith connectingB3) andboroxol rings respectively. The assign-mentsoftheDORNMRpeaks,aresupportedbythepresenceofcross-peaksin11Bspin-diffusionDORNMRspectrawhichcanbeexplainedintermsoftransitionallinksfromboroxolringstoB3;fromB3toboratesuperstructuralunits;fromboratesuper-structuralunitstoborosilicatesuperstructuralunits,andthenfinallytothemajoritysilicanetwork.Pyrexisthusshowntohaveaheterogeneousstructure,withdistinctmolecular groupings that are far removed froma randomdistribution of networkpolyhedrawithonlyshort-rangeorder.

    Advanced solid-state NMR methods for the characterisation of glass networks

    G.Tricot*,L.Montagne,O.Lafon,J.Trebosc,F.Méar,L.Delevoye,J-P.Amoureux.

    Univ. Lille Nord de France, CNRS UMR 8181, Unité de Catalyse et de Chimie du Solide, Université Lille 1, Ecole Nationale Supérieure de Chimie de Lille, 59652 Villeneuve d’Ascq

    Cedex, France

    SolidstateNuclearMagneticResonancespectroscopyhasproventobeatechniqueofchoiceforthestructuralcharacterisationofvitreousmaterials.Duringthelastdec-ades, this spectroscopy has benefited from both technical andmethodological im-provements,leadingtohighlyresolvedandinformativespectrafromwhichthelocalorderofsilica,phosphorous,aluminaorboronmoietiescanbeeasilyandefficientlyinvestigated.However,incaseofverycomplexstructures,generallyresultingfromtheassociationoftwoormorenetworkformeroxides,theNMRspectraarecomposedofverybroadresonancescoming fromthesuperimpositionof several signalswithclosechemicalshifts.Insuchcases, thespectraanalysiscanbeambiguousandcanleadtomis-orover-interpretationoftheNMRdata.Wewillshowinthiscommuni-cationhow the combinationof advanced1D/2DMAS-NMRcorrelation techniquescanbeusedtoprovideadditionalinformation,helpinginthe1DMAS-NMRspectraanalysis.Thisworkwillbe illustratedby theanalysisof1D 31PMAS-NMRspectraof alumino-phosphate andboro-phosphate glasses that have benefited fromquali-tative information coming from 31P(X) CP-HETCOR and X(31P)HMQC techniquesandquantitativedataderivedfrom31P(X)REAPDORandX(31P)REDORexperiments(whenX=11Bor27Al).ThefirstresultsobtainedwithuptodateNMRtechniquesonborosilicatenetworkswillbealsopresented.

    Chemical Aspects of Glass Structure (ICG TC03) Chemical Aspects of Glass Structure (ICG TC03)

  • 9

    Structure of oxynitride phosphate glasses

    FranciscoMuñozInstituto de Cerámica y Vidrio (CSIC), Kelsen 5, 28049 Madrid (Spain)

    Nitridationofphosphateglasses attracted the attentionof researchers since itwasdiscoveredthatnitrogenforoxygensubstitutiongreatlyimprovestheirchemicalre-sistance.Numerouscompositionshavebeenstudiedsofar,duetothepotentialap-plicationsthatoxynitrideglassesmightpresent.However,eventhoughthiswaytoimprovetheverylowchemicaldurabilityofphosphateglassesappearsveryeffective,nowadaysthisresearchfieldseemstobelimitedtothestudyofamorphousthinfilmelectrolytes. It iswellknownthatnitrogenmodifiesglassproperties:generally, theglasstransitiontemperature,density,elasticmodulus,refractiveindexandelectricalconductivityincreasewithnitrogencontentand,especially,thechemicalresistanceoftheglassesisdrasticallyenhanced.Themoststudiedwaytoperformnitridationisthroughasecondmeltingofthephosphateglassunderanammoniaflow.Nitro-genincorporationinphosphateglassesdependsnotonlyonthethermaltreatmentconditions but also on composition and, therefore, the structure of the base glass.Thenitrogencontentincreaseslinearlywiththetreatmenttemperatureforaconstantprocessingtime,anditalsoincreaseswiththetimeofreactionataconstantTuptoamaximum,whichisthoughttobeinfluencedbytheincreasedviscosityofthemelt.

    Thiscontributionintendstopresentareviewofthechemicalstructureofoxynitridephosphateglasses,whereNMRandXPStechniqueshavebeenthemostusualwaystocharacterisethestructure, thoughInfraredaswellasRamanarealsoemployed.Nitrogensubstitutesbothbridgingandnon-bridgingoxygensofthePO4tetrahedra,givingrisetotheformationofnewstructuralunits,thePO3NandPO2N2.Thesenewspecies of phosphorous introduce a higher bondingdensity through theP−N

  • 10

    Disorder of glass structure in terms of configurationalentropy

    AkiraTakadaAsahi Glass Co. Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, 221-8755, Japan

    Theresidualconfigurationalentropyofglassesisstillthesubjectofcontroversy.Therearetwowaystodefinetheresidualentropyduetothenonergodicityonglass.Oneisbasedonthetimeevolutionofconfigurationsandtheotherisbasedonthesamplingfromtheprobabilitypopulation.First,thechangeofentropyinthenon-equilibriumstates is investigatedforseveralsimplephenomena.Second, theresidualentropiesestimatedfromtwodifferentmethods;oneisbasedoncalorimetricformulaandtheother isbasedon theprobabilitypopulation, are comparedemployingnewly con-structedmodel.Thecalculatedresultsindicatethattwoestimatedvaluesofresidualentropyarealmostequivalentandnon-zero.Finally, theconfigurationalentropyinglassisinterpretedintermsofatomisticstructure.

    Structure of the Li2O–B2O3 and Na2O–B2O3 high-alkali melts: a high-temperature Raman spectroscopy

    investigation

    ArmenakA.Osipov*&LeylaM.OsipovaInstitute of Mineralogy UB RAS, Chelyabinsk region, 456317, Russian Federation

    TheRaman spectra of Li2O–B2O3 andNa2O–B2O3meltsweremeasured and short-range (SRO)and intermediate rangeorder (IRO) structureswere investigated.Thelocalstructuresofthe40M2O.60B2O3and50M2O.50B2O3melts(M=Li,Na)arequali-tativelysimilarandconsistof[BØ4/2]−,BØ3/2,BØ2/2O−,andasmallamountofBØ1/2O22−species.TheBØ2/2O−asymmetric trianglesare thedominant structuralunits in thiscompositionrange.Theconcentrationofthesestructuralunitsincreaseswithincreasein temperature of 40M2O.60B2O3 melts and weakly depended on temperature of50M2O.50B2O3melts. TheBØ1/2O22− fraction significantly elevateswith increasing inM2O content and attains itsmaximum in the 67M2O.33B2O3melts. The increase inBØ1/2O22−fractionoccurssimultaneouslywithdecreaseinconcentrationsofBØ3/2sym-metric triangles,BØ2/2O− asymmetric triangles, and [BØ4/2]− tetrahedra. In addition,thecloserto67M2O.33B2O3compositiontheBO33−unitsstarttobeformedinbothsys-temswhereasCO32−ionsarepresentonlyinstructureofthesodiumboratemelts.TheconcentrationofBØ1/2O22−pyroborateunitsdecreasesandfractionsofortho-andme-taborateunitsincreasewithincreaseintemperature.Thesix-memberedborateringswithoneor two [BØ4/2]− tetrahedraare themainsuperstructuralgroupsof lithiumboratemeltsatLi2Oconcentrationslessthan50mol%.Moreover,theclosertometabo-ratecompositionB3O63−metaborateringsarealsopresentinsodiumboratemeltswithNa2Ocontent~50mol%.Theseringsareabsentinstructureoflithiumboratemeltsofthesamecompositions.Thefractionsofthetriborateandmetaborateringsdecreaserapidlywith increase inmodifieroxideconcentrationmore than50mol%whereastheditriborate rings arepresent even in 67M2O.33B2O3melts. Increase in tempera-ture leads to increase in fractionsofso-called ‘loose’or ‘independent’ fundamentalstructuralunitsandthisisageneraltendencyofstructuraltransformationofallin-vestigatedmelts.TheworksupportedbytheSFP‘Scientificandscientific-pedagogicalpersonnelofinnovativeRussia’andRFBR(grant10-05-96029-r_ural_a).

    Chemical Aspects of Glass Structure (ICG TC03) Theory & computer Simulation (ICG TC03

  • 11

    Rings and configuration entropy in glass prepared by MD

    OndrejGedeon&JanMachacekInstitute of Chemical Technology, 166 28 Prague, Czech Republic

    MarekLiskaVitrum Laugaricio, Trencin, Slovak Republic

    Moleculardynamicswasusedtopreparestructureof5K2O.95SiO2glass.Algorithmsbasedontheremoveofthenon-essentialbonds(transientasarebeinginscribedintostructure by ultrafast computational cooling) are used to decrease the number ofoverbondedatoms.Thealgorithmswere found tobevery effectiveand led to theexperimentallycomparableamountoftheovercoordinatedsiliconatomswhatmadetopologicalnetworkofglassmorerealistic.Thereforeitseemstheuseoftheappro-priatemethodforbondanalysiscanovercometheextendedovercoordinationcom-monlyattributedtothefastcoolingrateinmoleculardynamics.Thedecompositionoftheestablishedglasstopologicalnetworkintodisjunctivesetofringsandthere-sidualnetworkunits(topologicallyopenandlinear)issuggested.Thedecompositionintodisjunctivestructuralunitsenablestocalculateconfigurationalentropyonbaseofidealmixing.Thecalculated‘ring-entropy’reflectstopologyofringsinglassandthereforeiscloselyrelatedtomediumrangeorderofglass.Temperatureevolutionof‘ring-entropy’enablestocalculatethespecificheatdropatglasstransitiontempera-tureaswellasresidualentropyat0Kmeasuredincalorimetricexperiments.Bothcalculatedvaluesarewithinuncertainnessoftheavailableexperimentaldata.

    A combined molecular dynamics, first-principles and NMR structural study of sodium silicate glasses

    O.Villain,*Th.CharpentierCEA, IRAMIS, UMR 3229-SIS2M, LSDRM, CEA Saclay F-91191 Gif-sur-Yvette France.

    F.Angeli,S.Schuller,S.Ispas

    Wepresentastructuralstudyofsodiumsilicateglasses(23,40and45%Na2O)combin-ingexperimentalNMRresults(23Na,29Siand17ONMR)andsimulationresults.(1)In-deed,ithasbeenshownrecentlyhowtheintroductionoffirst-principlescalculationsofNMRparameterscombinedwithMolecularDynamics(MD)simulationsyieldsaverypromisingquantitativesupportoftheNMRexperiments.(2,3,4)HenceMDsimu-lationsarecarriedoutinordertogeneratefewglassystructuralmodels,usedafter-wardsasinputforNMRfirst-principlescalculations.ThecalculatedNMRparameters(isotropicchemicalshift,quadrupolarcouplingconstantandquadrupolarasymmetryparameter)arethencomparedtoexperimentalones.Moreover,calculationsallowtocorrelaterelevantstructuralparameters(bondanglesandbondlengths,coordinationnumbers) withNMR parameters, without crystalline reference compounds. Thesedataofferbetterinsightsintothestructuralorganisationoftheglassnetwork,includ-ingbothchemicaland topologicaldisorder (distributionofalkali inglass).Finally,ourapproachwasfoundtobesensitiveenoughtoinvestigatetheeffectofadditionofasmallquantityofmolybdenumoxide(about1mol%)onthe17OMASspectrum,openingnewpossibilitiesforinvestigatingtheMoenvironmentinsilicateglasses.

    1. Angeli,F.,Villain,O.et al.Geochem. Cosmochim. Acta,2011,accepted,online.2. Charpentier,T.et al.J. Phys. Chem. B,2004,108,4147–61.3. Charpentier,T.et al.J. Phys. Chem. C,2009,1137917–29.4. Ispas,S.et al.Solid State Sci.,2010,12,183–92.

    Theory & computer Simulation (ICG TC03Theory & computer Simulation (ICG TC03

  • 12

    Crystallisation kinetics and luminescence properties of Er3+/Yb3+ doped NaYF4 nano-glass-ceramics

    A.dePablos-Martín,*A.Durán,M.J.PascualInstituto de Cerámica y Vidrio (CSIC), Kelsen 5, 28049 Madrid, Spain

    J.Méndez-Ramos,J.del-Castillo,V.D.RodríguezDpto. Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La

    Laguna, 38206 La Laguna, Tenerife, Spain

    Rare earth (RE) ions doped oxyfluoride glass-ceramics (GC´s) containing fluoridenano-crystalshavebeenextensivelyinvestigatedwithinthenewmaterialsforpho-tonicapplications.OxyfluorideGC´scombinethetransparencyandmechanicalandchemicalresistanceofthealumosilicateglasseswiththelowphononenergyandgoodsolubilityforREionsofthefluoridecrystals.TransparentGC´sandtheinclusionoftheopticallyactivedoping ions in thecrystallinephasecanbeobtained throughastrictcontrolofthecompositionandthermaltreatmentsinordertoprecipitatenano-crystalsbelow20nm.

    NaYF4isconsideredoneofthemostefficienthostsforup-conversionwhendopingwith Er3+/Yb3+. NaYF4 exists in two polymorphs: the hexagonal (Na1·5Nd1·5F6 type)structureandthecubic(fluoritetype)one.Although,hexagonalβ-NaYF4isconsid-eredbetterhostlatticefortheluminescenceofREionsthantheα-NaYF4,sinceRE3+inhexagonalphase is located in threedifferentcationsites,β-NaYF4crystallisationismainlyobtainedbyproceduresdifferentofmelt-quenchingandsubsequentheattreatmentfromaglasscomposition.

    ThisworkisfocusedonthecrystallisationofNaYF4nano-crystalsinthreeglassesinthesystemSiO2–Al2O3–Na2O–YF3–ErF3–YbF3producedbymelt-quenching-heattreat-mentmethodandusingdilatometry,DSC,TEMandXRD.TheopticalabsorptionandluminescencemeasurementsconfirmtheincorporationofEr3+andYb3+ionsintotheNaYF4nano-crystals, causingshortening thedistancebetween themand favouringenergytransferprocesses.Asaconsequence,brightup-conversionluminescencefromNIR into visible is obtained.Moreover, the efficiency of thesematerials fordown-conversionprocessesisexplored.

    Nucleation and growth of crystalline Ag nanoparticles in glass

    ManfredDubiel,*JörgHaugandHolgerKruthInstitute of Physics, Martin Luther University of Halle-Wittenberg, Von-Danckelmann-Platz

    3, D-06120 Halle, Germany

    Metalnanoparticlesembeddedinglasshavebeenthoroughlystudiedbecauseoftheirspecificopticalproperties.Thepresentworkisdirectedtothefabricationofmonome-tallicnanoparticlesandtheirstructuralinvestigation.WeinvestigatedtheformationofAgnanoparticles(sizesof1to7nm)byAg/Naionexchangeproceduresinsoda-limeglass.Inthecaseofionexchangeprocesseswellbelowtheglasstransformationtemperature,x-rayabsorptionspectroscopyattheS,TiandFeK-edgedemonstratedthatpolyvalentFeionsservedasthermosensitivereductive.XANESandEXAFSdatarevealedtheoxidationofFe2+toFe3+aswellastheoxygencoordinationofironions.ExperimentsattheAgK-edgeshowedthattheinitialstageofAgnucleationincludesintermediatephaseslikemetastableAgstructures.Thegrowthofparticlestakesplacebyatransformationofthisspeciesintocrystallinesilvernanoparticlesthatcouldbeconfirmedbytransmissionelectronmicroscopy(TEM).

    Nano-Phases in Glass Nano-Phases in Glass

  • 13

    Nanoparticle-containing oxide glasses: transparent magnets

    I.Edelman,O.Ivanova,R.Ivantsov,E.Petrakovskaja,V.ZabludaL.V. Kirensky Institute of Physics, SB RAS, Krasnoyarsk, Russia

    L.HennetCEMHTI, UPR3079 CNRS et Université d’Orléans, France

    D.ThiaudiereSynchrotron SOLEIL, Gif-sur-Yvette, France

    M.-L.SaboungiCRMD, UMR 6619, Université d’Orléans-CNRS, France

    S.StepanovS.I. Vavilov State Optical Institute, St.-Petersburg, Russia

    A.ArtemenkoICMCB, UPR 9048 CNRS, France

    J.Kliava*LOMA, UMR 5798, Université Bordeaux 1-CNRS, France

    Anextraordinarypropertyofborateglasses is theabilityof formingmagneticna-noparticlesatverylowdopingwithtransitionandrare-earthelementoxides.(1,2)Wereport a combined Faraday Rotation, MCD, electron magnetic resonance (EMR),transmission electronmicroscopy (TEM) and synchrotron radiation (x-ray diffrac-tion,XANES,EXAFS) studiesofglassesK2O-Al2O3–GeO2–B2O3 co-dopedwith lowconcentrationsofFe2O3andMnOorRE2O3withRE=Tb,Dy,Ho,Yb,Gd.Afterthermaltreatment,nanoparticlesofdifferentsizesandshapesappearintheTEMimagesoftheglasses.Suchsamplesshownon-linearfielddependenceofmagnetizationwithhysteresisandtemperature-independentMCDspectra(Figure1(left)).Thenatureofthenanoparticleshasbeenidentifiedasferritesofdifferentcompositions.TheXANESandEXAFSmeasurementsconfirmthisattribution(Figure1(centre)).Bycomputersimulating theEMRspectraof thermally treatedglasses, a superparamagneticna-tureofthenanoparticlesisconfirmedandtheirmorphologicalcharacteristicsarede-duced:relativelybroadsizeandshapedistributionwiththeaveragediameterofca.3to4nm(Figure1(right)).

    The formation ofmagnetic nanoparticles confers to the potassium-alumina-borateglasses magnetic and magneto-optical properties typical of magnetically ordered

    substances.Atthesametime,theyremaintransparentinapartofthevisibleandnearinfraredspectralrangeanddisplayahighFaradayrotationvalue.Suchmaterialsarepromisingcandidatesfornewmagneto-opticaldevices.

    16 20 24 28-2

    -1

    0

    1

    2

    3 Dy2O3 Tb4O7+Er2O3 Ho2O3 Bi2O3+Y2O3

    MCD

    , cm

    -1

    l, cm-1

    -0,1

    0,0

    0,1

    0,2 γ-Fe2O3

    MCD, rel. units

    Troom

    1. Kliava,J.,Edelman,I.,Ivanova,O.et al.J. Appl. Phys.,2008,104,103917;J. Magn. Magn. Mater.,2011,323,451.2. Kliava,J.EMRofNanoparticles:SuperparamagneticResonance.InMagnetic Nanoparticles. EditedbyS.Gubin,Wiley-VCH,Weinheim,2009,255–302.

    Nano-Phases in Glass Nano-Phases in Glass

  • 14

    ThemeasuredSAXS/ASAXS curveswerefittedwell by spherical core-shellmodelwithlognormaldistribution.Simulatedcurvesrevealtheaverageparticlesizeforthesampleannealedat550°Cfor40minis20nmwherecorediameteris16nmandshellis2nmthickandfor thesampleannealedat550°Cfor180minhassizeof44nmwherecorediameteris41nmandthicknessoftheshellis1·5nm.Resultsshowthatthesizeofthecoreisincreasingwiththeannealingtime.AlsotheASAXScurveswerefittedbyvaryingonlythecontrastofthecoreandtheshellatdifferentenergiesforFeandMnedge,whichrevealsthatFeatomsarepresentinbothcoreandshellbutthecorehasgreaterconcentrationofFethantheshell.

    ASAXS study of the precipitation of ferrimagnetic nanocrystals in the Na2O/MnO/SiO2/Fe2O3 system       

    V.S.Raghuwanshi,*A.HoellHelmholtz-Zentrum Berlin GmbH, Albert Einstein Str. 15, D-12489 Berlin, Germany.

    D.TatchevInstitute o f Physical Chemistry, Bulgarian Academy of Sciences, ul. Acad. G. Bonchev, block

    11, 1113 Sofia, Bulgaria.

    R.Harizonova,I.GugovUniversity of Chemical Technology and Metallurgy, Bul. Sv. K. Ohridski, 1756 Sofia,

    Bulgaria.

    C.RüsselOtto-Schott-Institut, University Jena, Fraunhoferstrasse 6, 07743 Jena, Germany.

    Mostoftheoxideglassceramicshavingnano-scaleferrimagneticcrystalsandshowmagneticandelectricalpropertieshavemanyfutureapplicationsareexpectedinfer-rofluids,medicals,electronicsetc.Theconductivityandmagneticpropertiesdependonstructuralparametersofthenanoparticles.Themainaimofthisworkistoevalu-atetheeffectofheattreatmentontheshape,size,composition,volumefractionanddistributionofthenanoparticlesinaglassmatrixwhichactsasachemicalcontainerforthenanoparticles.WestudythecrystallineprecipitatedphaseoftypeMnandFeoxideinthesilicateglassesbyAnomalousSmallAngleX-rayScattering(ASAXS).

    FerrimagneticnanocrystalofFeandMncontainingphaseswereobtainedbyanneal-ingofaglassofcomposition13·6Na2O–62·9SiO2–8·5MnO–15·0Fe2O3(mol%)at550°Cfordifferenttimeintervals.Thephasecompositionandmicrostructureoftheformedglass-ceramicswerestudiedbyx-raydiffraction (XRD), scanningand transmissionelectronmicroscopy,smallanglex-rayScattering(SAXS)andASAXS.

    XRDrevealstheformationofferrimagneticspinelphaseoftypeMnxFe1−xFe2O4wherex=0·342–0·55duringtheheattreatmentoftheglasses.Electronmicroscopyresultsre-vealstheformationofsphericalparticlehavingsizesbetween10–60nmafteranneal-ing.

    TheASAXS experiment was performed at 7T-MPW-SAXS beamline at HelmholtzZentrumBerlin(BESSYII)neartheK-absorptionedgesofFeandMntoevaluatethedistributionoftheFeandMnatomsintheglassceramics.

    Nano-Phases in Glass Nano-Phases in Glass

  • 15

    Ruby copper thin layers in float glass by using spray pyrolysis or ionic exchange in melted copper compounds

    RitaRodrigues1,LuísCosta1,AndreiaRuivo1,2*,RuiCoelhodaSilva3,AntónioPiresdeMatos1

    1VICARTE, Research Unit “Glass and Ceramics for the Arts”,Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

    2REQUIMTE, Chemistry and Technology Network, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte da Caparica, Portugal

    3Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal

    Inthiscommunicationwereporttheformationofthinlayersofrubycopperinfloatglassusingeitherthespraypyrolysistechniqueoranionicexchangeprocessinmelt-edcoppercompounds.

    Inthefirstmethodasolutionofcopperacetateinamixtureofwaterandmethanolwas sprayedonto aplate offloatglassheatedat about 400°C. After annealing at650°Cfor45minutesaredcolourwasdevelopedinthesurfaceofthefloatglass.Thiscolourwasobtainedonlyinthesideoftheglassplatewithtin.

    Intheotherprocessamixtureofcoppersulphateandsodiumsulphatewasmeltedat575°Candthefloatglasswasdippedinitfor45minutes.Aredcolourwasobservedinbothsidesofthefloatglassbutwithmuchhigherintensityonthetinside.

    Thecolourobtainedwasduetonanoparticlesofcopperasindicatedbyopticalab-sorptionspectroscopy.Rutherfordbackscatteringwasused tocharacterize the thinlayersurface.Theresultsobtainedarediscussed.

    Colouring glasses using nanoparticles synthesised within polyelectrolytes multilayers assembled through the layer-

    by-layer method

    M.G.Ventura,*T.Almeida,A.J.Parola&A.P.MatosFaculdade de Ciências e Tecnologia-Universidade Nova de Lisboa, Department of Chemistry,

    Monte de Caparica, Caparica 2829-516,

    ThemetalnanoparticlesofAu,AgandCuhaveuniqueopticalpropertieswhichareassociatedwith theirstrongsurfaceplasmonresonance (SPR) in thevisiblepartofthespectrum.Thinfilmscontainingmetalnanoparticleshavepotentialapplicationsinseveralareasincludingglassindustry,inwhichfilmsareusedtogivecolourandotherphysical properties like thermo and electrochromicproperties. The layer-by-layer(LbL)depositionofpolyelectrolytesisconsideredoneofthemostsimpleandadaptabletechniquesfortheformationofthinfilmswhichcanbeappliedinseveralsubstratesindependentlyofitsnature,sizeandtopology.Inthisworkpolyelectrolytemultilayers(PEMs)producedthroughLbLassemblytechniquewereusedfortheinsitusynthesisofmetalnanoparticlesonglasssurfacehavinginminditsapplicationinglassartpieces.Bycontrollingtheassemblyandpost-assemblyconditions,gold,sil-ver,copperoramixtureoftwometalswereloadedontothePEMscomposedbytwopolyelectrolyteschargedoppositely.DifferentpolyelectrolytesandotherparameterssuchasthepHusedduringassemblyandpostassembly,andthereductioncondi-tionsweretestedtooptimisetheintensityoftheobtainedcolour.Temperaturesneartheglasstransitiontemperature(Tg)wereusedduringthethermaltreatmentinordertofixthenanoparticlesandhencethecolourontheglasssurface.Sampleswerechar-acterizedbyultraviolet-visibleabsorptionspectroscopy,transmissionelectronmicro-scopy (TEM), energydispersive x-ray (EDX), andx-raydiffraction (XRD).The redcolourwasobtainedthroughAunanoparticleswhiletheyellowandorangecolourswereobtainedthroughthemixtureindifferentproportionsofAuandAgnanoparti-cles.FurtherstudieswillcomprisetheoptimisationofCunanoparticlessynthesisandtheadditionof lanthanides to thedifferent systems inorder toobtain luminescentcolouredfilms.

    Nano-Phases in Glass Nano-Phases in Glass

  • 16

    In-situ synchrotron tomography of soda-lime glass batch melting reveals the influence of intergranular contacts on

    reaction routes

    E.Gouillart,*J.Grynberg,M.-H.Chopinet,M.Toplis,M.DiMichiel,E.Boller,D.Vandembroucq

    Joint Unit CNRS/Saint-Gobain Surface of Glass and Interfaces, 39 Quai Lucien Lefranc, Aubervilliers, 93303, France

    Industrialsynthesisofgood-qualitysoda-limeglassisgenerallycarriedoutat1400–1500°C,despitethefactthattypicalcompositionsarecompletelymoltenat1050°C.Suchhightemperaturesarerequiredtoeliminatedefects(typicallygasbubblesandunmoltensandgrains),andtohomogenisethemeltcomposition.Indeed,thereac-tivemeltingofglassbatchtakesplaceinacontextofsignificantthermodynamicdis-equilibrium,andchemicalinteractionsarelimitedbythelocalpackingarrangement(i.e.thestatisticsofinter-granularcontactsofdifferentrawmaterials),andbyslowdiffusioninviscousliquidsatlaterstagesofthetransformation.Parameterssuchasthegrainsizeofrawmaterialsareknowntoinfluencethereactionpathsandthequal-ityofglassesproducedathightemperature.Moreinsightsintotheinfluenceofthemicrostructureofthesystemonthekineticsofitsevolutionmayenablethemanufac-turingofhigher-qualityorlessenergy-consumingglasses.Wehaveperformedin-situmicrotomographyexperimentsofglassbatchmeltingontheID15AandID19beam-linesattheEuropeanSynchotronRadiationFacility(ESRF).Inx-raytomography,onereconstructsthree-dimensionalvolumesofthex-rayabsorptionoftheimagedsamplefromalargesetofradiographiestakenatdifferentangles.Thankstothebrightnessofsynchrotronsources,thetime-resolutionofthetechniquemakesitnowpossibletofollowin-situtheevolutionofmaterialsfromtheinside,inthecourseoftransforma-tionsathightemperature.Startingfromsmallgranularpackingsofsandandcarbon-atesthatareheatedataconstantrate,wehaveobservedthewholetransformationoftheinitialgranularpileintoabubble-richliquid.Suchexperimentshaverevealednewmechanismsundocumentedsofarbecauseofthelackofdirect3-Dobservation,suchasthefragmentationofsodiumcarbonategrainsthatwraparoundneighboringsandgrainsinordertoincreasethereactionsurface.Wealsomeasurequantitativelythetrappingofgasbubblesasliquidinterfacescollapsewheneutecticmeltsarepro-ducedinquantity.Short-rangepackingarrangementswerefoundtohaveaprofoundinfluenceonlocalreactionpathways,withdrasticallydifferentreactionsdependingonthepresenceofcontactswithsodiumcarbonateforsandandcalciumcarbonategrains; these observationshenceprovide important informationon the generationof solid crystallinedefects.These resultsdemonstrate thepotential of quantitativeprocessingoftomographyimagestoprovideunprecedentedinsightintotheprogressofchemicalandmicrostructuraltransformationsofglassbatchesathightemperature.

    Effect of P2O5 and MnO2 on crystallisation of Zn-and Zn-Mn ferrites glass ceramics

    S.A.M.Abdel-Hameed,M.A.Marzouk*GlassResearchDepartment,NationalResearchCenter,Dokki,Cairo,Egypt.

    M.M.FaragBiomaterialdepartment,NationalResearchCenter,Dokki,Cairo,Egyp

    Thisworkpointedoutthecrystallisationandcharacterisationofmagneticglassce-ramiccontainsZnandZn–MnferritesinthesystemFe2O3.ZnO.CaO.SiO2.Theinflu-enceofaddingdifferentaddition fromP2O5and/orMnO2on thesequenceofcrys-tallisationprocessandmicrostructurewasstudied.TheDTAoftheglassesrevealeddecreaseinthethermaleffectsbyincreasingP2O5and/orMnO2.Thex-raydiffractionpatternsshowthepresenceofnanometricmagnetitecrystalsinaglassymatrixaftercoolingfrommeltingtemperature.Heattreatmentat800°Cfor2hunderreducingat-mosphererevealedincreaseinofmagnetitecrystallized;minorhematiteandCa2SiO4wereappeared.ThemicrostructurestudiedusingTEMrevealedcrystallitesizeintherangeof10–30nm.ThecrystallitesizewasincreasedbyincreasingamountofMnO2orP2O5added.Latticeparameterandcellvolumecalculated fromXRDdatausingDebye-ScherrerformularevealedsignificantgradualincreasebyincreasingadditionofMnO2 thanthestandardASTMcardofmagnetitedue to thereplacementof thesmallionicradiiofFe2+withhighionicradiioftheMn2+,whileincreasingP2O5addedhaveslightlyloweringeffectinlatticeparametersandcellvolumeduetotheeffectofP2O5whichactasnucleatingagentandnotforreplacingFe2+.

    Keywords:Magnetite,GlassCeramics,Crystallization,microstructure.

    Nano-Phases in Glass Applied Glass Science

  • 17

    Effect of oxygen partial pressure on the viscosity of iron oxide containing alkali slicate melts

    SoheiSukenaga,*YosukeInatomi,YoshiakiGonda,NoritakaSaito,KunihikoNakashima

    Department of Materials Science and Engineering, Kyushu University

    TakashiWatanabeDepartment of Chemistry and Materials Science, Tokyo Institute of Technology

    TakeshiOhsugiDepartment of Decommissioning and Waste Management Nuclear Science Research

    Institute, Tokai Research and Development Center, Japan Atomic Energy Agency

    Iron oxide containing silicatemelts are importantmaterials in some of the indus-trialprocessesatelevated temperature,suchasglassmakingandpyrometallurigi-calextraction(asslags).Viscosityofthemeltsisanimportantphysicalpropertyforclarifyingthereactionkineticsandforunderstandingmicrostructureofthemeltsatelevatedtemperature.It iswellknownthattheoxidationstateof ironions(Fe2+orFe3+)inmeltschangesdependonmeltingtemperature,thebasicityandtheoxygenpartialpressure.However,theeffectoftheratioofFe2+toFe3+ontheviscosityofthesilicatemeltshasnotbeenwellunderstood.Theaimofthepresentstudyistoclarifytheeffectofoxidationstateofironionsontheviscosityofironoxidecontainingalkalisilicatemeltsbychangingtheoxygenpartialpressure.

    Viscosityof30R2O–60SiO2-10FexO(mol%)(R=Li,NaorK)meltshasbeenmeasuredbyarotatingcylindertypeviscometer(contactmaterial:Pt-20wt%Rh)withagas-tight furnace.Themeasurementshavebeencarriedoutasa functionofsystemati-callyvaryingoxygenpartialpressure controlledbyArbasedgases (P(O2)=2·0×10−1atm,1·3×10−2atm,7·2×10−5atm,3.0×10-6atmand1·6×10−10atm)at1773K.Inaddition,wemelted the samplesundereachof theatmospheres for2hat1773Kand thenquenchedonacupperplate.Thesequenchedvitreoussampleswerechemicallyana-lyzedforquantifyingtheoxidationstateofironions.

    TheratioofFe2+toFe3+inthe30R2O–60SiO2–10FexO(mol%)glassesdecreasedwithincreasingtheoxygenpartialpressureinallthesamples.Inparallel,theviscosityofthe30R2O–60SiO2–10FexO(mol%)meltsdecreasedwithincreasingtheratioofFe2+toFe3+.ThedataindicatesthattheincreaseinFe2+ions,whichbehaveasanetworkmodi-fier,wouldresultindepolymerisationofthesilicatemelts.Itshouldbealsonotedthattheviscosityofthemeltswasintheorderofalkalicationicradius(K>Na>Li)whentheratioofFe2+toFe3+inthemeltswascomparable;itwouldbeduetothechangeinthecoordinationstructureofFe3+inthesemelts.

    Hydrothermal dissolution of copper slag glasses from the Mansfeld district

    ThomasPfeiffer,*SebastianMüller,AntjeSchilling,andHansRoggendorf

    Martin-Luther-Universität Halle-Wittenberg, Institut fürPhysik,D-06099 Halle, Germany

    Slagglassesarebyproductsofpyrometallurgicalprocesses.Dependingonore,lodematter,slagformersandfurnacecorrosionproductsdifferentglassesareproduced.Dependingoncompositionandchemicaldurabilitythematerialsareappliedasbuild-ingstones,puzzolanicbinders,orassecondaryrawmaterials.Inthisstudythedis-solutionbehaviorofcopperslagglassesfromtheMansfelddistrict(Sachsen-Anhalt,Germany)wasinvestigated.Theaimoftheinvestigationswastoconvertthevitreousslagintoapplicablesecondaryrawmaterials.Theconversionprocessincludesthedis-solutionoftheglassphaseasamajorstep.Thechemicalcompositionoftheslagwas(majorcomponentsonly,masscontentin%):47SiO2,19CaO,14Al2O3,8MgO,4K2O,4Fe2O3,1Na2O,3rest.Thephasecontentoftheslagwascharacterisedbyopticalmicroscopyandx-raydiffraction.Thecrystallinecontentwasbelow5wt%,therestbeingvitreous.Theslagglassesweregroundtosizesbetween20and125µm,dispersedinNaOHsolutionsandtreatedhydrother-mallyinarotatingautoclavesystem.TheconcentrationoftheNaOHsolutionswasvariedbetween1and18mole/l,thehydrothermaltreatmenttimesrangedfrom4–24h.Usually,atemperatureof200°Cwasapplied.

    Afterhydrothermaltreatmentaliquidphaseandasolidresiduewererecovered.Theliquidphasewastitrated,thelossofignitionwasdeterminedandthepotassiumcon-tentwasanalysedchemically.Potassiumisahighlysoluablecationanditissupposedthatitdoesnotenterthesolidresidue.Thelatterassumptionwasofcoursechecked.The solid residuewas analysed by opticalmicroscopy, x-ray diffraction and x-rayfluorescence.Theresultswereevaluatedwithrespecttokineticsandyield.Theevalu-ationwashandicappedbycrystallisationprocesses.Itisalsodiscussedwhetherthecrystallinematerialsareprecipitatesoralteredglass.

    Applied Glass Science Applied Glass Science

  • 18

    A global and nondimensional approach to compute the oxides global relative glass forming ability

    RoulaAbdelmalek,*BoubataNouar&MoussaouiIslamJijel Univ.; LIME; Eng. Sci. Fac.; Jijel; 18000; Algeria; [email protected]

    Theglassformingability(GFA)isthecriterionusedtocharacterisethebehaviorofanymaterialtosolidifyinanamorpheousstate(materialscanbesimplechemichals,chemicalcombinationsortheirmelts).Manycriteria(dealingwiththermodynamicaland/orstructuraland/orthermaland/or kineticorders)havebeenproposedtoex-plaintheformationorthenon-formationofglassesbyoxides.Theyareallfoundedoncristallochemicalconceptsorrefertothecriterialinkedtothenatureandthechemicalbondstrengthofmetalsoxides.(1-12)Wepresentanon-dimensionalapproachtovaluetheglassformingabilitybyaffectingtoeveryoxideacoefficient(withoutmeasuringunits).Obeyingtothenon-dimensionalanalysisrules,weproceedtoamathematicaltreatmentofoxidesthermodynamicandstructuraldata(4-8)introducinganotherchar-acteristic:thespecificthermalheatCpthatwasneglectedinalltheothermodels.(1–7)WenotethiscoefficientastheGlobalRelativeGlassFormingAbility(GRGFA)andproposeamodelmodel tocompute it.Thisnewcriterionconfirmsthepriorxclas-sificationofoxidesbutlookstobedistinctivebecauselinkingthemainparametersofoxides.

    TheobtainedcomputedvaluesofGRGFApermitthedefinitiverankingofoxidesinthethreeoxidegroups(glassformers,intermediateandmodifier).

    Chemical durability of a slag glass from pig iron production - reaction products, surface alteration and

    kinetics

    HansRoggendorf,*WernerLebek,SybilleBöhme,HerbertPoellmannMartin-Luther-Universität Halle-Wittenberg, Institut für Physik & Institut für

    Geowissenschaften, D-06099 Halle, Germany

    Slagglassesarebyproductsofpyrometallurgicalprocesses.Dependingonore,lodematter, slag formers and furnace corrosion different glasses are produced.Duringcoolingcrystallisationmayoccur.Slagglassesfromthepigironproductionareap-pliedaslatenthydraulicbinderorasanadditiveforordinaryportlandcementsintheproductionofblastfurnacecements.Thereactivityofthegroundslagglassesisusu-allylowerthanthereactivityofbindingphasesinordinaryportlandcements,theyareclassifiedaspuzzolanicbinders.Thereactivityofgroundslagglassescanbeenhancedbyaddingeitherbasiccompounds(portlandcementorCa(OH)2)orcalciumsulfate(gypsum)compounds.Sincethedissolutionoftheslagglasses–whichisaglasscor-rosionprocess–isessentialforthekineticsoftheformationoftheirbindingphasesitisinvestigatedhere.Possibly,thebinderreactivityoftheslagglassescanbediscussedasareversechemicaldurability.

    Theslagglasseswereprocuredfromacommercialsupplier(now:Cemex,Germany)asgranulatedblastfurnaceslag.Theirchemicalcompositionwas(majorcomponentsonly,masscontentin%):36SiO2,41CaO,12Al2O3,9MgO,3rest.Thephasecontentoftheslagglasswascharacterisedbyopticalmicroscopyandx-raydiffraction.Theslagglassesweretestedeitherasgroundoriginalmaterials(size

  • 19

    Inhibition of the corrosion of E-glass fibres by malonic acid

    RLJones*&AZZahirDepartment of Chemistry, Curtin University of Technology, Perth, Australia.

    ThecorrosionofE-glassfibres inacidsolution isnowwellestablishedand iscon-sideredacontributoryfactorinmanyinstancesofcorrosionrelatedfailureinglassreinforcedplasticmaterials.Howeverthechemicalmechanismandratesofcorrosionarestillnotfullyunderstood.Thecurrentlyacceptedideaisthatcorrosionisattrib-utabletoboththeacidstrengthofthecorrodingmediumandthecomplexingabilityoftheassociatedanion.Previousworkhasshownthatinthecaseofperchloricacidthecomplexingabilityoftheassociatedanioncanexertapassivatingeffectandactu-allyslowdownthecorrosionprocess,presumablybybindingontotheglasssurface.(1)Recentworkindicatesthatmalonicacidalsoisabletobindwiththeglasssurfaceand,foratime,protectthesurfacefromattackbycorrosivereagents.Thispaperat-temptstoexaminethispassivationinmoredetailanddeterminewhetherornotthisisaviablemethodofprotectingtheglassfibresfromthecorrosiveeffectofthecom-moncorrodingacids.Resultstodateshowthatthereisindeedsomeresistancetothecorrosiveprocessinhydrochloricandoxalicacids,butthecorrosivemediaeventuallyovercomesthisand,afteran initialdelay,corrosiondoesoccurandtheglassfibresbreak. Howeverthis isaninterestingobservationwhichreinforcespreviouswork,anditispossiblethatsomemeansofpassivatingtheglassfibresurfacewilleventu-allycometolight.Malonicacidisofparticularinterestasitisapossiblebreakdownproductoftheresinusedinglassreinforcedplastic.

    Keywords:glassfibredurability,acidcorrosion,chemicalpassivation,corrosionpre-vention

    1. Jones,R.L.&Brunt,S.Proc.XXInt.CongressonGlass,Kyoto,Japan,27Sept.–1Oct.2004,O-07-111.

    Relationships between the mechanical properties of silicate glasses and chemical composition

    RussellJHandUniversity of Sheffield, Department of Materials Science & Engineering, Sir Robert Hadfield

    Building, Mappin Street, Sheffield S1 3JD, UK

    Acombinationofindentationandnano-indentationhavebeenusedtomeasurehard-ness,toughnessandplanestrainmoduliofarangeofalkali-alkaliearth-silicateandborosilicateglasses.Fortheglassesstudiedimprovedtoughnessvaluesareobtainedforglasseswithhighermagnesiacontentsi.e.glasseswherethealkaliearthoxideisprobablyactingasanetworkformer.Itisshownthatwithinagivenglassseriesin-creasesinmodulidonottranslateintoincreasesinfracturetoughness,althoughsuchincreasesareseenovergreatercompositionalranges.LargeralkalisresultinahighertoughnessforagivenYoung’smodulus.Possiblereasonsforthesevariationsinme-chanicalpropertieswithchemicalcompositionwillbeexamined.

    Applied Glass Science Composition/Structure-Property Relationships (ICG TC22)

  • 20

    New interpretation of oxide glasses properties on the basis of the constant stoichiometry groupings (CSG) concept

    OlegV.Yanush*,TatianaS.MarkovaSt. Petersburg State Technological University of Plant Polymers, 4, Ul. Ivana Chernykh,

    198095 Saint Petersburg, Russia

    Nowadaysitisevidentthattheshort-rangeorderstructurealonecannotreproduceproperty-compositioncurvesofglasses.Thedominantdiscourse(1,2)invokesthepres-enceofdiscretemultipolyhedralnetworkclusters–‘superstructuralunits’–whichare‘fundamentalbuildingblocks’ inglasses.Sinceearly80sbasedonvibrationalspec-troscopydataanewapproachhasbeenproposedto investigate the interactionsofinitialoxidesinmeltsresultedinso-calledconstantstoichiometrygroupings(CSGs)formation.(3–5)ThevibrationalspectraofglassesareinterpretedasasuperpositionofarelativelysmallnumberofunchangeablespectralformsbelongingtotheCSGs.Thecompositiondependencesof the concentrationsof theCSGsaffordanopportunitytoexplain,calculateandpredictthecompositionaldependencesofrefractiveindex,density,structuralthermalexpansioncoefficient(STEC),thefractionoffourcoordi-natedboronatoms,Kerrcoefficientandotherpropertiesofbinaryandternaryglassesandevenglasseswith‘anomalous’compositiondependenceofproperties.Basedonthevibrationaldataofglassesthedevelopedapproachallowsalsopredictingofnewcrystallinecompounds.Morethan25binaryandternaryglassformingsystemshavebeencarefullyinvestigatedusingtheCSGconceptinthewholecompositionrange.

    TheadvancementoftheCSGconceptispossibilitytodesignlowscatteringglassesbuiltfromCSGsofasingletype(withoutconcentrationfluctuations)foreffectiveRa-manamplifiers.Thispredictionisjustifiedfornumeroussilicate,borate,germanate,andphosphateglassesinvestigated,whereinsomecasestheminimaoflightscatter-inglossespredictedwerelowerthanthoseinsilicaglass.

    In90salsoinRussiathermodynamicmodelingstudiesofShakhmatkin&co-work-ers(6)haveledtotheconceptofsalt-likegroupingsinglassthathavethestoichiometryofthecrystallinephasesthatexistinthesystem;andalsotheconceptofpolymeric-nanoheteromorphousstructureofglassproposedbyMinaevV.S.&co-workers.(7)

    Remarkablythatabsolutelydifferentmethods(vibrationalspectroscopy(3–5)andther-modynamic modeling(6,7)) have provided identical information about intermediaterangestructureofoxideglassesconsistingofCSGs,orsalt-likegroupings(chemicalgroupings),orpolymorphoids.

    1. Krogh-Moe,J.Phys. Chem. Glasses,1962,3(4),101–10.2. Wright,A.C.InBorate Glasses, Crystals and Melts.EditedbyN.Umesaki&A.C.Hannon,SocietyofGlassTechnology,Sheffield,ISBN978-0-900682-63-6,2010,P.1.

    On the mixed alkali effect in the 0·17[xLi2O(1−x)Na2O].0·33CaO.0·50SiO2 glass system

    TiagoDeMarchiMosca,AnaCandidaM.RodriguesUniversidade Federal de São Carlos, Departamento de Engenharia de Materiais, Rod.

    Washington Luis, Km 235, 13565-905 São Carlos S.P.

    Thewellknownmixedalkalieffect remainsoneof thechallengingopenquestionstobesolvedwithrespecttoionicconductioninglasses.Infact,whenonealkaliionisprogressivelysubstitutedbyanother,severalexamplesrevealadropofupto2–3ordersofmagnitudeinelectricalconductivity,σ,atroomtemperature.Ithasalsobeenobservedthatthisdecreaseinelectricalconductivityisfollowedbyanincreaseintheactivationenergy,Ea.However,little,ifany,attentionhasfocusedonthepre-exponen-tialtermAoftheArrheniusexpression:

    sT A Ek Ta

    B= -exp( )

    Using impedance spectroscopy, we have measured the electrical conductivity ofglasssamplesofthe0·17[xLi2O(1−x)Na2O].0·33CaO.0·50SiO2system(wherex=0·0,0·1,0·2,0·3,0·5,0·7,1·0).Thisglasssystemwaschosenduetoparallelcrystallisationstud-ies.Themixedalkalieffectisobserved,withelectricalconductivitypresentingamini-mumforthex=0·5composition,whiletheactivationenergyandthepre-exponentialtermoftheArrheniusequationpresentamaximumforthesamecomposition.

    Thisworkdiscussestheinfluenceofthepre-exponentialtermonthevalueofelectricalconductivity,andmakesanexploratoryanalysisofthispre-exponentialtermbasedonmicroscopicandthermodynamiccharacteristics.Samplesof0·17Na2O.0·33CaO.0·50SiO2glasswiththeadditionofupto7·5mol%ofLi2Oarealsoinvestigated.Inthiscase,aweakbutwelldefineddecreaseintheelec-tricalconductivityisobservedwiththeadditionofupto3mol%ofLi2O.AfurtherincreaseinLi2Ocontentleadstoanincreaseinelectricalconductivity.Theslightde-creaseinelectricalconductivityandtheshiftoftheminimumtoasmalleramountofLi2Ocontentindicateacompetitiveeffectbetweentheincreaseinalkalicontentandthemixedalkalieffect.

    Composition/Structure-Property Relationships (ICG TC22)Composition/Structure-Property Relationships (ICG TC22)

  • 21

    3. Yanush,O.V.Tezisidokladov:“7Vsesoyuznoyesoveshchaniepostekloobraznomusostoyaniyu”,Leningrad,1981,66–7.(InRussian.)4. Mukhitdinova,I.A.et al.Zhurn. Prikladnoj Spektroskopii,1984,41(6),944.(InRussian.)5. Yanush,O.V.&Markova,T.S.Properties and Structure of Oxide Glasses.EditedbyV.P.Klyuev&B.Z.Pevzner,ResarchSignpost,2010.P.1–44.6. Vedishcheva,N.M.et al.InBorate Glasses, Crystals and Melts.EditedbyA.C.Wright,S.A.Feller,&A.C.Hannon,SocietyofGlassTechnology,Sheffield.1997,P.215.7. Minaev,V.S.Glastech. Ber. Glass Technol.,1998,71,416.

    An insight into the Germanate Anomaly: A comparative EPR and RAMAN study supported by DFT simulations

    AthinaAngelopouloua,b*,GeorgeMitrikasa,andGeorgeKordasaaSol-Gel Laboratory, Institute of Materials Science, NCSR “DEMOKRITOS”, 15 310 Aghia

    Paraskevi Attikis, Greeceb Department of Materials Science, School of Natural Sciences, University of Patras, 26 500

    Patras, Greece

    HYSCOREandRamanspectroscopywasemployedtoelucidatethestructureoflithi-um-germanateglassesofthecompositionxmol%Li2O–(1−x)mol%GeO2,wherex=5,10,20,30.Theparamagneticstateswereinducedbyγ-irradiation.ThecwEPRspec-trawereattributedtoaNBOHCarisingfromaholetrappedataporbitalofanon-bridgingoxygen,whichhasbeenidentifiedfirstlyinirradiatedalkalisilicateglassesasHC1andHC2.FromacomparisonofoursignalwithstructuralmodelsforHC1andHC2defectsinγ-irradiatedalkalisilicateglassesweconcludethattheGeNBOHCcanbesimilartotheHC1defectcentre.EvaluationoftheHYSCOREspectrarevealedtheexistenceofaweakcouplingbetweentheelectronspinandnearbyLi.Moreover,themagneticcouplingsofthealkalinucleiremainalmostthesamewithxrevealingasta-blealkaliionicenvironment.Thefactthattheangleβbetweenthezprincipalaxisoftheisotropichyperfinecouplingandgtensorisalwayscloseto40°±20°indicatesthepresenceofalkaliequilibriumsitesaccessibleforeverycation.RamaninvestigationrevealedmoreinformationregardingthestructureofthegermanateglassesthantheEPRinvestigation.TheexplanationoftheRamanspectrawasaccomplishedbyDFTcalculationsusingtheB3LYPmethodunderthe6-311Gbasisset.Thespectradependstronglyonthevariousunits,suchascombinationofringunits,5-foldcoordinationofGe,etc.Theextendofwhichdependsonx.Theexactevaluationresultedinstructuralmodelswhichwillbepresentedinconfirmationwiththeexperimentalresults.

    Composition/Structure-Property Relationships (ICG TC22)Composition/Structure-Property Relationships (ICG TC22)

  • 22

    Thermal, viscosity and thermal expansion coefficient properties for a range of phosphate based glasses

    SharifahI.S.Shaharuddin*,IftyAhmed,DavidFurniss,AndrewJ.Parsons,ChristopherD.Rudd

    Faculty of Engineering, Division of Materials, Mechanics and Structures, University of Nottingham, Nottingham NG7 2RD, UK

    Phosphatebasedglasses (PBG)are currentlyofhuge interest since recentfindingshave shown that the durability of PBG can be increased by dopingwith selectivemetalcations.Furthermore,theirdegradationratescanbetailoredtosuittheirendapplications.PBGsforbiomedicalapplicationshavebeenproducedinfibreformandmostlyviameltdrawntechniques.Thus,datarelatingtoviscositytemperaturepro-fileorthermalexpansionpropertyofPBGisinadequate.Inordertodrawfibersviapreformtechnique,viscositytemperaturecorrelationiscrucialasitwouldindicatetheapproximatetemperaturesforbothpreformmanufactureandfibredrawing.

    Inthisstudyvariouscompositionsinthesystem50P2O5-(x)Ca-(50-x)Naglasses,0≤x≤50,wereinvestigatedfortheirthermalproperties(glasstransition,Tg,crystallisationTc,andmelttemperatures,Tm),density,molarvolume,linearthermalexpansioncoef-ficientandviscositytemperaturecorrelation.TheglasscompositionswereconfirmedviaEDXandtheamorphousnatureoftheformulationsinvestigatedwasconfirmedviaXRD.TheTg,viscositytemperatureprofileanddensityincreasedwithincreasingCaOmol%.Theglasstransitiontemperature,increasedfrom290to521°C.Theviscos-ity temperatureprofiles revealedan increase infibredrawing range frombetween327°C to 529°C. These profiles also indicated the temperature regions for preformmanufacturingincreasefrom320°Cto451°C.Thedensitywasalsoseentoincreasefrom2·5to2·64gcm-3.SubstitutionofCaOattheexpenseofNa2Ointheglasssys-temstudiedalsocausedadecreaseinlinearthermalexpansionfrom25·44×10-6°C-1to11·8×10-6°C-1.Theeffectsmentionedabovehavebeenattributedtothecross-linkingofCa2+cationsbetweendifferentphosphatechainsandthehigherfieldstrengthofCa2+comparedtoNa+whichstrengthentheglassnetwork.

    Fluorine containing bioactive glasses

    RobertGHill,*DeliaBrauer,MohammedMneimne,NataliaKarpukhina,HelenChenXiaojingChenand

    Unit of Dental Physical Sciences, Barts and the London, Queen Mary, University of London, Mile End Road, London E1 4NS UK.

    RobertLawDepartment of Chemistry Imperial College London UK

    Bioactive glasses are sodium calcium phospho-silicate glasses, which dissolve inphysiological fluids forming hydroxycarbonated apatite(HCA). These glasses havebeenwidelyused inmedicine, but are increasinglybeingused for re-mineralisingadditivesfortoothpastes.Thispaperstudiesthestructure,dissolutionbehaviourandapatiteformingabilityofthreeglassseriestowhichfluorite(CaF2)hasbeenprogres-sivelyadded.ThefirstseriesisalowphosphateseriesofglasseswithapproximatelyequalproportionsofNa2OandCaO,thesecondseriesisahighphosphateserieswithapproximatelyequalproportionsofNa2OandCaO,thethirdseriesisahighphos-phatecontentserieslikeseries2,butwithnoNa2O.

    TheglasseshavebeencharacterisedbyXRD,hightemperatureDSCandsolidstateMAS-NMR.ThedissolutionbehaviouroftheglassesintoTrisBufferandSimulatedBodyFluidhasbeenfollowedusingICP-OEMandionselectiveelectrodes.

    AlltheglasseswereamorphousbyXRD.TheglasstransitiontemperaturewasfoundtodecreaseswithincreasingCaF2content.19FMAS-NMRshowedthefluorinetobecomplexedbyCaformingF-Ca(n)speciesintheNafreeglassesandformingmixedF-Ca/Na(n)sitesintheNacontainingglasses.29SiMAS-NMRshowednochangeintheQspeciation.31PMAS-NMRshowedthepresenceofQ0ororthophosphateinalltheglasses.

    TheadditionofCaF2totheglassesincreasedtheirdissolutionrateandreducedthetimetoformapatite.19FMAS-NMRshowedtheapatitetobeafluorapatite(FAP)asopposedtoaHCA.Thehigherphosphatecontentglassesformedapatitemuchmorequicklythanthelowerphosphateglasses.HighCaF2contents>13mol%intheglassresultedintheformationoffluoriteattheexpenseofFAPinTrisbufferandSBF.TheNafreeseriesformedFAPexceedinglyrapidly,whichcastsdoubtontheviewthatNa+ionexchangeforH+isthefirststepinbioactiveglassdegradation.

    Thesenewfluorinecontainingbioactiveglassesareparticularlyattractiveforre-min-eralisingtoothpastes,wheretheformationofFAPasopposedtoHCAisanattractivefeature.

    Composition/Structure-Property Relationships (ICG TC22) Glass Properties (ICG TC22)

  • 23

    Electrical conductivity of quartz glass measured by impedance spectroscopy between 600–1100°C

    D.-K.LeeSolar Cell Research Center, Materials Science and Technology Division, Korea Institute of

    Science and Technology (KIST), Seoul 136-791, Korea

    M.NebeInstitute of Inorganic and Analytical Chemistry, Justus-Liebig-University, Heinrich-Buff-

    Ring 58, 35392 Gießen, Germany

    M.Stamminger*Heraeus Quarzglas GmbH & Co KG, Quarzstrasse 8, 63450 Hanau, Germany

    J.JanekInstitute of Physical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392

    Gießen, Germany

    TheelectricalconductivityofquartzglassmaterialgradeswithavarietyoflithiumandhydroxylcontentshasbeendeterminedbyACimpedancespectroscopyattem-peraturesbetween600and1100°C.Thesamplesrepresentglassmanufacturedbyelectricalfusionandflamefusionofquartzcrystals,aswellassyntheticfusedsilicamanufactured by hydrolysis of a silicon-containing precursor in an oxyhydrogenflame.TheresultingplotsofconductivityversustemperatureyieldedgoodArrhen-iusdependenciesallowingadeterminationoftheactivationenergiesfortheelectricalconductionprocess.Theactivationenergiesshowedachangeinmagnitudeatabout800°C.Complementingdata fromprevious studies, the results show that the con-ductivityisdeterminedprimarilybythelithiumcontentinthenaturalfusedquartzgrades. In the synthetic fused silicamaterials, thehydroxyl contentplays thepre-dominantrole.

    Tin oxide solubility in soda-lime silicate melts

    P.Gateau*,C.Petitjean,P.-J.Panteix,C.Rapin,M.VilasiDpt CP2S-Equipe SIRCM, IJL-UMR 7198, Faculty of Sciences and Techniques, B.P. 70239 -

    54506 Vandoeuvre-lès-Nancy Cedex, France

    Duetoitslowsolubilityinmoltenglass,thelowestamongnon-colouringoxides,tindioxideiscommonlyusedasrefractorymaterial,electrodesorasopacifierinenam-els.Thus,thisworkdealswiththeinfluenceofglasscompositionandtemperatureonSnO2solubility.

    Thesolubilityoftindioxideisassessedasafunctionoftimeandtemperatureinsim-pleternaryglasses:NC3S,NC4S,NC5SandNC6S(N:Na2O,C:CaO,S:SiO2).FurtherexperimentswereledinglassesenrichedwithNa2O,CaO,Al2O3orB2O3,inordertostudytheinfluenceofnetworkformersandmodifiersonthesolubilityofSnO2.

    For each experiment, glasswas crushedwith cassiterite powder (SnO2). From thismixture,100mgballsofSnO2/glasswereformedinacarboncrucible.Sampleswerethenannealedattemperaturescomprisedbetween1200–1400°C,fortimesupto9h.SnO2over-saturationinthesilicatemeltwascontrolledbySEM,whilethecontentofdissolvedoxidewasmeasuredbyEPMA.

    Asexpected,thesolubilityoftinoxidefollowsanArrheniuslaw,whichischaracter-isticofathermallyactivatedprocess.Furthermore,thelimitofsolubilityofSnO2isdiscussedregardingtheopticalbasicity.Thesoleinfluenceofthisparametercannotexplainthemeasuredevolutionoftinoxidesolubility.Asaconsequence,thediscus-sionalsodealswithapotentialchangeoftheoxidationstateoftin.

    Glass Properties (ICG TC22) Glass Properties (ICG TC22)

  • 24

    Russian Glass Chemistry: From Lomonosov to Shultz

    NataliaM.Vedishcheva*1&AdrianC.Wright21Moskovsky prospekt, 220-386, St. Petersburg, 199066, Russia

    2J.J. Thomson Physical Laboratory, University of Reading, Whiteknights, Reading, RG6 6AF, U.K.

    Thispaperbrieflyconsiders thehistoryofRussianglassscienceand, inparticular,itschemicalaspects.UnlikeinEurope,alchemywasneverpopularinRussia,beingverylittleknownbeforetheendofthe17thcentury,whentheruleofPetertheGreatstarted.Thissituationstronglyfavouredthedevelopmentofgenuinechemistry,espe-ciallybythetimeMikhailV.Lomonosovfinishedhisstudiesandstartedworkinginthe1740s,whichexplainshisrigorousscientificapproachtobothchemistryandglassproperties.Lomonosov’s18thCenturysuccessorwasErikLaxman,whoisthesubjectofthepreviouspresentationbyKajKarlsson,whilstthemostfamousglassscientistduringthe19thCenturywasDmitriI.Mendeleev,whoconsideredglassesassaltsofsilicicacid.Thequestionastowhetherglassesaremixturesorchemicalcompoundswasdiscussed, in the1890s,byNikolaiN.Lyubavinand, in the20thCentury, thechemical constitutionofglasseswasfirstaddressedbyAlexanderA.Lebedev (the1920s) and thenbyEvgeniiA.Porai-Koshits (the 1940s). Later, in the 1950s-1980s,importantRussiancontributionstothechemistryofglassesandglass-formingmeltsincludedthoseofRudolfL.Muller,AlexanderA.AppenandMikhailM.Shultz,whostudiedchemicalequilibriainglasses.Thecombinedachievementsoftheabovesci-entistsrepresentanimpressivelegacy,contributedbyRussianworkerstotheworld-widedevelopmentofglassscience.

    History & Heritage: Russian Glass History

    Effects of magnesium for calcium substitution in phosphate glasses

    DeliaS.Brauer1,*,SunghoLee2,KieFujikura2,3,RobertV.Law3&ToshihiroKasuga2

    1Dental Physical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK

    2Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan3Department of Chemistry, Imperial College, Exhibition Road, London SW7 2AZ

    Phosphateglassesdissolvecompletelyinaqueousmedia,whichmakesthemofinterestforuse as temporary implantmaterials or for controlled release of therapeuticallyactive ions.Theaimofour researchwas to study theeffectofmagnesium for cal-ciumsubstitutiononstructure,thermalpropertiesanddissolutionofmetaphosphateglassesandphosphateinvertglasses.

    Ametaphosphateseries(45-y)CaO·yMgO·50P2O5·5TiO2(mol%,y=0–45)andaninvertglassseries(60-x)CaO·xMgO·30P2O5·10TiO2(mol%,x=0–60)wereproducedbyamelt-quenchroute.Thermalbehaviourwasinvestigatedusingdifferentialthermalanalysis(DTA);glassstructurewasinvestigatedusingRamanspectroscopyandsolid-statenu-clearmagneticresonance(ssNMR)spectroscopy.DissolutionbehaviourwastestedinTris(tris(hydroxymethyl)aminomethane)buffersolutionatpH7.4overupto7daysandanalysedusinginductively-coupledplasmaopticalemissionspectroscopy(ICP-OES).

    RamanpeakpositionsshiftedtohigherwavenumberswithincreasingMg-substitu-tion.ssNMRspectrawerecomplicatedbypresenceofQ1(Ti)peaks.Mg-substitutionmovedtheQ1peaktomorenegativechemicalshiftswhilebroadeningallpeaks.Thismightbeduetomagnesium,anintermediatecation,partiallyenteringthephosphatechains,formingP-O-Mgbonds.

    Mg-substitutionimprovedtheprocessingofmetaphosphateglasses,whilemixedCa/MginvertglassesshowedlargerprocessingwindowwindowsthantheallCaortheallMgversions,possiblyduetoamixedcationeffect.Mg-substitutionreducedthesolubilityofmetaphosphateglasses,whileincreasingthesolubilityofinvertglasses.

    Insummary,Mg-substitutionaffectedpropertiesofmetaphosphateandinvertglassesinoppositeways,whichmightbeduetoitsintermediatecharacter.However,furtherdetailedstructuralinvestigationsarenecessarytofullyelucidatethestructuralroleofmagnesiuminphosphateglasses.

    Glass Properties (ICG TC22)

  • 25

    Pliny’s Lost Glass: The Search for Flexible Glass and the Formation of Research Agendas in Early Modern Europe

    VeraKellerUniversity of Oregon, Clark Honors College, 1293 University of Oregon, Eugene, Oregon

    97403, USA

    Forthoseseekingtorediscoverthegloriesoftheancientworldinearlymodernity,onefrequentlyretoldstoryencapsulatedthepossibilitiesanddangersfacinginven-tion.Thiswasthestoryofflexibleglass,anamazingsubstance,which,accordinganancientRomantale,hadbeendiscoveredduringthereignoftheinfamousEmper-orTiberius.Accordingtolegend,Tiberiusmurdereditsinventoranddestroyedhisworkshop,lestthenewsubstancereducethevalueofpreciousmetals.‘Whowouldnothatesuchasavagemurdereranddestroyerofartandartisan,andwhoreadingoftheaffairwillnotboilwithrage?’askedoneoutragedchemicalwriterin1611.Asotherseventeenth-centurycommentatorsremarked,glasswasthemostperfectinven-tionofmankind;itsfragilitywasitsonlyimperfection.Flexibleglassthusnotonlypresentedafantasyofperfectlyrestoringadecayed,ancientRometoitspristinegran-deur,butfurthermoreofbuildinganewlyresilientworldwhichcouldneveragainbeshattered.Thestoryofitslossdramatizedhowsuchdreamsmightbedashedbyprivateinterestandsecrecy-onthepartofbothTiberiusandtheinventor,whodidnotsharehisprocedure.Flexibleglasswasbothanavidlypursuedsubstanceitselfintheseventeenthcentury,andthestoryofitslosshelpedtoshapehowthepursuitofdesiredobjectsingeneralwasconducted.Thispaperwillrecreatethesearchforthisancientmythicalmaterialacrossseventeenth-centuryEurope.Insodoing,Iwilldiscusswhatspecificchemicalinvestigationsthepursuitofflexibleencouraged,andmoregenerally,howthinkingabouttherelationshipofruler,subject,andinventionhelpedshapedplansfortheadvancementofknowledgeatlarge.

    Nano-Phases in Glass

    Looking for primary Roman glass production in the Western Mediterranean.

    DieterBrems*,PatrickDegryse,MonicaGanio&SaraBoyenDepartment of Earth and Environmental Sciences, K.U.Leuven, Celestijnenlaan 200E,

    B-3001 Leuven, Belgium

    Pliny theElder’sNaturalHistoryhasbeen citednumerous times in studies of an-cientnatronglassproduction.PlinydescribestheproductionofglassusingsandfromthebeachnearthemouthoftheriverBelusandthecoastalstripbetweenCumaandLiternumneartheriverVolturno.Aftergivingthesepreciselocationsforthesourceofglassmaking sands in theLevant and Italy,Plinymentions that ‘throughout theGallicandSpanishprovinceseven,wefindsandsubjectedtoasimilarprocess’,thusindicatingthatglasswasmadefromrawmaterialsinFranceandSpain.However,nodirectarchaeologicalevidencehasbeenfoundtosupportprimaryproductionintheseregions.Furthermore,thesuitabilityofthesesandshasneverbeenevaluated.

    InthisstudyweinvestigatethepossibleexistenceofaRomanprimaryglassindustryinthewesternMediterranean,basedontheoccurrenceofsuitablesandrawmateri-als.185beachsandsfromSpain,FranceandItalyareevaluatedfortheirsuitabilityforglassproductionbycalculatingthecompositionofhypotheticalnatronglassesmadefromthesesandsandcomparingthemtothecompositionofRomannatronglass.

    Theresultsshowthatsuitableglassmakingsandsarefarfromcommon.OnlyaverylimitednumberoftheanalysedsandswouldproduceaglasswithmajorandminorelementalcompositionswithintherangesorRomanimperialnatronglass.Therestofthesandsareunsuitableforglassproductionintheirpresentform,thedeterminantfactorsoftenbeingtheinsufficientSiO2,thehighAl2O3andFe2O3levelsandeithertoolowortoohighCaOcontents.Thesandswhichwouldproduceglassesofacceptablecompositionareallmainlyderivedfromtherecyclingofoldersedimentarysucces-sions.Thisreflectstheimportanceofpolycyclicchemicalandmechanicalweatheringinthematurationofsediments.ThenecessaryamountofCaOisbroughttothesandeitherthroughcalcareousfragmentsfromminor(butimportant)limestonesormarlsinthelocalhinterland,orthroughcontributionsofshellfragmentsnaturallyincludedinthesand.

    IfsandscontaintoolittleCaOtoproduceastableglass,piecesofshellorlimestonecanbeaddedtotheglassbatch,aswasalreadysuggestedbyPlinytheElder.ThereforeasecondcalculationwasperformedinwhichtheCaOcontentsof thehypotheticalglasseswereraisedtotheaverageCaOcontentofRomanglass,tomodelthisdeliber-ateadditionofextralime.Althoughthequalityofmostexaminedsandsisimproved,veryfewsamplescouldbebroughttowithincompositionalrangesofRomanglassfor

  • 26

    Trade routes across the Mediterranean: a Sr/Nd isotopic investigation of Roman colourless glass

    M.Ganio*,S.Boyen,D.Brems,P.DegryseSection Geology, Centre for Archaeological Sciences, K.U. Leuven, Celestijnenlaan 200E, bus

    2408, BE-3001 Leuven, Belgium

    K.LatruweDepartment of Analytical Chemistry, Ghent University, Krijgslaan 281 - S12, 9000 Ghent,

    Belgium.

    TradebyseawasquitecommonduringRomantimes,asattestedbythenumerousshipwrecksfoundintheMediterranean.Cargoswereusuallymixed,oftencomposedofstone,amphoraewithdifferentcontentsortablewareceramics,togetherwithvari-ablequantitiesofglass.Itislesscommontofindacargomainlycomposedofglass.InthisstudymajorelementsandSr-Ndisotopicanalysisisperformedon33colour-lessglassfragmentsfromtwoRomanshipwrecksdiscoveredintheNorthernMedi-terraneanSea.TheIuliaFelix, foundoutoffthecoastofGrado(northeasternItaly)anddatedto thefirsthalfof the3rdcenturyAD,showsacargomainlycomposedofamphoraetogetherwitha totalof140kgofglass (cups,bottlesandplates).TheOuest-Embiez1,wreckedoffthecoastofProvence(southernFrance),isdatedtotheendofthe2nd-beginningofthe3rdcenturyADandhasacargomainlycomposedofglass,with18tonsofrawglass,andabout1800piecesrangingfromcupstowindowglass.Twocompositionalgroupsaredefinedbaseduponthemajorelementsanaly-sis,suggestingtheuseofdifferentrawmaterials,andpossiblytheproductionoftheglasssamplesintwoseparatefactories.Thisconclusionissupportedbythepresenceofdifferentdecolourizingagentsshowingtheuseoftwodifferentglassrecipes.Thefirstgroup,whichshowslowlevelsofCa,Al,K,Ba,TiandP,ismadewithamorequartz-rich(pure)sand,andSbasdecolorisingagent.Itscompositionissimilarwiththe‘group1’ofJackson(2005)orwiththe‘group4’ofPiconandVichy(2003).Rawglassand‘highstatus’dishware(cupsandplates)belongtothisgroup.Thesecondgroupisproducedwithalesspuresand,richinCaandAl,anditissimilarincom-positionwiththe‘group3’ofNenna(1997)butwithahighercontentofMnO(>1%).Mn,thedecoloriser,ispositivelycorrelatedwithBaandSr,suggestingtheintroduc-tionofthosethreeelementsthroughacommonsource,probablywadorpsilomelane.Sr–Ndisotopesarepromisingindicatorsforprovenancinggeologicalresourcesusedasrawmaterialsinglassmanufacturing.TheSrisotopiccomposition,aproxyforthelimesource,oftheglasssamplesinanalysiscorrespondstothepresent-dayseawatersignal(87Sr/86Sr~0·7092),suggestingtheuseofbeachsandaslimesource.Thetwocompositional groups are confirmedby theSr contentvs. 87Sr/86Srplot.ThegroupdecolorisedbySbhasahigherisotopicsignature(87Sr/86Sraverage=0·709045±0·000041)to-getherwithalowercontentofSr(268–394µg/g),whiletheothergroupshowsahigher

    History & Heritage: Roman & Medieval Glass

    allmainandminorelements.

    Bycalculatingthecompositionofhypotheticalglassesproducedfrommodernbeachsands,wewereabletodefineafewlimitedareaswheresuitablesandrawmaterialswouldhavebeenavailabletotheRomanglassmaker.Thisallowsustomakesomesuggestionsaboutthepossible locationsofprimaryRomanglassproductioninthewesternMediterranean.

    History & Heritage: Russian Glass History

  • 27

    contentofSr(458–551µg/g)associatedwithalowerSrisotopicsignature(87Sr/86Sraverage=0·708808±0·000043).Thisrepresentsanunusualsituation,sinceitiscommonlyacceptedthatbeachshells,richinaragonite,shouldhaveahighercontentofSrthanlimestone, togetherwithaSr isotopicsignatureveryclose to themodernseawatervalue.TheanomalycanbeexplainedbytheadditionofSrthroughaseparatesourcethanthesand,characterizedbyalowSrisotopiccomposition.ThissourceintroducesalsothedecolorizerMn(associatedwithSrandBa).TheNdisotopiccompositionistypicaloftheheavynon-quartzfractioninthesilicarawmaterial.TheNdisotopicanalysis(inprogress)andthecomparisonwithrangesofisotopiccharacteristicsofsandsfromaroundtheMediterranean,willhelpprovenancetheglasssamplesofthetwoRomanshipwrecksandrecreatingtheircommercialtraderoutes.

    Glass coatings on stones of copper smelting furnaces - Bronze Age originals and results of archaeological

    experiments

    RainerO.WerthmannImmenhäuser Str. 16, Kassel, D-34128, Germany

    InarchaeologicalexperimentsattheuniversityofKassel,Germany,thecoppersmelt-ingprocessinfurnacesofthetypeusedinTimna,Israel,andFenan,Jordan,wasre-produced.Thematerialsusedwerecloseincompositiontothosefoundattheoriginalsites:sandstonefor thefurnace,oxidic/carbonaticcopperore,charcoal, ironoreasslag-formingadditive.Specialattentionwaspaid to theglaze layers formed insidethefurnacescontainingevaporatedconstituentsofcharcoalash,silicafromthestonesandtracesofcopper.Theglasslayerswereinvestigatedbyscanningelectronmicros-copy,theircompositionbeingdeterminedatvariouspointsbyelectronbeammicro-probe.Fromthesedata,adetailedmechanismofformationcouldbereconstructed.Thevariationofthecompositionasafunctionofthetemperatureofformationcouldbeshown.

    History & Heritage: Roman & Medieval Glass History & Heritage: Roman & Medieval Glass

  • 28

    The influence of modifiers on the tellurium environment in glass

    EmmaR.Barney*&AlexC.HannonISIS Facility, Rutherford Appleton Lab, Chilton, Didcot, Oxon OX11 0QX, UK

    DianeHollandPhysics Department, Warwick University, Coventry CV4 7AL, UK

    Telluriteglassesarepotentialcandidatesformanydevicesincludingopticalswitch-ingdevicesandlaserhosts.Theoriginsofthepropertieswhichtheypossess-suchashighrefractiveindices,wideinfraredtransmittance,chemicaldurabilityandnon-linearoptical(NLO)responses-arenotpreciselyknown,butitisthoughtthemacro-scopicpolarisabilityoftheglass(electricalandoptical)arisesfromthepeculiaritiesintheco-ordinationpolyhedraoftellurium(IV)whichmustincludeonelone-pair(lp)ofelectrons.ThereisawealthofliteraturetoshowthattheadditionofamodifiertoatelluriteglassnetworkresultsinTecoordinationchanges,andthesechangeshavebeenlinkedtotheNLOresponse.Glasseswhicharetelluriumricharealmostentirelycomprised of [TeO4] units andhave strongNLO responses, the strength ofwhichdecreasesrapidly inglasseswith increasedmodifiercontent,dueto theassociatedformationof[TeO3]unitsandnon-bridgingoxygens.ToallowtheunusualpropertiesofTeO2tobeutilisedeffectively,aclearunderstandingoftherelationshipbetweencomposition,telluriumenvironmentandNLOpropertiesisnecessary.Thetitaniumtelluritesystemhasbeenhighlightedasapossibleexceptiontothegenerallyunder-stoodrelationshipbetweenmodifiercontentandtelluriumcoordinationnumber.Ra-manspectrameasuredonthissystemofglassesshowsverylittlechangeincharacterasTiO2contentisvaried,fromwhichithasbeenimpliedthatthereisnochangeinthetelluriumenvironmentwithcomposition.Thesuggestedexplanationisthattita-nium,presentin[TiO6]units,isdirectlysubstitutesfortelluriumwithoutdisruptingtheTeO2glassnetwork.ThisallowstheformationofO–Te(IV)–O–Ti(VI)–O–Te(IV)–Olinkages(whereromannumeralsdenotethecoordinationnumber).Supportingevi-denceforthisideaisprovidedbythe25mol%TiO2titaniumtelluritecrystalstruc-ture,whichiscomprisedentirelyof[TiO6]and[TeO4]structuralunits.Thistalkwillpresent total scatteringdata thathasbeenmeasuredona rangeof tellurites, fromcrystallineα-TeO2andpureamorphousTeO2,toalkaliandboronmodifiedtelluriteglassesandrecentlycollecteddatafromthetitaniumtelluritesystem,todiscusstheeffectofmodifiersontelluriumenvironment.

    Conditional/Lone-Pair Glass Formers

    The structural role of lone-pair cations in glasses

    AlexC.Hannon*&EmmaR.BarneyISIS Facility, Rutherford Appleton Lab, Chilton, Didcot, Oxon OX11 0QX, UK

    OliverL.G.Alderman&DianeHollandPhysics Department, Warwick University, Coventry CV4 7AL, UK

    Lone-paircations,ofwhich lead isaprimeexample,playan important role in theformationofglassesoverawiderangeofcompositions.IthaslongbeenbelievedthatforlowPbOcontents,theleadplaystheroleofamodifierintheglassynetwork,butasthePbOcontentincreasesthereisachangetoanetworkformerrole.Thisconceptpre-datestheavailabilityofmodernstructuralprobes,andthetalkwillfirstreviewstructuralstudiesoflone-paircationsinglasses,whichgivecontradictoryresultsonthevalidityofthetraditionalmodel.RecentcombinedneutrondiffractionandNMRstudiesofthestructuralroleoflone-paircationsinglasseswillthenbereported,in-cludingstudiesofthalliumgermanates,tinborates,tinphosphates,leadgermanatesandleadsilicates.

    Conditional/Lone-Pair Glass Formers

  • 29

    Intermediate-range order in the tellurite glassforming system PbO–P2O5-TeO2 studied by Raman spectroscopy

    and x-ray powder diffraction.

    InnaE.Apakova,OlgaDerkacheva,TatianaS.Markova,*OlegV.Yanush

    St. Petersburg State Technological University of Plant Polymers, 4, Ul. I. Chernykh, St-Petersburg, 198095 Russia

    VladimirK.Goncharuk,IrinaG.MaslennikovaInstitute of Chemistry of Far-Eastern Branch of Russian Academy of Sciences, 159, Pr. Stoletiya,

    Vladivostok, 690022 Russia

    IrinaG.PolyakovaInstitute of Silicate Chemistry, Russian Academy of Sciences, 29, Ul. Odoevskogo, St-Petersburg,

    199155 Russia

    AnatoliiV.Anan’ev,LeonidV.MaksimovResearch and Technological Institute for Optical Material Science, 36-1, Ul. Babushkina,

    St-Petersburg, 192171 Russia

    Earlier an approach to investigation of glass structure, based on vibrational spec-troscopydatatreatmentandresultedinextractionofprincipalspectralcomponents(PSCs)belongingtoso-calledconstantstoichiometrygroupings(CSGs),hasbeenpro-posed todetermine theproductsof the interactionof initialoxides inmelts.(1)Thecompositiondependences of the concentrations of theCSGshave afforded anop-portunitytoexplainandcalculatethecompositionaldependencesofrefractiveindex,anddensity,andsomeotherpropertiesofglassesinagoodagreementwithexperi-mentaldataandeventopredictsuccessfullytheexistenceofunknowncompounds(Na2O.8B2O3,Na2O.4SiO2,(1)andothers).Besides,theconceptofCSGopensthewaytoelaborati