bolt specs

65
C D B A 012/T/001/2000 29.2.2000 15:37:53 E 2000 by Bossard T D C A B E 012/T/001/2000 29.2.2000 15:37:53 E E E Page: Terms and definitions Materials Screws (property classes 3.6 to 12.9) Terminology 2–3 – Mechanical properties 4 – Minimum ultimate tensile loads 5 – Steels for metric screws 6 – Materials, heat treatment, chemical composition 7 – Characteristics at elevated temperatures 7 Nuts (property classes 04 to 12) – Mechanical properties 8 – Minimum bolt stress for nuts 0,5 d and < 0,8 d 8 – Nut materials 9 – Chemical composition 9 Screws and nuts – Marking 10–11 – Pairing screws and nuts 11 Screws and nuts for high and low temperatures – Table of materials for high and low temperatures 12 – Pairing materials 12 – Reference information for the stat. elasticity module 13 and on the coefficient of thermal expansion – Ductility, yield strenght and tensile strength of 14 steels at high and low temperatures – Elastic elongation, yield strength ReL or R p0,2 15 min. elongation Stainless steel fasteners – Designation of property class acc. to ISO 3506 16 – Chemical composition 16–17 – Distinctive properties A1 / A2 / A4 / A5 17 – Mechanical properties 18 – Minimum breaking torques 18 – Elongation limit (Rp0,2 ) of higher temperatures 19 – Marking of screws and nuts 19 – Corrosion resistance, technical arguments 20 Fasteners made from various materials – Non-ferrous materials 21 – Special materials 22 – Thermoplastics 24–25 Plating and surface treatments – Electrolytic processes 26 – Hydrogen embrittlement, alternatives 26 – Coating thicknesses for parts with external thread 27 – Further galvanic coating processes 28 – Further surface treatments 28 Page: Design Estimation of screw diameters 29 Fatigue resistance – Strength under dynamic load 30 Surface pressure – Surface pressure limits of various materials 30 – Hex cap screws and hexagon nuts 31 – Socket head cap screws 31 Friction coefficient – For bolted joints and µtotal of stainless steel screws 32 Tightening method, tightening factor αA 33 Preload and tightening torques – How to use the torque chart? 34 – Metric coarse thread 35 – Metric fine threads 36 – Screws made from polyamide 36 – Screws made from austenitic steel A1 / A2 / A4 37 – Fasteners with hexagon socket and flat heads 37 – Locking screws and nuts, flange screws and nuts 38 – High–strength structural steel bolts (HV sets) 39 Locking methods – Constructive measures 40 – Locking elements 41 Shear loads for pins – Single and double – lap joints 42 Design recommendations – Thread forming screws for metals 43 – Thread forming screws for thermoplastics 44–45 – Self tapping screws for sheet metals 46 – Sheet metal joints 47 – Threaded inserts Ensat 48–49 – Internal drives for screws 50–51 Metric ISO threads – Basic concept, clearance fit, tolerance fields 52 – Limits for metric (standard) coarse threads 53 – Limits for metric fine threads 54 – Preference classes, drill size 55 – Nominal dimensions 56 Tables / tolerances / standards – ISO-Tolerances 57–58 – Basic tolerances and tolerance fields 59 – SI units system and conversion tables 60–61 – Conversion tables: metric – USA, USA – metric 62–63 – Table of hardness comparisons 64 – National standards 65 Table of Contents T T

Upload: rajdeepsaha1

Post on 22-Nov-2014

702 views

Category:

Documents


29 download

TRANSCRIPT

Page 1: Bolt Specs

CD

BA

012/T/001/2000 29.2.2000 15:37:53

E

2000 by Bossard

T

D C

A BE

012/T/001/2000 29.2.2000 15:37:53

EEEE

EE

Page:

Terms and definitionsMaterials

Screws (property classes 3.6 to 12.9)Terminology 2–3– Mechanical properties 4– Minimum ultimate tensile loads 5– Steels for metric screws 6– Materials, heat treatment, chemical composition 7– Characteristics at elevated temperatures 7

Nuts (property classes 04 to 12)– Mechanical properties 8– Minimum bolt stress for nuts ≥ 0,5 d and < 0,8 d 8– Nut materials 9– Chemical composition 9

Screws and nuts– Marking 10–11– Pairing screws and nuts 11

Screws and nuts for high and low temperatures– Table of materials for high and low temperatures 12– Pairing materials 12– Reference information for the stat. elasticity module 13 and on the coefficient of thermal expansion– Ductility, yield strenght and tensile strength of 14 steels at high and low temperatures– Elastic elongation, yield strength ReL or Rp0,2 15 min. elongation

Stainless steel fasteners– Designation of property class acc. to ISO 3506 16– Chemical composition 16–17– Distinctive properties A1 / A2 / A4 / A5 17– Mechanical properties 18– Minimum breaking torques 18– Elongation limit (Rp0,2) of higher temperatures 19– Marking of screws and nuts 19– Corrosion resistance, technical arguments 20

Fasteners made from various materials– Non-ferrous materials 21– Special materials 22– Thermoplastics 24–25

Plating and surface treatments

– Electrolytic processes 26– Hydrogen embrittlement, alternatives 26– Coating thicknesses for parts with external thread 27– Further galvanic coating processes 28– Further surface treatments 28

Page:

Design

Estimation of screw diameters 29

Fatigue resistance– Strength under dynamic load 30

Surface pressure– Surface pressure limits of various materials 30– Hex cap screws and hexagon nuts 31– Socket head cap screws 31

Friction coefficient– For bolted joints and µtotal of stainless steel screws 32

Tightening method, tightening factor αA 33

Preload and tightening torques– How to use the torque chart? 34– Metric coarse thread 35– Metric fine threads 36– Screws made from polyamide 36– Screws made from austenitic steel A1 / A2 / A4 37– Fasteners with hexagon socket and flat heads 37– Locking screws and nuts, flange screws and nuts 38– High–strength structural steel bolts (HV sets) 39

Locking methods– Constructive measures 40– Locking elements 41

Shear loads for pins– Single and double – lap joints 42

Design recommendations– Thread forming screws for metals 43– Thread forming screws for thermoplastics 44–45– Self tapping screws for sheet metals 46– Sheet metal joints 47– Threaded inserts Ensat 48–49– Internal drives for screws 50–51

Metric ISO threads

– Basic concept, clearance fit, tolerance fields 52– Limits for metric (standard) coarse threads 53– Limits for metric fine threads 54– Preference classes, drill size 55– Nominal dimensions 56

Tables / tolerances / standards

– ISO-Tolerances 57–58– Basic tolerances and tolerance fields 59– SI units system and conversion tables 60–61– Conversion tables: metric – USA, USA – metric 62–63– Table of hardness comparisons 64– National standards 65

Table of Contents

T

T

Page 2: Bolt Specs

CD

BA

012/T/002/2000 29.2.2000 15:37:52

E

2000 by Bossard T.002

T

D C

A BE

012/T/002/2000 29.2.2000 15:37:52

EEEE

EE

Terminology

Tensile strength Rm [N/mm2]The minimum tensile strength of a screw is the tensile stressfrom which there could be a rupture in the shank or the thread(not in the head/shank joint). If full size screws are tested, the yield strength can only beapproximately established. Under ISO 898 Part 1, the exactyield strength and elongation after fracture can only bedetermined using machined samples. Exceptions are stain-less steel screws A1–A4 (ISO 3506).

Tensile strength at rupture in thread:

max. tensile force F Nstress area As mm2

(Stress area As [mm2] of thread, see T.031)

Tensile strength at rupture in cylindrical shank:

max. tensile force F Ncylindrical starting cross–section mm2

Yield strength Rel [N/mm2]The yield strength is the tensile stress from which elongationbegins to increase disproportionately with increasing tensileforce. A plastic elongation remains after relief.

R m =

R m =

0,2 limit Rp0,2 [N/mm2]The yield strength of harder material is difficult to determine.The 0,2 limit is defined as the tensile stress from which aplastic elongation of exactly 0,2% remains after relief.

In practice, screws may be stressed by tightening and underworking load no more than up to the yield strength or the 0,2limit.

Elongation at fracture A5 [%]This occurs on loading up to the rupture point of the screw. Ina defined shank area, the remaining plastic elongation isdetermined using machined screws. Exceptions: screws A1–A4, where this is measured on fullsize screws (ISO 3506).

do

measuring length

Lo = 5 x do

0.2

limit

Rp

0,2

tens

ile fo

rce

max

. ten

sile

forc

e

elongation

F

Tensile test on fullsize screw

Tensile test on machined screw

max

. ten

sile

fo

rce

yiel

d po

int

elongation

tens

ile fo

rce

Page 3: Bolt Specs

CD

BA

012/T/003/2000 29.2.2000 15:37:53

E

2000 by Bossard T.003

T

D C

A BE

012/T/003/2000 29.2.2000 15:37:53

EEEE

EE

Wedge tensile strengthThe tensile strength on whole screws is established and thehead strength simultaneously tested on an angular load. Therupture must not occur in the head/shank joint.

Terminology

Hardness Generally speaking hardness is the resistance which thematerial offers to the penetration of a test body under adefined load (see ISO 898, Part 1).Hardness comparison tables, see T.064.

Vickers hardness HV: ISO 6507 Test body: Pyramid (encompasses the complete hardness

range usual for screws).

Brinell hardness HB: ISO 6506 Test body: BallRockwell hardness HRC: ISO 6508 Test body: Cone

Impact strength (Joule) ISO 83is the impact work used in the notched bar impact bendingtest. A notched sample is taken from near the surface of thescrew. This sample is broken with a single blow in apendulum ram impact testing machine, yielding information onthe microstructure, melting behaviour, inclusion content, etc..The measured value cannot be included in design calcula-tions.

Surface defects are slag inclusions, material overlaps and grooves stemmingfrom the raw material.Cracks, on the other hand, are crystalline ruptures without in-clusions. For details, see DIN 267 Part 20, ISO 6157.

Decarburization of the surfaceis generally a reduction in the carbon content of the surface ofthe thread of heat treated screws, see ISO 898 Part 1.

F

Head soundness The head of the screw must withstand several hammer blows.After being bent to a specified angle, the shank head filletshall not show any signs of cracking. For details see ISO 898,part 1.

Page 4: Bolt Specs

CD

BA

012/T/004/2000 29.2.2000 15:37:53

E

2000 by Bossard T.004

T

D C

A BE

012/T/004/2000 29.2.2000 15:37:53

EEEE

EE

ScrewsProperty classes3.6 to 12.9

Property class Sub-clause Mechanical and physical property 3.6 4.6 4.8 5.6 5.8 6.8 8.81) 9.82) 10.9 12.9

number d ≤ 163) d > 163)

mm mm5.1 and Tensile strength nominal value 300 400 500 600 800 800 900 1000 12005.2 Rm

4),5) in, N/mm2 min. 330 400 420 500 520 600 800 830 900 1040 12205.3 Vickers hardness HV min. 95 120 130 155 160 190 250 255 290 320 385

F ≥ 98 N max. 220 6) 250 320 335 360 380 4355.4 Brinell hardness HB min. 90 114 124 147 152 181 238 242 276 304 366

F = 30 D 2 max. 209 6) 238 304 318 342 361 4145.5 HRB 52 67 71 79 82 89 — — — — —

Rockwell HRC — — — — — — 22 23 28 32 39hardness HR HRB 95 6) 99,5 — — — — —

HRC — 32 34 37 39 445.6 Surface hardness HV 0,3 max. — 7)

5.7 Lower yield stress Rel8), nominal value 180 240 320 300 400 480 — — — — —

in N /mm2 min. 190 240 340 300 420 480 — — — — —5.8 Stress at 0,2 non-proportional Linomianl value — — 640 640 720 900 1080

elongation Rp 0,29) N/mm2 min. — — 640 660 720 940 1100

5.9 Stress under proofing Sp /ReL or 0,94 0,94 0,91 0,93 0,9 0,92 0,91 0,91 0,9 0,88 0,88load Sp Sp /Rp 0,2

N/mm2 180 225 310 280 380 440 580 600 650 830 9705.10 Breaking torque, MB Nm min. — See ISO 898-75.11 Percent elongation after fracturemin. 25 22 — 20 — — 12 12 10 9 8

A in %5.12 Reduction area after fracture, Z % min. — 52 48 48 445.13 Strength under wedge The values for full size bolts and screws (not studs) shall not be

loading5) smaller than the minimum values for tensile strength shown in 5.25.14 Impact strength, KU min. J — 25 — 30 30 25 20 15

in J5.15 Head soundness no fracture5.16 Minimum height of non-decarburized — 1/2 H1

2/3 H13/4 H1

thread zone, EMaximum depth of mm — 0,015complete decarburization, G

5.17 Hardness after retempering — Reduction of hardness 20 HV maximum5.18 Surface integrity In accordance with ISO 6157-1 or ISO 6157-3 as appropriate

1) For bolts of porperty class 8.8 in diameters d ≤ 16 mm, there is an increased risk of nut stripping in the case of inadvertent over-tightening inducing a load in excess of proofing load. Reference to ISO 898-2 is recommended.

2) Applies only to nominal thread diameters d ≤ 16 mm.3) For structural bolting the limit is 12 mm. 4) Minimum tensile properties apply to products of nominal length I ≥ 2,5 d. Minimum hardness applies to products of length l <2,5 d and other

products which cannot be tensile-tested (e.g. due to head configuration).5) When testing full-size bolts, screws and studs, the tensile loads, which are to be applied for the calculation of Rm shall meet the values given

on page T.005.6) A hardness reading taken at the end of bolts, screws and studs shall be 250 HV, 238 HB or 99,5 HRB maximum.7) Surface hardness shall not be more than 30 Vickers points above the measured core hardness on the product when readings of both surface and core

carried out at HV 0,3. For property class 10.9, any increase in hardness at the surface which indicates that the surface hardness exceeds 390 HV is not acceptable.

8) In cases where the lower yield stress Rel cannot be determined, it is permissiblr to measure the stress at 0,2 % non-proportional elongation Rp 0,2. For the property classes 4.8, 5.8 and 6.8 the values for Rel are given for calculation purposes only, they are not test values.

9) The yield stress ratio according to the designation of the property class and the minimum stress at 0,2 % non-proportional elongation Rp 0,2 apply tomachined test specimens. These values if received from tests of full size bolts and screws will vary because of processing method and size effects.

min.

max.

The mechanical properties are given for tests at room temperature.

Mechanical and physical properties ofbolts, screws and studsaccording to ISO 898 – part 1

Page 5: Bolt Specs

CD

BA

012/T/005/2000 29.2.2000 15:37:53

E

2000 by Bossard T.005

T

D C

A BE

012/T/005/2000 29.2.2000 15:37:53

EEEE

EE

ScrewsProperty classes3.6 to 12.9

Thread1) Nominal Property classdiameter stress area 3.6 4.6 4.8 5.6 5.8 6.8 8.8 9.8 10.9 12.9

As nom. Minimum ultiamte tensile load (As · Rm, min) in Nd mm2

M 3 5,03 1 660 2 010 2 110 2 510 2 620 3 020 4 020 4 530 5 230 6 140M 3,5 6,78 2 240 2 710 2 850 3 390 3 530 4 070 5 420 6 100 7 050 8 270M 4 8,78 2 900 3 510 3 690 4 390 4 570 5 270 7 020 7 900 9 130 10 700M 5 14,2 4 690 5 680 5 960 7 100 7 380 8 520 11 350 12 800 14 800 17 300M 6 20,1 6 630 8 040 8 440 10 000 10 400 12 100 16 100 18 100 20 900 24 500M 7 28,9 9 540 11 600 12 100 14 400 15 000 17 300 23 100 26 000 30 100 35 300M 8 36,6 12 100 14 600 15 400 18 300 19 000 22 000 29 200 32 900 38 100 44 600M 10 58 19 100 23 200 24 400 29 000 30 200 34 800 46 400 52 200 60 300 70 800M 12 84,3 27 800 33 700 35 400 42 200 43 800 50 600 67 4002) 75 900 87 700 103 000M 14 115 38 000 46 000 48 300 57 500 59 800 69 000 92 0002) 104 000 120 000 140 000M 16 157 51 800 62 800 65 900 78 500 81 600 94 000 125 0002) 141 000 163 000 192 000M 18 192 63 400 76 800 80 600 96 000 99 800 115 000 159 000 — 200 000 234 000M 20 245 80 800 98 000 103 000 122 000 127 000 147 000 203 000 — 255 000 299 000M 22 303 100 000 121 000 127 000 152 000 158 000 182 000 252 000 — 315 000 370 000M 24 353 116 000 141 000 148 000 176 000 184 000 212 000 293 000 — 367 000 431 000M 27 459 152 000 184 000 193 000 230 000 239 000 275 000 381 000 — 477 000 560 000M 30 561 185 000 224 000 236 000 280 000 292 000 337 000 466 000 — 583 000 684 000M 33 694 229 000 278 000 292 000 347 000 361 000 416 000 576 000 — 722 000 847 000M 36 817 270 000 327 000 343 000 408 000 425 000 490 000 678 000 — 850 000 997 000M 39 976 322 000 390 000 410 000 488 000 508 000 586 000 810 000 — 1020 000 1200 0001) Where no thread pitch is indicated in a thread designation, coarse pitch is specified. (See ISO 261 and ISO 262.)2) For structural bolting the values are 70000, 95500 and 130000 N, respectively.

Minimum ultimate tensile loads – ISO metric coarse (standard) pitch thread

Thread Nominal Property classdiameter stress area 3.6 4.6 4.8 5.6 5.8 6.8 8.8 9.8 10.9 12.9

As nom. Minimum ultiamte tensile load (As · Rm, min) in Nd x P 1) mm2

M 8 x 1 39,2 12 900 15 700 16 500 19 600 20 400 23 500 31 360 35 300 40 800 47 800M 10 x 1 64,5 21 300 25 800 27 100 32 300 33 500 38 700 51 600 58 100 67 100 78 700M 10 x 1,25 61,2 20 200 24 500 25 700 30 600 31 800 36 700 49 000 55 100 63 600 74 700M 12 x 1,25 92,1 30 400 36 800 38 700 46 100 47 900 55 300 73 700 82 900 95 800 112 400M 12 x 1,5 88,1 29 100 35 200 37 000 44 100 45 800 52 900 70 500 79 300 91 600 107 500M 14 x 1,5 125 41 200 50 000 52 500 62 500 65 000 75 000 100 000 112 000 130 000 152 000M 16 x 1,5 167 55 100 66 800 70 100 83 500 86 800 100 000 134 000 150 000 174 000 204 000M 18 x 1,5 216 71 300 86 400 90 700 108 000 112 000 130 000 179 000 — 225 000 264 000M 20 x 1,5 272 89 800 109 000 114 000 136 000 141 000 163 000 226 000 — 283 000 332 000M 22 x 1,5 333 110 000 133 000 140 000 166 000 173 000 200 000 276 000 — 346 000 406 000M 24 x 2 384 127 000 154 000 161 000 192 000 200 000 230 000 319 000 — 399 000 469 000M 27 x 2 496 164 000 198 000 208 000 248 000 258 000 298 000 412 000 — 516 000 605 000M 30 x 2 621 205 000 248 000 261 000 310 000 323 000 373 000 515 000 — 646 000 758 000M 33 x 2 761 251 000 304 000 320 000 380 000 396 000 457 000 632 000 — 791 000 928 000M 36 x 3 865 285 000 346 000 363 000 432 000 450 000 519 000 718 000 — 900 000 1055 000

Minimum ultimate tensile loads – ISO metric fine pitch threads

Minimum ultimate tensile loads according to ISO 898 – part 1

Page 6: Bolt Specs

CD

BA

012/T/006/2000 29.2.2000 15:37:53

E

2000 by Bossard T.006

T

D C

A BE

012/T/006/2000 29.2.2000 15:37:53

EEEE

EE

ScrewsProperty classes3.6 to 12.9

Suitable common materials for screws of property classes according to ISO 898 – part 1, manufacturing processes and diameters.

Property Base materials, manufacture through Size Heat treatment afterclass cold–forming hot–forging machining cold–forming hot–forging machining

3.6 QSt 36–2 = 1.0203 USt 37–1 = 1.0110 9 S 20 = 1.0711 to M39 annealed none 4.6 UQSt 36–2 = 1.0204 RSt 44–2 = 1.0419

USt 38–2 = 1.0217UQSt 38–2 = 1.0224

4.8 QSt 36–2 = 1.0203 ÷ 9 S 20 = 1.0711 commonly to none ÷ noneQSt 38–2 = 1.0204 to M16

5.6 Cq 22 = 1.1152 St 50–2 = 1.0533 ÷ to M39 annealed ÷ 5.8 Cq 22 = 1.1152 ÷ 9 SMn 28 = 1.0715 to M39 none ÷ none or

Cq 35 = 1.1172 10 S 20 = 1.0721 tempered 6.8 Cq 35 = 1.1172 C 45 = 1.0503 10 S 20 = 1.0721 to M39 none or quenched and none or

35 B 2 = 1.5511 46 Cr 2 = 1.7006 quenched and tempered quenched andCq 45 = 1.1192 tempered tempered

8.8 22 B 2 = 1.5508 not common to M1228 B 2 = 1.5510

8.8 35 B 2 = 1.5511 C 45 = 1.0503 to M22Cq 35 = 1.1172 46 Cr 1 = 1.7002Cq 45 = 1.119234 Cr 4 = 1.7033 46 Cr 2 = 1.7006 from M2437 Cr 4 = 1.7034 to M39

10.9 35 B 2 = 1.5511 to M6Cq 35 = 1.117234 Cr 4 = 1.7033 not or from M8 quenched and tempered

41 Cr 4 = 1.7035 not very common to M1841 Cr 4 = 1.7035 to M3934 CrMo 4 = 1.722042 CrMo 4 = 1.7225

12.9 34 CrMo 4 = 1.7220 to M1837 Cr 4 = 1.703441 Cr 4 = 1.703542 CrMo 4 = 1.7225 to M2434 CrNiMo 6 = 1.6582 to M39

ISO 898 Part 1 only applies for screws with nominal diameters up to M39. Screws with larger diameters can be manufactured fromthe same steels indicated for use up to M39, but the mechanical properties must meet the requirements of ISO 898 – part 1.

Steels for metric screwsaccording to manufacturers' specifications

Page 7: Bolt Specs

CD

BA

012/T/007/2000 29.2.2000 15:37:53

E

2000 by Bossard T.007

T

D C

A BE

012/T/007/2000 29.2.2000 15:37:53

EEEE

EE

ScrewsProperty classes3.6 to 12.9

Chemical composition limits TemperingProperty Material and heat treatment (check analysis) % temperatureclass C P S B1) °C

min. max. max. max. max. min. 3.62) — 0,20 0,05 0,06 0,003 — 4.62) — 0,55 0,05 0,06 0,003 — 4.82)

5.6 0,13 0,55 0,05 0,06 0,003 — 5.82) — 0,55 0,05 0,06 6.82)

8.83) Carbon steel with additives (e.g. Boron, Mn or Cr)quenched and tempered 0,154) 0,40 0,035 0,035 0,003or 425cabon steel, quenched and tempered 0,25 0,55 0,035 0,035

9.8 Carbon steel with additives (e.g. Boron, Mn, or Cr),quenched and tempered 0,154) 0,35 0,035 0,035 0,003or 425carbon steel, quenched and tempered 0,25 0,55 0,035 0,035

10.95), 6) Carbon steel with additives(e.g. Boron, Mn or Cr), quenched and tempered 0,154) 0,35 0,035 0,035 0,003 340

10.96) Carbon steel, quenched and tempered 0,25 0,55 0,035 0,035 0,003orcarbon steel with additives(e.g. Boron, Mn or Cr), quenched and tempered, 0,204) 0,55 0,035 0,035 425oralloyed steel, quenched and tempered 7) 0,20 0,55 0,035 0,035

12.96),8),9) Alloyed steel, quenched and tempered 7) 0,28 0,50 0,035 0,035 0,003 3801) Boron content can reach 0,005 % provided that non-effective boron is controlled by addition of titanium and/or aluminium.2) Free cutting steel is allowed for these property classes with the following maximum sulfur, phosphorus and lead contents:

sulfur 0,34%, phosphorus 0,11%, lead 0,35% 3) For nominal diameters above 20 mm the steels specified for property class 10.9 may be necessary in order to achieve

sufficient hardenability. 4) In case of plain carbon boron alloyed steel with a carbon content below 0,25% (ladle analysis), the minimum manganese content shall be 0,6%

for property class 8.8 and 0,7% for 9.8 and 10.95) Products shall be additionally identified by underlining the symbol of the property class (see page T.010).6) For the materials of these property classes, it is intended that there should be a sufficient hardenabiltity to ensure a structure consisting of

approximately 90% martensite in the core of the threaded sections for the fasteners in the «as-hardened» condition before tempering.7) This alloy steel shall contain at least one of the following elements in the minimum quantity given: chromium 0,30 %, nickel 0,30 %, molybdenum

0,20 %, vanadium 0,10 %. Where elements are specified in combinations of two, three or four and have alloy contents less than those given above,the limit value to be applied for class determination is 70 % of the sum of the individual limit values shown above for the two, three or four elementsconcerned.

8) A metallographically detectable white phosphorous enriched layer is not permitted for property class 12.9 on surfaces subjected to tensile stress. 9) The chemical composition and tempering temperature are under investigation.

Carbon steel

Materials, heat treatment, chemical compositionsaccording to ISO 898 – part 1

Characteristics at elevated temperaturesaccording to ISO 898 – part 1

TemperatureProperty class +20 °C +100 °C +200 °C + 250 °C + 300 °C

Lower yield stress, ReL orstress at 0,2 % non-proportional elongation Rp0,2

[N/mm2] 5.6 300 270 230 215 195 8.8 640 590 540 510 48010.9 940 875 790 745 70510.9 940 — — — —12.9 1100 1020 925 875 825

Continuous operating at elevated service temperature may result in significant stress relaxation. Typically 100 h service at 300 °C willresult in a permanent reduction in excess of 25 % of the initial clamping load in the bolt due to decrease in yield stress.

Page 8: Bolt Specs

CD

BA

012/T/008/2000 29.2.2000 15:37:53

E

2000 by Bossard T.008

T

D C

A BE

012/T/008/2000 29.2.2000 15:37:53

EEEE

EE

NutsProperty classes04 to 12

Mechanical properties of nuts with coarse (standard) threads according to ISO 898 – part 2

Property classThread 04 05 4 5 6diameter Proof Vickers Proof Vickers Proof Vickers Proof Vickers Proof Vickers

stress hardness stress hardness stress hardness stress hardness stress hardnessSp HV Sp HV Sp HV Sp HV Sp HV

over to N/mm2 min. max. N/mm2 min. max. N/mm2 min. max. N/mm2 min. max. N/mm2 min. max.

— M 4 520 600 M 4 M 7 — — — 580 670 M 7 M10 380 500 590 680 M10 M16 610 700 M16 M39 510 117 302 630 146 720 170

130302

150302188 302 272 353

1) Nuts style 1 (ISO 4032)

Remarks – The minimum hardness values are binding only for nuts for which a test stress measurement cannot be performed and for harde-

ned and tempered nuts. The minimum values are guide values for all other nuts.

Minimum bolt stress when stripping occurs for nuts with nominalheight of ≥ 0,5 d and < 0,8 d according to ISO 898 – part 2

Property classThread 8 9 10 12diameter Proof Vickers Proof Vickers Proof Vickers Proof Vickers Proof Vickers

stress hardness stress hardness stress hardness stress hardness stress hardnessSp HV Sp HV Sp HV Sp HV Sp HV

over to N/mm2 min. max. N/mm2 min. max. N/mm2 min. max. N/mm2 min. max. N/mm2 min. max.

— M 4 800 180 900 170 1040 1140 1150 M 4 M 7 855 915 1040 1140 1150 M 7 M10 870 200 940 302 1040 1140 1160 M10 M16 880 950 1050 1170 1190 M16 M39 920 233 353 920 1060 — — — 1200

188302

272 353

The standard values for strip resistance relate to the given bolt classes.The exterior thread may be expected to strip if the nuts are paired with screws of lover property classes, while the thread of the nutwill strip if it is paired with screws of higher property classes.

2951)

Property class Proof Minimum stress in the core of bolt when stripping occursof nut load stress for bolts with property class

of the nut N/mm2

For bolts with property classN/mm2 6.8 8.8 10.9 12.9

04 380 260 300 330 35005 500 290 370 410 480

3531) 2722) 3532)

2) Nuts style 2 (ISO 4033)

Page 9: Bolt Specs

CD

BA

012/T/009/2000 29.2.2000 15:37:53

E

2000 by Bossard T.009

T

D C

A BE

012/T/009/2000 29.2.2000 15:37:53

EEEE

EE

Property class Chemical composition (check analysis) %C Mn P Smax. min. max. max.

41), 51), 61) — 0,50 — 0,060 0,1508, 9 041) 0,58 0,25 0,060 0,150102) 052) 0,58 0,30 0,048 0,058122) — 0,58 0,45 0,048 0,058

1) Nuts of these property classes may be manufactured from free-cutting steel unless otherwise agreedbetween the purchaser and the manufacturer. In such cases, the following maximum sulfur, phospho-rus and lead contents are permissible:

sulfur 0,34%phosphorus 0,11%lead 0,35%

2) Alloying elements may be added, if necessary, to develop the mechanical properties of the nuts.

NutsProperty classes04 to 12

Nut materials according to manufacturers' specifications

Chemical compositions of nutsaccording to ISO 898 – part 2

Property Raw materials for fabrication by Nut Final condition of nut class diameter

cold–forming hot–forging machining formed machinedUQSt 36–2 UST 36–2 St 34–2 no subsequent no subsequent1.0204 1.0203 1.0151 treatment treatment

St 37–2 4, 5, 6 1.0161

35S 20 k1.07269S 20 k1.0711

UQSt 36–2 C 22 1.0402 35 S 20 k ≤ M 16 8 Cq 22 C 35 1.0501 1.0726

Cq 35 45 S 20 k > M 16 quenched and1.0727 tempered

10, 12 Cq 35 C 35 1.0501 C 35 1.0501 quenched andCq 45 C 45 1.0503 C 45 1.0503 tempered

Nuts of property classes 05, 8 (style 1 > M 16), 10 and 12 must be hardened and tempered.

Page 10: Bolt Specs

CD

BA

012/T/010/2000 29.2.2000 15:37:53

E

2000 by Bossard T.010

T

D C

A BE

012/T/010/2000 29.2.2000 15:37:53

EEEE

EE

ScrewsBoltsNuts

Marking of screws and boltsaccording to ISO 898 – part 1

Property class 3.6 4.6 4.8 5.6 5.8 6.8 8.8 9.8 10.9 12.9

Marking1),2) 3.6 4.6 4.8 5.6 5.8 6.8 8.8 9.8 10.9 12.9

1) The full-stop in the marking symbol may be omitted.2) When low carbon martensitic steels are used for property class 10.9 (see table on page T.007),

the symbol 10.9 shall be underlined: 10.9

Identification with the manufacturer's mark and the property class is mandatory for hexagon screws 3.6 to 12.9 and sockethead cap screws 8.8 to 12.9 with thread diameter d ≥ 5 mm, where the shape of the screw always allows it – preferably onthe head.

Marking of studsaccording to ISO 898 – part 1

Identification with the manufacturer is mark and property class is mandatory for hexagon nuts with thread diameter d ≥ 5 mm. Thehexagon nuts must be marked with an indentation on the bearing surface or on the side or by embossing on the chamfer. Embossedmarkings must not protrude beyond the bearing surface of the nut.

Example of marking with the designation symbol. Example of marking with the code symbol (clock-face sy-stem).

Example of marking with the property class designation symbol.

Example of marking with the code symbol (clock-face system)

Property class 5.6 8.8 9.8 10.9 12.9

Marking symbol

Marking is obligatory for property classes of or higher than 8.8 and is preferably to be made on the threaded part by an indentation.For adjustment bolts with locking, the marking must be on the side of the nut.Marking is required for bolts of nominal diameter of or greater than 5 mm.

The symbols shown in the table on the right are also authorised as a method of identification.

8.8

AB

8

8AB

ABAB

Marking of nuts according to ISO 898 – part 2

Examples of marking on hexagon screws. Examples of marking on socket head cap screws and hexalobularhead bolts and screws.

ABCD

8.8

ABCD 8.8

ABCD

12.9

ABCD 12.9

8.8

XY

Z

XYZ

8.8

Page 11: Bolt Specs

CD

BA

012/T/011/2000 30.3.2000 13:50:19

E

2000 by Bossard T.011

T

D C

A BE

012/T/011/2000 30.3.2000 13:50:19

EEEE

EE

ScrewsBoltsNuts

Marking of nuts according to DIN 267 – part 4

For hexagon nuts with nominal thread diameter d ≥ 5 mm acc. to DIN 934 and DIN 935 made from free-cutting steel, the markingmust also include a groove on one chamfer of the nut (up to property class 6).

Characteristic 4 5 6 8 10 12

Property classIndentification |4| |5| |6| |8| |10| |12|mark

Hexagon nuts with nominal thread diameter d ≥ 5 mm must be marked with the property class on the bearing surface or on the side.Embossed markings must not protrude beyond the bearing surface of the nut.

Groove

|8|

|8|

Pairing screws and nuts ≥ 0,8daccording to ISO 898 – part 2

Assignment of possible property classes of screws and nuts

Property class Mating bolts Nutsof nut Type 1 Type 2

Property class Diameter range Diameter range 4 3.6 4.6 4.8 > M16 > M16 — 5 3.6 4.6 4.8 ≤ M16

5.6 5.8 ≤ M39 6 6.8 ≤ M39 ≤ M39 — 8 8.8 ≤ M39 ≤ M39 > M16 ≤ M39 9 9.8 ≤ M16 — ≤ M1610 10.9 ≤ M39 ≤ M39 —12 12.9 ≤ M39 ≤ M16 ≤ M39

Remark: In general, nuts of a higher property class are preferable to nuts of a lower property class. This is advisable for a bolt / nut assembly stressed higher than the yield stress or the stress under proof load.

≤ M39 —

Page 12: Bolt Specs

CD

BA

012/T/012/2000 30.3.2000 13:50:19

E

2000 by Bossard T.012

T

D C

A BE

012/T/012/2000 30.3.2000 13:50:19

EEEE

EE

Screws and nuts forhigh and low temperatures

Table of materials for high temperaturesaccording to DIN 267, part 13

Pairing materials for screws and nutsaccording to DIN 267, part 13

Material Material number Marking Utilisationabbreviation temperatur limits

C 35 N ou C 35 V 1.0501 Y +350 °CCk 35 1.1181 YK +350 °C35 B 2 1.5511 YB +350 °C24 CrMo 5 1.7258 G +400 °C21 CrMoV 5 7 1.7709 GA +540 °C40 CrMoV 4 7 1.7711 GB +500 °CX 22 CrMoV 12 1 1.4923 V, VH +580 °CX 19 CrMoVNbN 11 1 1.4913 VW +580 °CX 8 CrNiMoBNb 16 16 1.4986 S +650 °CX 5 NiCrTi 26 15 1.4980 SD +650 °CNiCr20 TiAl 2.4952 SB +700 °C

MaterialScrew Nut

Ck 35 C 35 N, C 35 V, Ck 35, 35 B 235 B 224 CrMo 5 Ck35, 35 B 2, 24 CrMo 521 CrMoV 5 7 24 CrMo 5

21 CrMoV 5 740 CrMoV 4 7 21 CrMoV 5 7X 22 CrMoV 12 1 X 22 CrMoV 12 1X 19 CrMoVNbN 11 1X 8 CrNiMoBNb 16 16 X 8 CrNiMoBNb 16 16X 5 NiCrTi 26 15 X 5 NiCrTi 26 15NiCr 20 TiAl NiCr 20 TiAl

Table of materials for low temperaturesfrom –200 °C to –10 °Caccording to DIN 267, part 13

Material Material number Marking Utilisationabbreviation temperatur limits

26 CrMo4 1.7219 KA – 60 °C12 Ni 19 1.5680 KB –120 °CX 5 CrNi 18 10 1.4301 A2 –200 °CX 5 CrNi 18 12 1.4303 A2 –200 °CX 6 CrNiTi 18 10 1.4541 A2 –200 °C

1) – 60 °C2) –200 °C1) – 60 °C2) –200 °C

X 5 CrNiMo 17 12 2 1.4401 A4

X 6 CrNiMo Ti 17 12 2 1.4571 A41) Screw with head2) Screw without head

Page 13: Bolt Specs

CD

BA

012/T/013/2000 30.3.2000 13:50:19

E

2000 by Bossard T.013

T

D C

A BE

012/T/013/2000 30.3.2000 13:50:19

EEEE

EE

Screws and nuts forhigh and low temperatures

Reference values for the stat. elasticitymodule and the coefficient of heat expansionaccording DIN 17240

Static elasticity module at a temperature of:Material groups 1) 20 °C 100 °C 200 °C 300 °C 400 °C 450 °C 500 °C 550 °C 600 °C 700 °C 800 °C

[103 N/mm2]Ferritic steels(1.0501, 1.1181, 1.1172, 211 204 196 186 177 172 164 152 127 — —1.7258, 1.7709, 1.7711)Steels with approx. 12% Cr 216 209 200 190 179 175 167 157 127 — —(1.4923, 1.4913)Austenitic steels 196 192 186 181 174 170 165 162 157 147 —(1.4986)NiCr20TiAl 216 212 208 202 196 193 189 184 179 161 130

1) The steels of these material groups are shown with their material number.

Material Material Density Coefficient of heat expansion between 20 °C andabbreviation number at 20 °C 100 °C 200 °C 300 °C 400 °C 500 °C 600 °C 700 °C 800 °C

kg / dm3 [10-6 · K-1]C 35 1.0501Ck 35 1.1181Cq 35 1.117224 CrMo 5 1.725821 CrMoV 5 7 1.770940 CrMoV 4 7 1.7711X 22 CrMoV 12 1 1.4923X 19 CrMoVNbN 11 1 1.4913

X 8 CrNiMoBNb 16 16 1.4986 7,9 16,6 17,7 17,9 17,9 17,9 18,1 18,3 18,6

NiCr20TiAl 2.4952 8,2 11,9 12,6 13,1 13,5 13,7 14,0 14,5 15,1

7,85 11,1 12,1 12,9 13,5 13,9 14,1

7,7 10,5 11,0 11,5 12,0 12,3 12,5

Mechanical propertiesmin. yield strength values at increasedtemperatures according to DIN 17240

Material Material Tensile Elongation Impact 0,2 limit Rp 0.2 at °C [N / mm2]abbreviation number strength at strength

factureRm A 20° 200° 250° 300° 350° 400° 450° 500° 550°

[N / mm2] [%] DVM (J)C 35 N ou C35V 1.0501 500– 650 21 280Ck 35 1.1181 500– 650 22 55 280 220 203 186 167 147Cq 35 1.1172 500– 650 22 55 280 220 203 186 167 14724 CrMo 5 1.7258 600– 750 18 103 440 412 392 363 333 304 275 23521 CrMoV 57 1.7709 700– 850 16 69 550 500 480 460 441 412 372 334 27540 CrMoV 47 1.7711 850–1000 14 41 700 635 617 598 578 540 500 460 403X 22 CrMoV 121 1.4923 800– 950 14 34 600 530 505 480 452 423 382 344 284X 19 CrMoVNbN 111 1.4913 900–1050 10 24 780 700 680 655 620 580 530 470 400X 8 CrNiMoBNb 1616 1.4986 650– 850 16 48 500 432 412 393 372 353 334 314 282X 5 NiCrTi 2615 1.4980 896 15 586NiCr 20 TiAl 2.4952 ≥ 1000 12 17 600 568 564 560 550 540 530 530 510

Page 14: Bolt Specs

CD

BA

060/T/014/2000 30.3.2000 13:50:19

E

2000 by Bossard T.014

D C

A BE

060/T/014/2000 30.3.2000 13:50:19

EEEE

EE

Strasbourg Grenoble Paris RennesU 03 88 20 77 50 U 04 76 24 80 80 U 01 49 38 14 70 U 02 99 41 75 75

S

Screws and nuts forhigh and low temperatures

Ductility of steels atlow temperaturesaccording to manufacturer's specifications

Yield strength and tensile strengthof steels at low temperaturesaccording to manufacturer's specifications

70

60

50

40

30

20

10

0–200 –150 –100 –50 0 +20

26 CrMo 4X 12 CrNi 18 9

12 Ni 19X 12 CrNi 18 9X 10 CrNiTi 18 10X 10 CrMoTo 18 10

Temperature [°C]

12 Ni 1926 CrMo 4

X 12 CrNi 18 9X 10 CrNiTi 18 1012 Ni 1926 CrMo 4

DVM [J]

200

100

0

[%]

Necking at rupture KElongation at rupture AImpact strength specimen DVM

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0–200 –150 –100 –50 0 +20

[N/mm2]

Tensile strength Rm

Yield strength Rel or Rp 0,2

X 12 CrNi 18 9X 10 CrNiTi 18 10

26 CrMo 412 Ni 19X 12 CrNi 18 9X 10 CrNi Ti 18 1026 CrMo 4 (bis –120°)12 Ni 19

Temperature [°C]

Page 15: Bolt Specs

Calculation:

λ [mm] = Fv · L E · A

[mm]

λ [mm] = elastic elongation under preload Fv

Fv [N] = preloadE [N / mm2] = elasticity moduleA [mm2] = cross section area of

reduced shank L [mm] = reduced shank length

where:

0,7 Fv A = 70% de Rp 0,2

CD

BA

012/T/015/2000 30.3.2000 13:50:19

E

2000 by Bossard T.015

T

D C

A BE

012/T/015/2000 30.3.2000 13:50:19

EEEE

EE

Screws and nuts forhigh and low temperatures

Elastic elongation of bolts with reducedshanks (DIN 2510)

Materials YK G GA GB V VW S SBElastic elongation λ [mm] prestressed up to approx. 70% of the

L = [mm] yield stress Rp 0,2 at room temperature 60 0,056 0,088 0,109 0,139 0,116 0,152 0,107 0,116 70 0,065 0,102 0,127 0,162 0,136 0,177 0,125 0,136 80 0,074 0,117 0,146 0,186 0,155 0,202 0,143 0,155 90 0,084 0,131 0,164 0,209 0,175 0,228 0,161 0,175

100 0,093 0,146 0,182 0,232 0,194 0,253 0,179 0,194110 0,102 0,161 0,2 0,255 0,213 0,278 0,197 0,213120 0,112 0,175 0,218 0,278 0,233 0,304 0,215 0,233130 0,121 0,19 0,237 0,302 0,252 0,329 0,233 0,252

140 0,13 0,204 0,255 0,325 0,272 0,354 0,251 0,272150 0,140 0,291 0,273 0,348 0,291 0,28 0,269 0,291160 0,149 0,234 0,291 0,371 0,31 0,405 0,286 0,31170 0,158 0,248 0,309 0,394 0,33 0,43 0,304 0,33

180 0,167 0,263 0,328 0,418 0,349 0,455 0,322 0,349190 0,177 0,277 0,346 0,441 0,369 0,481 0,34 0,69200 0,186 0,292 0,364 0,464 0,388 0,506 0,358 0,388210 0,195 0,307 0,382 0,487 0,407 0,531 0,376 0,407

220 0,205 0,321 0,4 0,51 0,427 0,557 0,394 0,427230 0,214 0,336 0,419 0,534 0,446 0,582 0,412 0,446240 0,223 0,35 0,437 0,557 0,466 0,607 0,43 0,466250 0,233 0,365 0,455 0,58 0,485 0,633 0,448 0,485

260 0,242 0,38 0,473 0,603 0,504 0,658 0,465 0,504270 0,251 0,394 0,491 0,626 0,524 0,683 0,483 0,524280 0,26 0,409 0,51 0,65 0,543 0,708 0,501 0,543290 0,27 0,423 0,528 0,673 0,563 0,734 0,519 0,563300 0,279 0,438 0,546 0,696 0,582 0,759 0,537 0,582

E [103 N/mm2] 211 211 211 211 216 216 196 216

L

Fv

A

Fv

Length ofreduced shank

Example

X 8 CrNiMoBNb 16 16 = [S]Rp 0,2 = 500 N/mm2

length of the reduced shank L = 220 mm

Elastic elongation

λ = 0,7·500 = 0,394 mm

see table,column S for L = 220 mm

220 196000

Page 16: Bolt Specs

CD

BA

012/T/016/2000 30.3.2000 13:50:19

E

2000 by Bossard T.016

T

D C

A BE

012/T/016/2000 30.3.2000 13:50:19

EEEE

EE

Stainless steelfastenersDesignation of property classes

according to ISO 3506

Composition groups

FiIdentification of steelgrades

Screws, nuts style 1

Ferritic

45 60

020 030

MartensiticAustenitic

80

040

C3

50 70

035

110

055

7050

025

C4C1A4A31)A2A1 A51)

80

040

70

035

50

025Flat nuts

Property classes

soft work-hardened

heavilywork-hardened

soft hardended +tempered

soft hardened +tempered

hardended +tempered

soft work-hardened

035 025

Descriptions using a letter/figure combination mean the following:

A2 – 70

Abbreviation of composition group:A = austenitic chromium-nickel steel

Abbreviation of chemical composition:1 = free-cutting steel with sulphur additive2 = cold-heading steel alloyed with chromium and nickel3 = cold-heading steel alloyed with chromium and nickel,

stabilised with Ti, Nb, Ta4 = cold-heading steel alloyed with chromium, nickel and

molybdenum5 = cold-heading steel alloyed with chromium, nickel and

molybdenum, stabilised with Ti, Nb, Ta

Abbreviation of property class:50 = 1/10 of tensile strength of screw/proofstress for nuts (min. 500 N/mm2)70 = 1/10 of tensile strength of screw/proofstress for nuts (min. 700 N/mm2)80 = 1/10 of tensile strength of screw/proofstress for nuts (min. 800 N/mm2)

Flat nuts:025 = proof stress for nuts (min. 250 N/mm2)035 = proof stress for nuts (min. 350 N/mm2)040 = proof stress for nuts (min. 400 N/mm2)

Chemical composition of austenitic stainless steels according to ISO 3506More than 97% of all fasteners made from stainless steels are produced from this steel composition group. They are characterised byimpressive corrosion resistance and excellent mechanical properties.Austenitic stainless steels are divided into 5 main groups whose chemical compositions are as follows:

Steel Chemical composition in % (maximum values, unless otherwise indicated, rest iron (Fe))group C Si Mn P S Cr Mo Ni CuA1 0,12 1,0 6,5 0,200 0,15–0,35 16–19 0,7 5–10 1,75–2,25A2 0,10 1,0 2,0 0,050 0,03 15–20 — 8–19 4A31) 0,08 1,0 2,0 0,045 0,03 17–19 — 9–12 1A4 0,08 1,0 2,0 0,045 0,03 16–18,5 2–3 10–15 1A51) 0,08 1,0 2,0 0,045 0,03 16–18,5 2–3 10,5–14 1

1) stabilised against intergranular corrosion through addition of titanium, possibly niobium, tantalum.

Page 17: Bolt Specs

CD

BA

012/T/017/2000 30.3.2000 13:50:19

E

2000 by Bossard T.017

T

D C

A BE

012/T/017/2000 30.3.2000 13:50:19

EEEE

EE

Stainless steelfastenersChemical composition

Steel Comparable C Si Mn P S Cr Mo Nigroup steels under

DIN 17440Number % % % % % % % %

Ferritic steelsF1 1.40061) 0,10 1,0 1,0 0,040 0,030 16,0 up to 18,0 — ≤ 0,50F1 — 4) 0,10 1,0 1,0 0,040 0,030 16,0 up to 18,0 — ≤ 0,50F1 — 0,10 1,0 1,0 0,040 0,030 16,0 up to 18,0 0,90 up to 1,30 —

Martensitic steelsC1 1.40061) 0,09 up to 0,15 1,0 1,0 0,040 0,030 11,5 up to 14,0 — ≤ 1,0C4 — 2) 0,08 up to 0,15 1,0 1,5 0,060 0,150 up to 0,350 12,0 up to 14,0 0,60 max. ≤ 1,0C1 1.4021 0,16 up to 0,25 1,0 1,0 0,040 0,030 12,0 up to 14,0 — ≤ 1,0C3 — 0,10 up to 0,20 1,0 1,0 0,040 0,030 15,0 up to 18,0 — 1,5 bis 3,0C3 1.40571) 0,17 up to 0,25 1,0 1,0 0,040 0,030 16,0 up to 18,0 — 1,5 bis 2,5C1 1.40283) 0,26 up to 0,35 1,0 1,0 0,040 0,030 12,0 up to 14,0 — ≤ 1,0C1 1.4034 0,36 up to 0,45 1,0 1,0 0,040 0,030 12,5 up to 14,5 — ≤ 1,0C1 — 0,42 up to 0,50 1,0 1,0 0,040 0,030 12,5 up to 14,5 — ≤ 1,0

Austenitic steelsA2 1.4306 0,030 1,0 2,0 0,045 0,030 17,0 up to 19,0 — 9,0 up to 12,0A2 1.4301 0,070 1,0 2,0 0,045 0,030 17,0 up to 19,0 — 8,0 up to 11,0A1 1.43051) 0,120 1,0 2,0 0,045 0,150 up to 0,350 17,0 up to 19,0 0,60 max. 8,0 up to 10,0A2 1.43031) 0,100 1,0 2,0 0,045 0,030 17,0 up to 19,0 — 11,0 up to 13,0A3 1.45411), 4) 0,080 1,0 2,0 0,045 0,030 17,0 up to 19,0 — 9,0 up to 12,0A3 1.4550 5) 0,080 1,0 2,0 0,045 0,030 17,0 up to 19,0 — 9,0 up to 12,0A4 1.4404 0,030 1,0 2,0 0,045 0,030 16,0 up to 18,5 2,0 up to 2,5 11,0 up to 14,0A4 1.44011) 0,070 1,0 2,0 0,045 0,030 16,0 up to 18,5 2,0 up to 2,5 10,5 up to 14,0A5 1.45711), 4) 0,080 1,0 2,0 0,045 0,030 16,0 up to 18,5 2,0 up to 2,5 10,5 up to 14,0A5 1.4580 5) 0,080 1,0 2,0 0,045 0,030 16,0 up to 18,5 2,0 up to 2,5 10,5 up to 14,0A4 1.4435 0,030 1,0 2,0 0,045 0,030 16,0 up to 18,5 2,5 up to 3,0 11,5 up to 14,5A4 1.4436 0,070 1,0 2,0 0,045 0,030 16,0 up to 18,5 2,5 up to 3,0 11,0 up to 14,51) Mainly used in Europe. 2) In Europe free-cutting steel 13 CrMoS 17 (material number 1.4104) is preferred.3) According to: «Stahl-Eisen-Werkstoffblatt 400».4) With addition of Ti: 5x% C ≤ Ti ≤ 0,805) With addition of Nb: 10x% C ≤ Nb ≤ 1,0

Distinctive propertiesA1 / A2 / A4 / A5

Material designation A1 A2 A3 A4 A5Material no. 1.4305 1.4301 1.4541 1.4401 1.4436

1.4300 1.4303 1.4590 1.4404 1.45711.4306 1.4550 1.4435 1.4580

Properties conditionally rust-resistant rust-resistant rust-resistandconditionally acid-resistant acid-resistant still acid-resistantconditionally weldable easily weldable easily weldable

A1: for machining, conditionally rust- and acid-resistantA2: standard qualityA4: highest corrosion resistance (with molybdenum additive)

– spring parts made from martensitic chrome steel C1, C2, C3have lower corrosion resistance than A2, A4

A3, A5: as for A2, A4, however stabilised against intergranular corrosion after welding or annealing

see also page T.020

Page 18: Bolt Specs

CD

BA

012/T/018/2000 30.3.2000 13:50:19

E

2000 by Bossard T.018

T

D C

A BE

012/T/018/2000 30.3.2000 13:50:19

EEEE

EE

Stainless steelfasteners

Mechanical properties for fasteners made from austenitic stainless steel according to ISO 3506- part 1 bolts, screws and studs/- part 2 nuts

ScrewsThread Tensile Stress at 0,2% Elongation after

Group Grade Property diameter strength R m1) permanent strain fracture

class of range N / mm 2 R p 0,21) A2)

screw d min. min. min.N / mm 2 mm

A1, A2 50 ≤ M 39 500 210 0,6 dAustenitic A3, A4 70 ≤ M 203) 700 450 0,4 d

A5 80 ≤ M 203) 800 600 0,3 d

Property class 70 – commercial:

The values of property classes 70 and 80 apply only for cold formed fasteners with diameters conforming to the above table andlengths up to 8xd, such as hexagon, hexagon socket, slotted, recessed and locking screws.

Property class 70 is commercial and usually also the most economic.

Screws of property class 80 are only advised if the components are also manufactured from high-strength stainless steel which isnot often so. The component is machined, the work-hardened surface zone is usually removed and the screw head then contacts thesoft core material.

For manufacturing reasons, fasteners of A2, A4 over M20 or with lengths greater than 8xd usually have lower strengths in the class50 range. If higher strengths are needed, this must be made clear when ordering.

For additional information, see Technical Information 3: Stainless steel fasteners. Please ask for a copy!

Minimum breaking torques for screws M1,6 to M16(coarse thread) according to ISO 3506 - part 1

NutsProperty class Thread Stress under proof load Sp

of nuts diameter N / mm2

Group Grade range min.nut thin nuts d nuts thin nuts

style 1 style 1m ≥ 0,8d 0,5 d ≤ m < 0,8 d [mm] m ≥ 0,8d 0,5 d ≤ m < 0,8 d

A1 50 025 ≤ 39 500 250Austenitic A2, A3 70 035 ≤ 24 3) 700 350

A4, A5 80 040 ≤ 24 3) 800 400

1) The tensile stress is calculated on the stress area.2) To be determined according to the actual screw length and not on a prepared test piece; d is the nominal thread diameter.3) For fasteners with nominal thread diameters d > 24 mm the mechanical properties shall be agreed upon between user and manu-

facturer and marked with grade and property class according to this table.

m = nut heightd = thread diameter

Minimum breaking torque MB, minNm

Property class

Thread 50 70 80

M 1,6 0,15 0,2 0,24M 2 0,3 0,4 0,48M 2,5 0,6 0,9 0,96M 3 1,1 1,6 1,8M 4 2,7 3,8 4,3M 5 5,5 7,8 8,8M 6 9,3 13 15M 8 23 32 37M10 46 65 74M12 80 110 130M16 210 290 330

Page 19: Bolt Specs

CD

BA

012/T/019/2000 30.3.2000 13:50:19

E

2000 by Bossard T.019

T

D C

A BE

012/T/019/2000 30.3.2000 13:50:19

EEEE

EE

Stainless steelfasteners

Elongation limit (Rp0,2) at elevated temperatures as % of the values at room temperature according to ISO 3506

Rel and Rp 0,2 in %

Steel grade +100 °C +200 °C +300 °C +400 °C

A2, A4 85% 80% 75% 70% applies for property classes 70 and 80

Marking of screws and nuts according to ISO 3506

RequirementScrews and nuts made from stainless austenitic steels mustbe marked.

ScrewsHexagon and hexagon socket screws from nominal diameterM5 must be marked. The marking must show the steel group,the property class and the manufacturer's mark.

Locking screwsmust be marked on the shaft or screw end.

BoltsBolts from nominal diameter M5 must be marked on theshank or the end of the thread with the steel group, the pro-perty class and the manufacturer's mark.

Hexagon screws manufacturer'smark

steel group propertyclass

Socketheadcap screw

Nuts

Alternativegroove marking

NutsNuts from minimal diameter M5 must be marked with the steelgroup, the property class and the manufacturer's mark.

XYZ

A2-70

XYZ A2-70

XYZ

A2-70

XYZ

A2–50

A2

∅ >

s

A4

Caution!Only those fasteners marked to standard will have the desired properties. Products not marked to standard will often only correspond to property classes A2–50 or A4–50

XYZ

A2–50

For applicability at low temperatures, see T.012.

Studs8.8

A2-

70

XY

Z

A4

Page 20: Bolt Specs

CD

BA

012/T/020/2000 30.3.2000 13:50:19

E

2000 by Bossard T.020

T

D C

A BE

012/T/020/2000 30.3.2000 13:50:19

EEEE

EE

Stainless steelfastenersCorrosion resistance

according to manufacturer's information

Austenitic stainless steels have an invisible self-protecti-ve oxide film; if damaged, this film will restore itself as long asthere is oxygen in the vicinity. However, if the access of oxygenis hampered by unfavorable designs or contamination, stainlesssteels will corrode.

Avoid: slits, gaps, humidity concentration bad ventilation and dirt deposits

Rule of thumb: A2 above water, continental climateA4 under water, coastal climateA1 has a small amount of sulphur added,

to improve machinabiltiy. Corrosion resistance less than A2.This also applies to steels C1-C4.

Coatings and black oxidizing (no access to oxygen) aswell as roughening of the surface, reduce corrosion resistance.Under certain conditions, chlorine bearing mediums may causeintergranular corrosion, which may result in a sudden failure ofcomponents.

Standard ISO 3506 specifies steels resistant to corrosionand acids, indicates the corresponding mechanical characteri-stics also the chemical compositions together with some recom-mendations for the appropriate choice of a steel, also in the ca-se of utilisation at low or high temperatures.

The reference data with respect to corrosionresistance should preferably be the results of laboratorytests or practical experience! We gladly provide you withspecimens in order to carry out such tests.

Avantages Prevents the following problems

Bright surface, good appearance Rusting screws give a poor impression. The customer loses confidence in the product.

Safety Corrosion reduces the stability and functionality of the fastening elements. They become weak points.

No red rust Some plastic or textile elements can become unusable due to contact with red rust.

No health risk Blood poisoning can result from injuries from rusty elements.

Utilisation for foodstuffs Galvanised elements must never come into contact with foodstuffs.

No risk from sucking Small children must not suck galvanised or cadmium plated elements.

Easy to clean, hygienic Corrosive products which are difficult to eliminate form on bright or galvanised parts.

Nickel-chrome steel has low Magnetic fastening elements can upset measuring instruments. Magnetic parts attract metallic dust. Othermagnetism corrosion problems occur.

High resistance to elevated The chromating of galvanised, chromated fastening elements deteriorates after 80 °C. Corrosion resistancetemperatures falls considerably.

The screws and nuts are bright and If the thickness of the coating of galvanised screws is excessive, the elements can jam on assembly.always easy to assemble

No problems during maintenance Rusting screws and nuts are difficult to loosen. It is sometimes necessary to damage them, which is generallywork problematic. Elements of the construction are often damaged.

More information is contained in our Technical information Subject B2: Corrosion resistant assemblies. Send for it!

Technical arguments for the utilisation of elements of nickel-chromeaustenitic steel resistant to corrosion A1, A2, A4.

Page 21: Bolt Specs

CD

BA

012/T/021/2000 5.6.2003 7:22:31

E

2000 by Bossard T.021

T

D C

A BE

012/T/021/2000 5.6.2003 7:22:31

EEEE

EE

Fasteners ofvarious materials

Non-ferrous materials according to ISO 8839

Material Nominal thread diameter Tensile Stress at Elongationd strength permanent set limit after fracture

Rm Rp 0,2 ADIN No. Symbol Abbreviation Designation min. min. min.

(former) N/mm2 N/mm2 %2.0321 CU2 CuZn37 Brass d ≤ M6 440 340 11

(Ms63) M6 < d ≤ M39 370 250 192.0401 CU3 CuZn39Pb3 Brass d ≤ M6 440 340 11

(Ms58) M6 < d ≤ M39 370 250 192.1020 CU4 CuSn6 Resistin d ≤ M12 470 340 22

M12 < d ≤ M39 400 200 332.0853 CU5 CuNi1Si Kuprodur d ≤ M39 590 540 122.3535 AL1 AlMg3 d ≤ M10 270 230 3

M10 < d ≤ M20 250 180 43.2315 AL3 AlSi1MgMn d ≤ M6 320 250 7

M6 < d ≤ M39 310 260 10

Minimum breaking loads according to ISO 8839

Thread Thread pitch Nominal stress Symbols for materialsarea CU2 CU3 CU4 CU5 AL1 AL3

Min. breaking loads (for nuts: proof load)1) P As AS x Rm

d mm mm2 NM 3 0,5 5,03 2210 2210 2360 2970 1360 1610M 3,5 0,6 6,78 2980 2980 3190 4000 1830 2170M 4 0,7 8,78 3860 3860 4130 5180 2370 2810M 5 0,8 14,2 6250 6250 6670 8380 3830 4540M 6 1 20,1 8840 8840 9450 11860 5430 6430M 7 1 28,9 10690 10690 13580 17050 7800 8960M 8 1,25 36,6 13540 13540 17200 21590 9880 11350M10 1,5 58,0 21460 21460 27260 34220 15660 17980M12 1,75 84,3 31190 31190 39620 49740 21080 26130M14 2 115 42550 42550 46000 67850 28750 35650M16 2 157 58090 58090 62800 92630 39250 48670M18 2,5 192 71040 71040 76800 113300 48000 59520M20 2,5 245 90650 90650 98000 144500 61250 75950

Minimum breaking torque for screws up to M5 according to ISO 8839

Thread Symbols for materialsCU2 CU3 CU4 CU5 AL1 AL3

Min. breaking torque1)

d NmM 1,6 0,10 0,10 0,11 0,14 0,06 0,08M 2 0,21 0,21 0,23 0,28 0,13 0,16M 2,5 0,45 0,45 0,5 0,6 0,27 0,3M 3 0,8 0,8 0,9 1,1 0,5 0,6M 3,5 1,3 1,3 1,4 1,7 0,8 0,9M 4 1,9 1,9 2 2,5 1,1 1,4M 5 3,8 3,8 4,1 5,1 2,4 2,8

1) The tensile test for full size bolts according to ISO 898-1 must be carried out.

1) The torsional strength test according to ISO 898-7 must be carried out.

Page 22: Bolt Specs

CD

BA

012/T/022/2000 5.6.2003 7:22:31

E

2000 by Bossard T.022

T

D C

A BE

012/T/022/2000 5.6.2003 7:22:31

EEEE

EE

Ni Co Cr Mo W Ti C Si Cu Fe Mn N≤ env. ≤ ≤ ≤ ≤

pure titanium O2 H2

Ti 99.8 3.7025 G 175 290– 410 30 82 residue 0,08 0,10 0,013 0,20 0,05Ti 99,7 3.7035 G 245 390– 540 22 41 residue 0,08 0,20 0,013 0,25 0,06Ti 99.6 3.7055 G 325 460– 590 18 34 residue 0,10 0,25 0,013 0,30 0,06Ti 99.5 3.7065 G 390 540– 740 16 27 residue 0,10 0,30 0,013 0,35 0,07

NiMo 301) ≤ ≤ 26 ≤ 4Hastelloy 2.4810 L 320 750–1000 35 70 residue 2,5 1 to 0,05 0,5 to 1

B 30 6NiMo 16Cr 15 W1) ≤ 14,5 15 3 ≤ 4,5Hastelloy 2.4819 L 310 700– 950 35 85 residue 2,5 to to to 0,01 0,05 to 1

C-276 16,5 17 4,5 7

Fasteners ofvarious materialsSpecial materials

according to manufacturers‘ information

Material Utilisation and particularly noteworthy characteristics.designationMonel 400 Optimal corrosion resistance and strength characteristics.K Monel Also suitable for pressed and forged parts.Inconel 600 Good strength characteristics, low thermal conductivity, excellent corrosion resistance and impressive oxidation resistance at hig

temperatures up to approx. 1100 °C, also in atmospheres with low sulphur content, i.e up to 0,5 gr sulphur per m3.Corronel 220 Impressive corrosion resistance, economically viable in areas where parts come into contact

with hydrochloric acid, but also with sulphuric acid and phosphoric acid.Nimonic 80 A Good long term meat resistance up to 850 °C and very good oxidation resistance at variable elevated temperatures.

Nimonic 90 For high mechanical stress at temperatures up to approx. 900 °C.Nimonic 105 For high mechanical stress at temperatures up to approx. 1000 °C.Incoloy alloy 825 Very good corrosion resistance, even for example

sulphuric acid, phosphoric acid, nitric acid, dilated acids and many others.Nicrofer 4221 See Incoloy alloy 825 above.X 10 Ni Cr Mo Cu 4221Inconel alloy X 750 See Nimonic 80 A above.Pyrotherm- Heat-resisting steel, up to 1200 °C, good corrosion resistance. This steel can be used in25/45/SW atmospheres with up to 1 g sulphur / m3.Resistin-Bronze Seawater-resistant, tough, good thermal strength characteristics up to 450 °C, good cold-toughness.Silverin See Monel 400

or ASTM B 164 Cl.A.Titan Suitable for constructions with high stress, weight savings and good mechanical and chemical resistance.

Hastelloy B Highly corrosion-resistant, used in chemical engineering resistant to deoxydants. Largely resistant to hydrochloric acid, sulphuric acid and phosphoric acid also hydrochloric gas and alkaline solutions. Adequately resistant to oxidising and reducing gases up to 800 °C. Hastelloy B is not recommended for strongly oxidising agents, ferric salt and cupric salts. Hastelloy C quality is more suitable for such stress.

Hastelloy C A nickel/molybdenum/chromium/tungsten alloy, one of the most corrosion-resistant alloys ever developed; it is particularly resistant to bleach solutions which contain free chlorine, chlorites, hypochlorites, sulphuric acid, phosphoric acid and organicacids such as acetic acid, formic acid, solutions of nitrates, sulphates and sulphites, chlorine and chlorates, chromatesand cyanogen compounds etc.

1) Abbreviation according to DIN

Mechanical properties at room temperature

L = precipitation hardenedG = annealed

Sta

te

Yie

ld p

oint

N /

mm

2 m

in.

Ten

sile

str

engh

t

N /

mm

2

min

. elo

ngat

ion

afte

rfr

actu

re A

5 %

Impa

ct s

tren

ght

DV

M, J

min

.

Mat

eria

l no.

1)

Chemical composition in % by weight

Ab

bre

viat

ion

Page 23: Bolt Specs

CD

BA

012/T/023/2000 5.6.2003 7:22:31

E

2000 by Bossard T.023

D C

A BE

012/T/023/2000 5.6.2003 7:22:31

EEEE

EE

Page 24: Bolt Specs

CD

BA

012/T/024/2000 5.6.2003 7:22:31

E

2000 by Bossard T.024

T

D C

A BE

012/T/024/2000 5.6.2003 7:22:31

EEEE

EE

Fasteners ofvarious materials

Thermoplastics

PE-HD 0,94 / 0,96 18 / 35 100 / 1000 700 / 1400 40 / 65 without fracture without fracturePE-LD 0,914 / 0,928 8 /23 300 / 1000 200 / 500 13 / 20 without fracture without fracturePP 0,90 / 0,907 21 /37 20 / 800 1100 / 1300 36 / 70 without fracture 3 / 17POM 1,41 / 1,42 62 / 70 25 / 70 2800 / 3200 150 / 170 100 8PA 6 1,13 70 / 85 200 / 300 1400 75 without fracture without fracturePA 66 1,14 77 / 84 150 / 300 2000 100 without fracture 15 / 20

Den

sity

g/c

m3

DIN

534

79

Ten

sile

str

engt

h

N/m

m2

DIN

534

55

Fra

ctur

e re

sist

ance

% D

IN 5

3455

Ela

stic

ity m

odul

e

N/m

m2

DIN

534

57

Bal

l pen

etra

tion

hard

ness

; 10

sec.

Val

ue

N/m

m2

DIN

534

56

Mechanical properties

Impa

ct s

tren

gth

kJ/m

2

DIN

534

53

Duc

tility

kJ/m

2

DIN

534

53

Obe

rflä

chen

-

wid

erst

and

ΩD

IN 5

3482

PE-HD >1017 1014 2,35 2,34 2,4 · 10 –4 2,0 · 10 –4 > 700 — 3 c >600PE-LD >1017 1014 2,29 2,28 1,5 · 10 4 0,8 · 10 –4 > 700 — 3 b >600PP >1017 1013 2,27 2,25 < 4 · 10 –4 < 5 · 10 –4 800 500 / 650 3 c >600POM >1015 1013 3,7 3,7 0,005 0,005 700 380 / 500 3 b >600PA 6 1012 1010 3,8 3,4 0,01 0,03 350 400 3 b >600PA 66 1012 1010 8,0 4,0 0,14 0,08 400 600 3 b >600

kV /

25 µ

m

AS

TM

D 1

49

50 H

z

KA

kV /

cm

DIN

534

81

50 H

z

106

Hz

106

Hz

Dielectric constantDIN 53483

Dielectric loss factorDIN 53483

KB

/ K

C

Electrical propertiesDielectric strength Surface leakage current

resistance DIN 53480

PE-HD 90 / 120 70 / 80 – 50 60 / 70 50 200 0,38 / 0,51 2,1 / 2,7PE-LD 80 / 90 60/ 75 – 50 — 35 250 0,32 / 0,40 2,1 / 2,5PP 140 100 0 / –30 85 / 100 45 / 120 150 0,17 / 0,22 2,0POM 110 / 140 90 / 110 – 60 160 / 173 110 / 170 90 / 110 0,25 / 0,30 1,46PA 6 140 / 180 80 / 100 – 30 180 80 / 190 80 0,29 1,7PA 66 170 / 200 80 / 120 – 30 200 105 / 200 80 0,23 1,7

Mat

eria

l

abb

revi

atio

n

DIN

772

8

Max

. sho

rt th

erm

Max

. per

man

ent

Operating temperature°C

Thermal propertiesDimensional stability

°C

Min

. per

man

ent

VS

P (

Vic

at 5

kg)

DIN

534

60

AS

TM

D 6

48

1.86

/ 0,

45 N

/mm

2

Line

ar c

oeffi

cien

t

of e

xpan

sion

K–1

· 10

6

The

rmal

con

duct

ivity

W/m

K

Spe

cific

hea

t

kJ/k

g K

Reference values of physical characteristics according to manufacturer's data

Spe

cific

res

ista

nce

Ω c

m

DIN

534

82

Sur

face

res

ista

nce

Ω DIN

534

82

Mat

eria

l

abb

revi

atio

n

DIN

772

8

Mat

eria

l

abb

revi

atio

n

DIN

772

8

Abbreviation/significancePE-HD High density polyethylenePE-LD Low density polyethylenePP PolypropylenePOM Polymethylene, polyacetatePA 6 PolyamidePA 66 Polyamide

Page 25: Bolt Specs

CD

BA

012/T/025/2000 5.6.2003 7:22:31

E

2000 by Bossard T.025

T

D C

A BE

012/T/025/2000 5.6.2003 7:22:31

EEEE

EE

Fasteners ofvarious materials

Thermoplastics

Waterabsorption, %ASTM D 570

PE-HD 0 0 0 0 1 7 0 0 0 1 0 7 < 0,01

PE-LD 0 0 7 1 7 0 0 0 1 0 1 < 0,01

PP 0 0 0 7 1 7 0 0 0 7 0 1 0,01 à 0,03

POM 0 0 7 1 1 1 0 0 0 1 0 0 0,22 à 0,25

PA 6 0 7 1 1 1 1 0 7 0 1 0 7 1,3 à 1,9

Wat

er, c

old

Wat

er, h

ot

Aci

ds, d

ilute

Aci

ds, s

tron

g

Aci

ds, o

xidi

sed

Aci

d, h

ydro

fluor

ic

Det

erge

nts,

wea

k

Det

erge

nts,

str

ong

Sal

ine

solu

tions

Hal

ogen

, dry

EC

alip

hatic

EC

chl

orin

ated

0 resistant 7 resistant with reservation 1 inconstant

Mat

eria

l

abb

revi

atio

n

Waterabsorption, %ASTM D 570

PE-HD 0 0 0 7 7 0 0 7 7 0 0 1 1 < 0,01

PE-LD 7 7 7 1 0 1 1 7 7 1 1 < 0,01

PP 0 7 7 1 0 0 7 7 7 0 0 1 1 0,01 à 0,03

POM 0 1 7 0 7 7 0 7 0 0 0 0 7 0,22 à 0,25

PA 6 0 0 0 0 7 0 7 0 0 0 1 7 7 1,3 à 1,9

Alc

ohol

Eth

er-s

alic

ylic

Cet

one

Eth

er

Ald

ehyd

es

Am

ines

Org

anic

aci

ds

EC

aro

mat

ic

Fue

ls

Min

eral

oils

Gre

ases

, oils

EC

chl

orin

ated

, non

-sat

urat

ed

Tur

pent

ine

Mat

eria

l

abb

revi

atio

n

Chemical resistance

Abbreviation/significancePE-HD High density polyethylenePE-LD Low density polyethylenePP PolypropylenePOM Polymethylene, polyacetatePA 6 Polyamide

Page 26: Bolt Specs

CD

BA

012/T/026/2000 5.6.2003 7:22:31

E

2000 by Bossard T.026

T

D C

A BE

012/T/026/2000 5.6.2003 7:22:31

EEEE

EE

Plating andsurface treatments

Electrolytic processes

Relevant standards:– ISO 4042, Fasteners - Electroplated coatings

Zinc-plating – chromatingZinc-plating with subsequent chromating has proven to be veryeffective for fasteners with regard both to corrosion resistanceand appearance. We can offer you a comprehensive and well-stocked range. Our galvanised parts are shown in the catalogueshaded in grey/green.

Chromating (passivation) is carried out immediately afterzinc plating by a brief immersion in chromic acid solutions. Thechromating process improves corrosion resistance and preventsthe tarnishing or discolouring of the zinc layer. The protectiveeffect of the chromate layer varies according to process group(see table!).

Finish processes for chromating of electro zinc-platings

Passivation Chromate layer colour

colourless none (metallic bright chromatizing silver - rare)blue chromatizing bluish to bluish

iridescent (standard)yellow chromatizing yellowish lustre

to yellow-brown iridescent (standard)

olive chromatizing olive green to olive brown (rare)

black chromatizing blackish brownto black (decorative)

1) «bluish» is not a clearly defined colour – it may differ.

2) Mass-produced parts can be black chromated, but only at great expense. Because of the barrel process, the black chromate layerwill almost always rub off on the edges, cross recessed edges etc. and may expose the bright zinc layer underneath.

Code system for electroplated coatings see ISO 4042.

Hours 200

150

100

50

03 5 8 12

Coating thickness (µm)

Time before appearance of red rust withchromating:

yellow oliveblue black

colourless

Corrosion resistance(salt spray test according to DIN 50021 SS)

Hydrogen embrittlement – alternatives (ISO 4042)

In cases of parts

– with high strength or surface hardness– which have absorbed hydrogen and– are under tensile stress, bending stress

there is the risk of failure due to hydrogen embrittlement. Sinceabsorption of hydrogen is typical for electroplating a baking pro-cess after the coating process may be necessary.

Threaded fasteners made from steel, heat-treated to propertyclass 10.9 (hardness 320 HV and above), casehardened faste-ners and fasteners with captive washers made from hardenedsteel over 400 HV (e.g. washers) shall be baked after electro-plating, but before any chromating treatment.

Parts shall be baked as soon as possible, but at least within 4hours after electroplating.

However, complete elimination of hydrogen em-brittlement cannnot be guaranteed. If completefreedom from embrittlement is required, than adifferent coating method shall be used.

For parts affecting safety, therefore, alternative corrosionprotection or coating processes should be selected, e.g.inorganic zinc coating, mechanical zinc coating or the use ofstainless steels.

Fasteners of classes ≥ 10.9 (≥ HV320) are supplied from ourstock with an inorganic zinc coating or are mechanically zinccoated where technically possible.

Page 27: Bolt Specs

CD

BA

012/T/027/2000 5.6.2003 7:22:31

E

2000 by Bossard T.027

T

D C

A BE

012/T/027/2000 5.6.2003 7:22:31

EEEE

EE

Plating andsurface treatmentsCoating thicknesses for parts with

external thread ISO 4042

If no particular plating thickness is specified, the minimum pla-ting thickness is applied. This is also considered the standardplating thickness.

In the case of parts with very long thread or small dimensions (≤ M4), an irregular coating thickness may occur due to the pro-cessing. This can cause assembly problems. Possible solution: Use of a chemical nickel plating or stainlesssteel screws A2 or A4.

External threads are normally fabricated intolerance zone 6g.

e and f tolerance are not common and require specialmethods of screw manufacture. Minimum quantities, longerdelivery periods and higher prices may make theseeconomically unviable. An alternative is to use parts madefrom stainless steel A2.

Internal threads have a thinner coating due to technical rea-sons. However, this has no significance in practical use be-cause when assembled these are protected by the coatingof the external thread of the screw.

Measuring points for plating thickness

Measuring point Measuring point Measuring point Measuring point Measuring point Measuring point

Tolerance position g Tolerance position f Tolerance position eNominal Funda- Nominal coating thickness Funda- Nominal coating thickness Funda- Nominal coating thickness

Thread thread mental max. mental max. mental max.pitch diameter 1) de- 2) 3) de- 2) 3) de- 2) 3)

viation Overall Nominal length l viation Overall Nominal length l viation Overall Nominal length lP d1 length length length

l ≤ 5d l ≤ 10d l ≤ 15d l ≤ 5d l ≤ 10d l ≤ 15d l ≤ 5d l ≤ 10d l ≤ 15 dmm µm µm µm µm µm µm µm µm µm µm µm µm µm µm µm

0,2 -17 3 3 3 30,25 1; 1,2 -18 3 3 3 30,3 1,4 -18 3 3 3 30,35 1,6 (1,8) -19 3 3 3 3 -34 8 8 5 50,4 2 -19 3 3 3 3 -34 8 8 5 50,45 2,5 (2,2) -20 5 5 3 3 -35 8 8 5 50,5 3 -20 5 5 3 3 -36 8 8 5 5 - 50 12 12 10 80,6 3,5 -21 5 5 3 3 -36 8 8 5 5 - 53 12 12 10 80,7 4 -22 5 5 3 3 -38 8 8 5 5 - 56 12 12 10 80,75 4,5 -22 5 5 3 3 -38 8 8 5 5 - 56 12 12 10 80,8 5 -24 5 5 3 3 -38 8 8 5 5 - 60 15 15 12 101 6 (7) -26 5 5 3 3 -40 10 10 8 5 - 60 15 15 12 101,25 8 -28 5 5 5 3 -42 10 10 8 5 - 63 15 15 12 101,5 10 -32 8 8 5 5 -45 10 10 8 5 - 67 15 15 12 101,75 12 -34 8 8 5 5 -48 12 12 8 8 - 71 15 15 12 102 16 (14) -38 8 8 5 5 -52 12 12 10 8 - 71 15 15 12 102,5 20 (18; 22) -42 10 10 8 5 -58 12 12 10 8 - 80 20 20 15 123 24 (27) -48 12 12 8 8 -63 15 15 12 10 - 85 20 20 15 123,5 30 (33) -53 12 12 10 8 -70 15 15 12 10 - 90 20 20 15 154 36 (39) -60 15 15 12 10 -75 15 15 15 12 - 95 20 20 15 154,5 42 (45) -63 15 15 12 10 -80 20 20 15 12 -100 25 25 20 155 48 (52) -71 15 15 12 10 -85 20 20 15 12 -106 25 25 20 155,5 56 (60) -75 15 15 15 12 -90 20 20 15 15 -112 25 25 20 156 64 -80 20 20 15 12 -95 20 20 15 15 -118 25 25 20 151) Information for coarse pitch threads is given for information. The determining characteristic is the thread pitch.2) Maximum values of nominal coating thickness if local thickness measurement is agreed.3) Maximum values of nominal coating thickness if batch average thickness measurment is agreed.

Page 28: Bolt Specs

CD

BA

012/T/028/2000 5.6.2003 7:22:31

E

2000 by Bossard T.028

T

D C

A BE

012/T/028/2000 5.6.2003 7:22:31

EEEE

EE

Plating andsurface treatment

Further galvanic coating processes

Process DetailsNickel-plating Nickel-plating is decorative and provides effective corrosion protection. A hard coating, used in the electrical appliance and

telecommunications industries. No coating abrasion occurs, especially with screws. Improves protection against impregnation -see table below.

Veralisation A special method of hard nickel-plating.Chromium-plating Usually following nickel-plating. Coating thickness about 0,4 µm. Chromium is decorative,

enhances resistance to tarnishing and improves corrosion protection. Bright chromium-plated: high brightness finish.Matt chromium-plated: matt lustre (silk finish)Polished chromium-plated: grinding, brushing and polishing of the surfaceprior to coating electrolytically (done by hand).Drum chromium plating not possible.

Brass-plating Brass plating is mainly applied for decorative purposes. In addition, steel components arebrass-plated in order to improve the adhesion of rubber to steel.

Copper-plating Used when necessary as intermediate coating prior to nickel-plating-chromium-plating andsilver-plating. Used for decorative purposes.

Silver-plating Silver-plating is employed for decorative and technical applications.Tin-plating Tin-plating is carried out mainly to permit or improve soldering (soft-solder). Simultaneously

serves as corrosion protection. Subsequent heat treatment not possible.Anodizing When aluminum is anodized (electrolytic oxidation), a coating which provides corrosion

protection is produced – also prevents tarnishing. Practically any color can be produced fordecorative purposes.

Process DetailsHot-dip Immersion in molten zinc with a temp. of about 440 °C to 470 °C. Thickness of coating not less thangalvanising 40 µm. Finish dull and rough. Colour change possible after a certain time.

Very good corrosion protection. Can be used for thread parts from M8. Ensure good screwing nation by appropriate measures(by removal of chips before or after)

Phosphating Only slight corrosion protection. Good undercoat for painting. Grey to grey-black appearance.(bonderizing, Better corrosion protection oiled.parkerizing, atramentizingBlack Chemical process, bath temperature about 140 °C. For decorative purposes; merely slight oxidizing corrosion proteciton.Colouring According to sample.Blacking Chemical process. Corrosion resistance from A1-A4 may be low. For decorative purposes.Stainless steelBaking Following electrolytic or pickling treatment, high tensile strength steel parts (from 1000 N/mm2) can become brittle due to

hydrogen absorption (hydrogen embrittlement) This embrittlement increases for components with small cross sections.Part of the hydrogen can be eliminated by baking between 180 °C and 230 °C (below tempering temperature).Experience indicates that this is not guaranteed 100 %. Thermal treatment must be carried out immediately after plating andbefore chromating.

Dacromet An excellent process for zinc plating with a high percentage zinc coating (silver-grey colour) for parts with tensile strength(non-electroltytic) Rm ≥ 1000 N/mm2 (strength class ≥ 10.9, hardness ≥ 300 HV.

This process practically rules out hydrogen embrittlement. Temperatures resistant up to ca. 300 °C.Can be used for diameters ≥ M4

Mechanical plating Mechanical /chemical process. The degreased parts are placed in a drum with powdered zinc and glass pellets. The pelletsserve to transfer the zinc powder to the surface to be treated.

Impregnation Particularly with nickel-plated parts, subsequent treatement in dewatering fluid with the addition of wax may seal the micropores with wax. Significantly improves the corrosion resistance. The wax film is dry and invisible.

Further surface treatments

Page 29: Bolt Specs

CD

BA

012/T/029/2000 5.6.2003 7:22:31

E

2000 by Bossard T.029

T

D C

A BE

012/T/029/2000 5.6.2003 7:22:31

EEEE

EE

Selection of fasteners

Estimation of screw diametersaccording to VDI guideline 22301)

FA

FA

FA

FA

FA

FA

FA

FA

FQ

FQ

1) Association of German Engineers

1 2 3 4Force Nominal diameterin N in mm

Strength class12.9 10.9 8.8

250400630

1 0001 600 M 3 M 3 M 32 500 M 3 M 3 M 44 000 M 4 M 4 M 56 300 M 4 M 5 M 5

10 000 M 5 M 6 M 816 000 M 6 M 8 M 825 000 M 8 M 10 M 1040 000 M 10 M 12 M 1463 000 M 12 M 14 M 16

100 000 M 16 M 16 M 20160 000 M 20 M 20 M 30250 000 M 24 M 27 M 36400 000 M 30 M 36630 000 M 36

or

1 step for either dynamic and centrical or static and eccentricforce

A Select in column 1 the next higher force to the work force FA

acting on the bolted joint.B The required minimum preload FMminis found by proceeding

from this number.4 steps for static or dynamic transverse (shear) force (seeexample)

Example:A joint is loaded dynamically and eccentrically by the axial forceFA = 8500N2). The screw of strength class 12.9 will be assem-bled with a manual torque wrench.

A 10'000 N is the next higher force to FA in column 1.

B 2 steps for «eccentric and dynamic axial force» lead to Fmin = 25'000 N.

C 1 step for «tightening» with manual torque wrench leads to FMmax = 40'000 N.

D for FMmax = 40'000 N thread size M10 is found in column 2.(Strength class 12.9.)

It is recommended to double check the result afterwardsby either calculating or testing the joint.

In order to assure a safely fastened joint, a number of parame-ters must be considered. For instance:

– Operating force (Direction of force, static or dynamic force)– Material being clamped (Surface pressure limit)– Operating temperature– Corrosion– Amount of friction 1)

– Inaccuracy of tightening methodetc.

The following procedure enables an estimation of screw diame-ters, taking the most important parameters into account. For theestimation an operating temperature of 20°C (68°F) is assu-med.

or

2 steps for dynamic, eccentric axial force

C The required maximum preload force FMmax is found by pro-ceeding from this force FM min by

2 steps for tightening the screw with a motorized/pneumaticscrewdriver which is set for a certain tightening torqueor

1 step for tightening with a torque wrench/or precision moto-rized screw-driver, which is set and checked by means of dy-namic torque measurement or elongation measurement ofthe screwor

0 step for «turn of the nut» method or yield point controlledmethod.

D Once the preload (force) has been estimated, the correctscrew size is found next to it in column 2 to 4 underneath theappropriate strength class.

or

0 step for static, centrical axial force.

Page 30: Bolt Specs

CD

BA

012/T/030/2000 5.6.2003 7:22:31

E

2000 by Bossard T.030

T

D C

A BE

012/T/030/2000 5.6.2003 7:22:31

EEEE

EE

Fatigue resistanceStrength under dynamic loadaccording to VDI 2230

Because of their thread, screws are notched components.Under variable loads screws may be subject to fatigue fracture,which in 90% of cases this occurs in the first supporting threadat the entry of the female thread.In such cases the design of the screw must take into accountthe fatigue resistance ± σA ; this being only ±50 to 70 N/mm2 forscrews of property classes 8.8, 10.9 and 12.9, regardless of their sta-tic tensile strength which is much higher.

Fatigue fractures may occur under varying axial, bending ortorsion stresses. The design and controlled tightening must pre-vent or minimize these types of stress by using: elastic faste-ners rather than rigid ones, long screws rather than short ones,screws with reduced shanks, pins or shoulder screws to acco-modate lateral forces, and sufficient and specially controlledtightened screws. With bolts with reduced shanks the nut threadshould overlap the screw thread:

Constructions which are too weak must bestiffened. If the load allows, 8.8 screwsshould be used instead of 12.9 screws.

In the event of damage, the rupture pictureof the screws in relation to the machinebody must be analysed closely, i.e. brokenscrews must not be removed until after aprecise analysis!

Surface pressureReference values for Surface pressure limit for commonly used materialsaccording to VDI 2230

Material of Tensile Max. surfaceparts being clamped strength pressure limit3)

Rm [N/mm2] [N/mm2]Ac 37 370 260Ac 50 500 420C 45 800 70042 CrMo 4 1000 85030 CrNiMo 8 1200 750X 5 CrNiMo 18.10 500 to 700 210X 10 CrNiMo 18 9 500 to 750 220Precipitation hardened 1200 to 1500 1000 to 1250Stainless steels (17-7 PH)pure titanium 390 to 540 300Ti-6 Al-4 V 1100 1000GG 15 150 600GG 25 250 800GG 35 350 900GG 40 400 1100GGG 35.3 350 480DG MgAl 9 300 (200) 220 (140)GK MgAl 9 200 (300) 140 (220)GK AlSi 6 Cu 4 200AlZnMg Cu 0,5 450 370Al 99 160 140GFK-glass fibre-reinforced — 120CFK-carbon fibre-reinforced — 140

The surface pressure must not be exceeded when the screw ornut is tightened on the contact surface, or the joint can becomeloose through seating.

With rough surfaces, seating appearances – depending on thetightening process (smoothing) – can occur even with smallerloads.

3) With motor-driven tightening, the values of the surfacepressure may be up to 25% less.

Fatigue strength ± σA of heat treated fasteners with temperedscrews in relation to nominal diameter at 70% Rel prestress.

thread diameter

150

100

50

00 6 8 10 20 40 [mm]

[N/mm2]

Rm > 800 [N/mm2]

Thread rolled then hardened and tempered (standard practice)

Hardened and tempered, then thread rolled

fatig

ue s

tren

gth

± σ A

Page 31: Bolt Specs

CD

BA

012/T/031/2000 5.6.2003 7:47:01

E

2000 by Bossard T.031

T

D C

A BE

012/T/031/2000 5.6.2003 7:47:01

EEEE

EE

Surface pressureSurface pressure underneath head of hexcap screws DIN 931/ 933 (ISO 4014 / 4017)Hexagon nuts DIN 934 (ISO 4032)

ClearanceNominal Width across Washer face hole Bearing Stress Surface pressure underneath head 1)

dimension the flats diameter (ISO 273) surface area Nsmax dw min dh Ap As mm2

mm mm mm mm2 mm2

8.8 10.9 12.9M 3 5,5 4,6 3,4 7,54 5,03 307 434 520M 4 7 5,9 4,5 11,4 8,78 352 496 596M 5 8 6,9 5,5 13,6 14,2 484 680 799M 6 10 8,9 6,6 28 20,1 332 466 559M 8 13 11,6 9 42 36,6 406 571 686M10 16 14,6 11 72,3 58 375 528 633M10 17 15,6 11 96,1 58 282 398 477M12 18 16,6 13,5 73,2 84,3 541 760 913M12 19 17,4 13,5 94,6 84,3 419 588 706M14 21 19,6 15,5 113 115 481 676 812M14 22 20,5 15,5 141 115 385 529 650M16 24 22,5 17,5 157 157 476 669 803M18 27 25,3 20 188 192 484 681 816M20 30 28,2 22 244 245 480 672 807M22 32 30 24 254 303 575 807 969M22 34 31,7 24 337 303 433 608 730M24 36 33,6 26 356 353 472 663 798M27 41 38 30 427 459 518 728 876M30 46 42,7 33 576 561 467 656 788

[ ]

DiameterNominal Head of bearing Clearance Bearing Stress Surface pressure underneath head 1)

dimension diameter surface hole surface area NSmax dw min dh Ap As mm2

mm mm mm mm2 mm2

8.8 10.9 12.9M 3 5,5 5,07 3,4 11,1 5,03 209 295 353M 4 7 6,53 4,5 17,6 8,78 228 322 386M 5 8,5 8,03 5,5 26,9 14,2 245 344 413M 6 10 9,38 6,6 34,9 20,1 266 374 449M 8 13 12,33 9 55,8 36,6 306 430 516M10 16 15,33 11 89,5 58 303 427 512M12 18 17,23 13,5 90 84,3 440 618 742M14 21 20,17 15,5 131 115 415 583 700M16 24 23,17 17,5 181 157 476 580 696M18 27 25,87 20 211 192 431 607 727M20 30 28,87 22 274 245 427 599 719M22 33 31,81 24 342 303 427 599 719M24 36 34,81 26 421 353 399 561 675M27 40 38,61 30 464 459 476 670 608M30 45 43,61 33 638 561 422 592 712

[ ]

Surface pressure underneath head ofsocket head cap screws DIN 912 (ISO 4762)

1) The values for surface pressure which are shown in the tables are obtained with 90% utilization of the screw yield point Rp 0,2.

Page 32: Bolt Specs

CD

BA

012/T/032/2000 5.6.2003 7:47:01

E

2000 by Bossard T.032

T

D C

A BE

012/T/032/2000 5.6.2003 7:47:01

EEEE

EE

Friction andcoefficientsof friction

The friction values µtotal, µG, and µK show great variation because they depend on many factors, such as the material pairing, thesurface quality (peak-to-valley heights); the surface treatment (bright. phosphated, blackened, electroplated, Dacromet-coated etc.)and the type of lubrication (with or without oil, molybdenum, di-sulphide, "Molykote" paste etc.)! The following tables show coefficientsof friction for threads and contact surfaces.

Coefficients of friction for standard finish of bolted joints

Coefficients of friction µ total of stainless steelscrews according to VDI 2230

The dispersion of the coefficients of friction remains high even when lubricants are used!

Smooth, rolled threads have less tendency to seize than do rough, cut threads. The frictioncoefficients µtotal assume an equivalent friction value in the thread and the head of the screwand under the nut.

1) For tightening with impact or mechanical screwdriver. µtotal, must be 0,125. For the other surface and lubricating conditions, areduction of µtotal at high assembly speed is probable, though not yet proven.

Surface condition µtotal for lubrication conditionScrew Nut oiled Mo S2-paste

– no subsequent treatment – no subsequent treatment– phosphated– electroplated approx. 8 µm – no subsequent treatment

– electroplated approx. 5 µm– Dacromet-coated approx. 6–8 µm – Dacromet-coated approx. 6–8 µm 0,10–0,14

Screw Nut µtotal for lubrication conditionNo lubrication Mo S2-paste

A2 or A4 A2 or A4 0,23–0,5 0,10–0,20

A2 or A4 AlMgSi 0,28–0,35 0,08–0,16

0,12–0,18 1)

0,12–0,18 1)

0,05–0,1

Page 33: Bolt Specs

CD

BA

REF! 5.6.2003 9:57:05

E

Bossard T.033

T

D C

A BE

REF! 5.6.2003 9:57:05

EEEE

EE

Tightening Tolerance Tightening Setting procedure Remarksfactor αA 5FM Method for screwdriver

2 · FM

(1)* ±5 to ±12 Yield Point controlled The fluctuation of the preload is primarily motorized tightening governed by the fluctuation of the yield load in the

(1)* ±5 to ±12 Angle of rotation (turn-of- Experimental determina– screw to be assembled. In this case, the screws are nut) controlled motorized tion of the snug torque designed for min. preload; thus, the tightening factor αA or manual tightening (pre tightening) and is omitted for this tightening method.

rotation angle (steps)1,2 – 1,6 ± 9 to ± 23 Hydraulic Tightening Setting is established by Low values for the long screws

measuring length High values for the short screwselongation or appliedpressure, respectively

1,4 – 1,6 ±17 to ±23 Torque control tightening Experimental determina- Lower values for:with manual torque tion of the nominal tighte- a large number of torquing testswrench or precision ning torque required on (e.g. 20) Lower values for:screwdriver with dynamic original screw, e.g. by Minimal fluctuations of the – small turning angles that is,torque control. elongation measurements output torque. relatively stiff joints

of screw. Electronically controlled torque – joint members with smoothduring assembly using precision surfaces (threads & bearingdrivers surfaces)

1,6 – 1,8 ±23 to ±28 Determination of required – surfaces that do not tend totorque by estimating the Lower values for: gall i.e. phospatedfriction coefficient. precision torque wrenches(surface and lubricating (e.g. with dial indicator) Higher values for:conditions) – consistent tightening – large turning angles that is,

– precision screwdrivers relatively flexible joints asHigher values for: well as fine threadstorque wrenches with acoustic – joint members with rough/signaling or release mechanism. hard surfaces

1,7 – 2,5 ±26 to ±43 Torque control tightening Pre-setting of power driver Lower values for: – form distortions (head to with precision power with post tightening torque, – a large number of torquing shank not perpendicular,screwdriver. which is established from tests and post torquing thread distortions)

the required torque (for – screwdrivers with cut-offestimated friction condi- couplingtions) plus post torquing.

2,5 – 4 ±43 to ±60 Impulse controlled tigh- Pre-setting of power Lower values for:tening with impact wrench. driver with post torquing – – a large number of torquing

as above tests (with post torquing)– on the horizontal axis of the

screw characteristics– play-free impulse

transmission

* Although αA is greater than 1, for the dimensioning equation αA is set at 1.

Tightening methodguidelinestightening factors αA

Guidelines for the tightening factorsand tolerances of the varioustightening methods tightening factorper VDI 2230

The tightening factor αA is the characteristic value for the app-lied tightening method.

maximum possible preload FV max. MA max.αA = minimum necessary preload FV min. MA min.

In order to guarantee the necessary preload FA in a joint, the mi-nimum needed screw dimensions are to be calculated. Then,the screws are to be tightened with a driver to the minimumneeded tightening torque. Different tightening methods involvedifferent tolerances (fluctuations). The less accurate the me-thod, the higher the tightening factor, the higher the tighteningtorque.Higher tightening torques require larger screw diameters towithstand the higher preloads.

Tightening methods with αA = 1, are considerable and expensi-ve and only justifiable for extremely critical applications.

~=

%

Page 34: Bolt Specs

CD

BA

012/T/034/2000 5.6.2003 7:47:01

E

2000 by Bossard T.034

T

D C

A BE

012/T/034/2000 5.6.2003 7:47:01

EEEE

EE

Example: Maximum preload of an M6 cl. 8.8w/friction coefficient 0.125 = 9290 N(see preload section, 5th column)

With a total scatter of ±17%, the minimum torque =

8.46 x 0.83 = 7.02 Nm

mean torque min. torque

The minimum preload is then calculated as follows:

9290 ÷ 9.9 x 7.02 = 6587 N

max. preload max. torque min. torque minimum preload

Torque chartHow to use the torque chart

Is the minimum preload adequate (preven-ting slipping or separating of joint members)?If not, use a bigger screw diameter with thesame property class (Repeat step 3 to 5)

or

choose a screw with a higher property class.

Caution: Higher strength bolts cause highersurface pressure underneath head / nut (seetable page T.031

Step 5: Check preload

Step 4: Deduct scatter (tolerance) of tightening method(when tightened with a commercial torque wrench a tolerance of ±17 to ±23% can be taken into consideration.)1)

Example: Scatter = ±17%maximum torque from chart = 9.9 Nm (=117%)(for ±23% scatter, max. torque = 123%)

Mean torque if scatter is ±17% > 9.9 ÷ 1.17 = 8.46

Torque to be set on torque wrench = 8.46 Nm

Step 2: When the surface condition (finish) is defined, the friction coefficient can be found in the small chart below the torque chart:

Step 1: One has to know whether the screws to be tightened are:• plain• zinc plated• cadmium plated• Mo S2 lubricated («Moly lub» lubricated) etc.

Step 3: The proper tightening (seating) torque can then be obtained from the torque tightening chart.

Example: Zinc plated = 0.125

Example: Hex cap screw DIN 933 property class 8.8 zinc plated M6 x 20 dry

Then, look for the thread size M6 (left hand side of chart)Choose friction coefficient (2nd column)Move over to the right to tightening torque chart (5th column)The maximum torque is 9.9 Nm

Step 6 To get the torque in «Inch/pound units» the following factors can be used:

To get inch pounds from Ncm x 0.08851To get foot pounds from Ncm x 0.00737To get foot pounds from Nm x 0.7376

Example: 8.46 x 0.7376 = 6.24 foot pound

Notes:1) Any tightening method involves certain inaccuracies which are the result of: – Estimating the friction coefficient

– Manipulation errors of torque wrench (operator errors)– Tolerance of torque wrench itself etc.

Depending on how much these factors can be measured and / or controlled in the in-house assembly or field assembly, either a higher or lower scatter must be considered. (see T.033)

Note: To make sure the applied torque does not inducea preload, exceeding 90% of the yield strength, the scat-ter must be considered. To allow for the scatter, the mean torque must be calculated.The torque to be set on the torque wrench is the calculatedmean torque. With this setting with maximum scatter, 90% ofthe yield strength would not be exceeded.1)

Page 35: Bolt Specs

CD

BA

012/T/035/2000 5.6.2003 7:47:01

E

2000 by Bossard T.035

T

D C

A BE

012/T/035/2000 5.6.2003 7:47:01

EEEE

EE

Preload andtightening torques

Metric coarse threadMaximum permissible preload and tightening torques forscrews of property classes 3.6–12.9 at 90% utilization of theyield point ReL or Rp0,2

Maximum preload Fv [N] Maximum tightening torque MA [Ncm]

Property class according to ISO 898 / 1 Property class according to ISO 898 / 15.6 5.6

3.6 4.6 4.8 5.8 8.8 10.9 12.9 3.6 4.6 4.8 5.8 8.8 10.9 12.9M 1,6 0,100 185 200 250 330 575 810 970 4,5 5 6,5 8,5 15 21 25 0,026

0,125 175 190 240 310 545 770 920 5 5,5 7,5 9,5 17 24 29 0,0310,140 165 180 230 300 530 745 895 6,5 6 8 10 18 25 30 0,034

M 1,8 0,100 220 230 295 380 680 955 1150 5,5 6 8 10 18,5 26 32 0,0270,125 205 220 280 360 645 905 1090 6,5 7 9,5 11,5 21 30 36 0,0330,140 200 215 275 350 625 880 1050 7 7,5 10 12,5 23 32 38 0,036

M 2 0,100 310 335 420 540 960 1350 1620 9,5 10,5 13,5 17 31 44 52 0,0320,125 295 320 400 520 910 1280 1530 11,5 12 15,5 19 35 50 60 0,0390,140 285 305 385 500 880 1240 1490 12 13 16,5 21,5 38 53 64 0,043

M 2,5 0,100 515 560 700 910 1600 2250 2700 20 21 28 36 63 89 107 0,0400,125 490 530 665 860 1520 2140 2560 23 25 32 39 73 102 123 0,0480,140 475 510 645 830 1470 2070 2480 25 27 34 43 78 109 131 0,053

M 3 0,100 790 855 1070 1390 2440 3430 4120 35 38 49 63 111 157 188 0,0460,125 770 815 1020 1320 2320 3270 3920 42 44 56 72 128 180 215 0,0550,140 730 785 985 1280 2250 3170 3800 44 47 60 78 137 192 230 0,061

M 3,5 0,100 1050 1140 1430 1850 3270 4600 5520 54 59 75 96 171 240 290 0,0520,125 1000 1080 1360 1760 3120 4380 5260 63 68 86 110 196 275 330 0,0630,140 970 1050 1320 1710 3020 4250 5100 67 73 92 119 210 295 395 0,070

M 4 0,100 1370 1480 1850 2400 4230 5950 7140 82 88 112 144 255 360 430 0,0600,125 1300 1400 1760 2280 4020 5660 6790 94 102 128 166 290 410 495 0,0730,140 1260 1360 1710 2220 3900 5480 6580 100 108 137 177 310 440 525 0,080

M 5 0,100 2250 2410 3020 3920 6910 9720 11650 160 170 220 280 500 705 845 0,0720,125 2140 2300 2880 3740 6580 9260 11100 180 200 250 320 575 810 970 0,0870,140 2000 2230 2790 3620 6380 8980 10800 190 210 270 340 615 865 1040 0,096

Maximum tightening torque MA [Nm]M 6 0,100 3200 3400 4270 5550 9760 13700 16450 2,8 3 3,8 4,8 8,6 12 14,5 0,00087

0,125 3050 3240 4060 5270 9290 13050 15650 3,2 3,4 4,3 5,6 9,9 14 16,5 0,001060,140 2960 3150 3940 5120 9010 12650 15200 3,5 3,7 4,6 6 10,5 15 18 0,00117

M 8 0,100 5870 6260 7830 10170 17900 25200 30200 6,8 7,2 9,1 11,7 21 29 35 0,001150,125 5590 5960 7460 9690 17050 24000 28800 7,9 8,3 10,5 13,6 24 34 40 0,001400,140 5420 5780 7230 9390 16550 23200 27900 8,4 8,9 11 14,5 26 36 43 0,00155

M 10 0,100 9350 9960 12450 16180 28500 40100 48100 13,5 14,4 18 23,4 42 58 70 0,001450,125 8900 9480 11850 15400 27100 38200 45800 15,5 16,6 21 27 48 67 81 0,001750,140 8640 9200 11500 14900 26300 37000 44400 17 18 22 29 51 72 87 0,00195

M 12 0,100 13600 14520 18150 23500 41500 58400 70000 24 25 31 41 72 101 121 0,001750,125 13000 13840 17300 22400 39600 55600 66800 27 29 36 47 83 117 140 0,002100,140 12600 13400 16800 21800 38400 54000 64800 29 31 39 50 89 125 150 0,00230

M 14 0,100 18700 19900 24900 32300 57000 80100 96200 37 40 50 47 114 160 193 0,002000,125 17800 19000 23800 30900 54300 76400 91700 43 46 58 74 132 185 220 0,002400,140 17300 18400 23100 30000 52700 74100 89000 46 50 62 81 141 198 240 0,00270

M 16 0,100 25700 27400 34300 44500 78300 110000 132000 57 60 76 98 174 245 295 0,002200,125 24500 26100 32700 42500 74700 105000 126000 66 70 88 115 200 285 340 0,002700,140 23800 25300 31700 41200 72600 102000 122500 71 76 95 124 215 305 365 0,00300

M 18 0,100 31300 33300 41700 54200 95300 134000 161000 79 83 105 135 240 340 405 0,002500,125 29800 31700 39700 51600 90900 128000 153500 91 95 121 155 275 390 470 0,003000,140 28900 30800 38600 50100 88200 124000 149000 97 105 130 171 295 420 500 0,00340

M 20 0,100 40200 42800 53500 69500 122500 172000 206000 111 120 148 195 340 475 570 0,002800,125 38300 40800 51100 66400 117000 164000 197000 128 135 170 219 390 550 660 0,003300,140 37200 39600 49600 66400 113500 159000 191500 138 146 184 238 420 590 710 0,00370

M 22 0,100 50100 53400 66800 86800 153000 215000 258000 149 160 199 260 455 640 765 0,003000,125 47900 51000 63800 82900 146000 205000 246000 173 183 230 298 530 745 890 0,003600,140 46500 49600 62000 80600 142000 199500 239500 186 198 250 322 570 800 960 0,00400

M 24 0,100 57800 61600 77100 100200 176000 248000 297000 191 203 255 330 580 820 980 0,003300,125 55200 58800 73600 95680 168000 236000 284000 220 235 295 382 675 950 1140 0,004000,140 53600 57100 71400 92800 163500 230000 276500 235 251 315 408 725 1020 1220 0,00440

M 27 0,100 76000 81200 101500 131900 232000 326000 391000 280 300 375 488 855 1210 1450 0,003700,125 72600 77400 96800 125800 221000 311000 374000 325 348 435 566 995 1400 1680 0,004500,140 70600 75200 94100 122300 215000 302000 363000 350 376 470 610 1070 1510 1810 0,00500

M 30 0,100 92500 98800 123500 160500 282000 396000 475000 380 405 510 658 1160 1640 1970 0,004100,125 88300 94000 117500 162700 269000 378000 454000 445 470 590 763 1350 1900 2280 0,005000,140 85700 91600 114500 148800 261000 367000 441000 475 504 635 818 1450 2050 2450 0,00550

M 33 0,100 115000 122800 153500 199500 351000 494000 592000 515 552 690 898 1570 2210 2650 0,004500,125 110000 117200 146500 190400 335000 472000 566000 600 645 800 1045 1830 2580 3090 0,005500,140 107000 114000 142500 185200 326000 458000 550000 645 685 865 1110 1970 2770 3330 0,00600

M 36 0,100 135000 144000 180000 234000 412000 579000 695000 665 705 885 1145 2030 2850 3420 0,004900,125 129000 137600 172000 223600 394000 553000 664000 775 825 1030 1340 2360 3310 3980 0,006000,140 125500 134000 167500 217700 382000 538000 645000 830 885 1111 1435 2530 3560 4280 0,00660

M 39 0,100 162500 173500 217000 282100 495000 696000 835000 860 920 1150 1495 2620 3680 4420 0,005300,125 155000 165600 207000 269100 473000 665000 798000 1000 1075 1340 1750 3050 4290 5150 0,006500,140 151000 160800 201000 261300 460000 646000 776000 1080 1155 1440 1880 3290 4620 5550 0,00720

Th

rea

d

With MA = FV.X, the tightening torque can be calculated for every ot-her preload.

Attention: For the threaded fastener calculation procedure,see VDI guidelines 2230.

Con

vers

ion

fact

or X

coef

f. of

fr

ictio

n µ

tota

lse

e T

.032

Page 36: Bolt Specs

CD

BA

012/T/036/2000 5.6.2003 7:47:01

E

2000 by Bossard T.036

T

D C

A BE

012/T/036/2000 5.6.2003 7:47:01

EEEE

EE

Metric fine thread

Preload andtightening torques

Maximum permissible preload and tightening torques forscrews of property classes 8.8–12.9 at 90% utilization of theyield point ReL or Rp0,2

Preload FV max [N] Tightening torque MA max [Nm]Thread µ total

1) Property class according to ISO 898 / 1 Property class according to ISO 898 / 18.8 10.9 12.9 8.8 10.9 12.9

0,100 19500 27500 33000 22 30 36M 8 x 1 0,125 18600 26200 31500 25 35 42

0,140 18100 25500 30600 27 38 450,100 30500 42900 51500 42 59 71

M 10 x 1,25 0,125 29100 40900 49100 49 68 820,140 28300 39800 47700 52 73 880,100 46600 65500 78500 76 105 130

M 12 x 1,25 0,125 44600 62500 75000 88 125 1500,140 43300 61000 73000 95 135 1600,100 63000 88500 106000 120 165 200

M 14 x 1,5 0,125 60500 85000 102000 140 195 2350,140 58500 82500 99000 150 210 2500,100 85000 120000 144000 180 250 300

M 16 x 1,5 0,125 81500 114000 137000 210 295 3500,140 79000 111000 133000 225 315 3800,100 111000 156000 187000 260 365 435

M 18 x 1,5 0,125 106000 149000 179000 305 425 5100,140 103000 145000 174000 325 460 5500,100 140000 197000 236000 360 510 610

M 20 x 1,5 0,125 134000 189000 226000 425 600 7200,140 130000 183000 220000 460 640 7700,100 172000 242000 291000 480 680 810

M 22 x 1,5 0,125 165000 234000 279000 570 800 9600,140 161000 226000 271000 610 860 10500,100 197000 277000 332000 610 860 1050

M 24 x 2 0,125 188000 265000 318000 720 1000 12000,140 183000 257000 309000 780 1100 1300

1) For explanation of µ total see page T.032

Polyamide 6.6 (20 °C, moisture absorbed)

Thread M3 M4 M5 M6 M8 M10 M12 M14 M16Screws MAmax [Nm] 0,1 0,2 0,5 1 2 3 4 6 7,5Nuts MAmax. [Nm] 0,1 0,3 0,6 1,5 3 4 5 7,5 9

Page 37: Bolt Specs

CD

BA

012/T/037/2000 5.6.2003 7:47:01

E

2000 by Bossard T.037

T

D C

A BE

012/T/037/2000 5.6.2003 7:47:01

EEEE

EE

Preload andtightening torques

Screws made from austenitic stainlesssteel A1 / A2 / A4: maximum permissible preload and tightening torquesat 90% utilization of yield point Rp0,2

Preload Fv (kN) Tightening torque MA (Nm)Thread µ total Property class Property class

50 70 80 50 70 800,1 0,4 0,55 0,6 0,1 0,1 0,2

M 1,6 0,2 0,3 0,35 0,4 0,1 0,2 0,350,3 0,2 0,3 0,35 0,2 0,25 0,450,1 0,5 0,6 0,8 0,15 0,2 0,3

M 2 0,2 0,4 0,5 0,6 0,25 0,3 0,40,3 0,25 0,36 0,4 4 0,4 0,550,1 0,65 0,9 1 0,25 0,45 0,6

M 2,5 0,2 0,4 0,5 0,85 0,45 0,6 0,650,3 0,3 0,3 0,6 0,6 0,75 0,80,1 0,9 1 1,2 0,85 1 1,3

M 3 0,2 0,6 0,65 0,95 1 1,1 1,60,3 0,4 0,45 0,7 1,25 1,35 1,850,1 1,08 2,97 3,96 0,8 1,7 2,3

M 4 0,2 1,12 2,4 3,2 1,3 2,6 3,50,3 0,9 1,94 2,59 1,5 3 4,10,1 2,26 4,85 6,47 1,6 3,4 4,6

M 5 0,2 1,83 3,93 5,24 2,4 5,1 6,90,3 1,49 3,19 4,25 2,8 6,1 80,1 3,2 6,85 9,13 2,8 5,9 8

M 6 0,2 2,59 5,54 7,39 4,1 8,8 11,80,3 2,09 4,49 5,98 4,8 10,4 13,90,1 5,86 12,6 16,7 6,8 14,5 19,3

M 8 0,2 4,75 10,2 13,6 10,1 21,4 28,70,3 3,85 8,85 11 11,9 25,5 33,90,1 9,32 20 26,6 13,7 30 39,4

M10 0,2 7,58 16,2 21,7 20,3 44 580,3 6,14 13,1 17,5 24 51 690,1 13,6 29,1 38,8 23,6 50 67

M12 0,2 11,1 23,7 31,6 34,8 74 1000,3 9 19,2 25,6 41 88 1170,1 18,7 40 53,3 37,1 79 106

M14 0,2 15,2 32,6 43,4 56 119 1590,3 12,3 26,4 35,2 66 141 1880,1 25,7 55 73,3 56 121 161

M16 0,2 20,9 44,9 59,8 86 183 2450,3 17 36,4 48,6 102 218 291

Preload Fv (kN) Tightening torque MA (Nm)Thread µ total Property class Property class

50 70 80 50 70 800,1 32,2 69 92 81 174 232

M18 0,2 26,2 56,2 74,9 122 260 3460,3 21,1 45,5 60,7 144 308 4110,1 41,3 88,6 118,1 114 224 325

M20 0,2 33,8 72,4 96,5 173 370 4940,3 27,4 58,7 78,3 205 439 5860,1 50 107 143 148 318 424

M22 0,2 41 88 118 227 488 6500,3 34 72 96 272 582 7760,1 58 142 165 187 400 534

M24 0,2 47 101 135 284 608 8100,3 39 83 110 338 724 9660,1 75 275

M27 0,2 61 4210,3 50 5030,1 91 374

M30 0,2 75 5710,3 61 6800,1 114 506

M33 0,2 94 7790,3 76 9290,1 135 651

M36 0,2 110 9980,3 89 11890,1 162 842

M39 0,2 133 13000,3 108 1553

Fasteners with hexagon and hexalobular socket and flat heads

Maximum tightening torques MA max. [Nm]ISO 4026 / DIN 913

ISO 4027 / DIN 914

Screwtype ISO 4028 / DIN915

DIN 6912 DIN 7984 BN 1206BN 9524 ISO 7379 DIN 7991 ISO14581 DIN 7991 ISO 7380BN 6404 ISO 7380 ISO 4029 / DIN916

Thread 8.8 A2–70 8.8 A2–70 10.9 8.8 12.9 10.9 8.8 A2–70 10.9 8.8 A2–70 45 H1) A2A4–70 A4–70 A4–70 A4–70 A4

M 3 1 0,6 1 1 0,5 1 1 0,5 0,5 0,2M 4 2 1 2 1,2 2 2 2 2 1 2 2 1 1 0,5M 5 6 4 4 2,5 5 5 4 5 5 2,5 4 4 2 3 1,5M 6 9 5 8 5 5 5 9 9 9 4,5 8 8 4 5 2,5M 8 20 12 12 7 10 10 25 15 8 12 12 6 10 5M10 40 24 35 21 18 40 40 20 30 15 20 10M12 65 40 50 30 70 65 33 60 30 45 22M14 110 66 100 50 45 22M16 180 110 110 66 200 110 55 90 45M18 140 70M20 280 170 200 120 400 150 75 140 70M22 220 110M24 390 235 400 200 220 110

1) The mechanical characteristics and property classes according to ISO 898, part 5 are valid for headless screws not subjected to tensile forces.

Fasteners made from these steels tend to erode during fitting. Thisrisk can be reduced through smooth, clean thread sufaces (rolledthreads), lubricants, molykote smooth varnish coating (black), lownumber of revolutions of the screwdriver, or continuous tightening wi-thout interruption (impact screwdriver not recommended). For coeffi-cients of friction, see T.032.

Page 38: Bolt Specs

CD

BA

012/T/038/2000 5.6.2003 7:47:01

E

2000 by Bossard T.038

T

D C

A BE

012/T/038/2000 5.6.2003 7:47:01

EEEE

EE

Preload andtightening torquesLocking screws and nuts,

flange screws and nuts (according to manufacturer's specifications)

Tightening torques MAmax. [Nm]Class Counter-material M5 M6 M8 M10 M12 M14 M16

steel 11 19 42 85 130 230 330Inbus-Ripp screws Rm < 800 N /mm2

Verbus-Ripp screws 100 steel 10 18 37 80 120 215 310and nuts 10 Rm = 800–1100 N /mm2

grey cast iron 9 16 35 75 115 200 300

Tensilock screws 90 steel 9 16 34 58 97 155 215and nuts 8 grey cast iron 7 13 28 49 83 130 195

Tightening torques MA max for VERBUS-RIPP , INBUS-RIPP and TENSILOCK screws and nuts at 90% utilization of the yield point Rp0,2

Preload FVmax for VERBUS-RIPP , INBUS-RIPP and TENSILOCK : The tightening torques inthe above chart result in the preloads listed below.

Preload FVmax [N]Class M5 M6 M8 M10 M12 M14 M16Inbus-Ripp screwsVerbus-Ripp screws 100 9000 12600 23200 37000 54000 74000 102000Tensilock screwsand Verbus-Ripp nuts 10Tensilock screws 90 6350 9000 16500 26200 38300 52500 73000and nuts 8

Tightening torques MAmax for pan washer head screws with hexagonsocket and pressed-on flange (black, property class 10.9)

Tightening torques MAmax. (Nm)M3 M4 M5 M6 M8 M10 M121 3 6 11 27 52 100

Tightening torques MAmax eco-fix screws made from steel (zinc plated,property class 4.8) and stainless steel A2

Tightening torques MAmax. (Nm)M2,5 M3 M4 M5 M6 M80,5 0,9 2 4,1 6,9 17

0 To ensure good locking action, screws (or the nuts) should be tightened to the recommended MA where possible.

0 For high dynamic stresses, Inbus-Ripp or Verbus-Ripp screws are recommended.

Page 39: Bolt Specs

CD

BA

012/T/039/2000 5.6.2003 7:47:01

E

2000 by Bossard T.039

T

D C

A BE

012/T/039/2000 5.6.2003 7:47:01

EEEE

EE

Preload andtightening torquesHigh-strength structural steel bolts

according to DIN 6914(HV sets according to DIN 6914 / 15 / 16)

Dimensioning, design and manufacture of fasteners with high-strength structural steel bolts are regulated in DIN 18800,parts 1.

The strength of high-strength structural steel bolts correspondsto the value stipulated in DIN 267, respectively ISO 898:

– ISO 898, part 1 for bolts DIN 6914

– DIN 267, part 4 for nuts DIN 6915

– Washers DIN 6916, 6917, 6918 of steel hardened to 295-350HV 10

1 2 3 4 5 6 7 8 9Screw prestressed according to the

Torque procedure Impact Angle of rotation procedureprocedure

Screw Required Tightening torque MA Preload Pre-tightening Clamping Angle of rotation ordiameter preload FV to be applied to be torque to length number of revolutions

in the screw lubricated with lightly applied be applied MoS2 1) oiled FV

2) MA2) lk

3) ϕ 2) U2)

mm kN Nm Nm kN Nm mm1 M 12 50 100 120 60 102 M 16 100 250 350 1103 M 20 160 450 600 1754 M 22 190 650 900 2105 M 24 220 800 1100 2406 M 27 290 1250 1650 3207 M 30 350 1650 2200 390 2008 M 36 510 2800 3800 5609 M 12 see 0 to 50 180° 1/2

10 to lines 51 to 100 240° 2/311 M 36 1–8 101 to 240 270° 3/4

1) Since the values MA are highly dependent upon the thread lubricant, observance of these values must be confirmed by the screw manufacturer.2) Does not depend on the lubrication of the thread and the contact surfaces of nut and screw.3) For screws M12 to M22 with clamping lengths 171 to 240 mm, an angle of rotation ϕ 360° and U = 1 must be used.

To apply a partial preload force ≥ 0,5 · FV, half the values of columns 3 to 5 and 8 or 9 and hand-tightening according tocolumn 6 is sufficient.

The following methods are available for applying preload to thebolt:

– with hand operated torque wrench (torque process)

– with power screwdriver which must be regulated to a well de-fined torque (angular torque)

– angle of rotation process, in which after having applied a cer-tain preload, the nut or bolt is retightened with a well definedangel of rotation.

50

100

Table 1, which is taken from DIN 18800 part 7, shows the necessary preloads, torques and tightening angles. The screwsmay be tightened either by the nut or by the screw.

Page 40: Bolt Specs

CD

BA

012/T/040/2000 5.6.2003 7:47:01

E

2000 by Bossard T.040

T

D C

A BE

012/T/040/2000 5.6.2003 7:47:01

EEEE

EE

Securely fastenedjointsSummary of constructive measures for

locking screw joints

In principle, there are two reasons why bolted connections may need locking:

Loosening due to setting Rotational loosening

d

FQ

FQl K

FV

FV

SG

fSM fpM

FZ

FM min.

FM

fZFA

FA

FV

FM = assembly preloadfSM = elongation of screw through FM

fPM = shortening of compressed parts through FM

FV = final preloadFZ = loss of preload due to setting fZ = amount of settingFA = operation forceFM min = FV + FZ

Fv = preloadFQ = shear forcelK = clamping lengthSG = displacement of clamped partsd = nominal diameter

The following locking methods are possible:

Locking agianst loosening due to setting Locking against rotational loosening

Measures Effect achieved Measures Effect achievedClean, smooth joint interfaces Reduction of setting possibilities Bigger screws. Lateral movement of theminimum number of interfaces Higher property classes joint members canNo soft, plastically deformable be prevented by a higher preloadjoint membersLong screws (l K > 4xd). High elasticity, compensation of preload loss Shoulder screws No possibility for screws with reduced shank Parallel or dowel pins lateral movementsspring washersFasteners with flange The larger bearing area reduces Long screws (L > 4xd). Flexible joint

the suface pressure. Screws with Better fatigue resistance.Larger tolerance for clearance holes reduced shank

Special large washers with Same advantages as above.hardness 200 HB For screws up to property class 10.9

Loosening of bolted joints results in preload loss. This loss iscaused by setting of the joint members or by a permanent elon-gation of the screw after tightening or under the operation forceFA.

Dynamic shear forces FQ acting upon the bolted joint can causethe joint members to slip back and forth. This will prompt screwsand nuts to rotate, this reducing the preload until it is zero.

Page 41: Bolt Specs

CD

BA

012/T/041/2000 16.1.1997 8:27:56

E

2000 by Bossard T.041

T

D C

A BE

012/T/041/2000 16.1.1997 8:27:56

EEEE

EE

Securely fastenedjointsList of additional locking possibilities

against the loosening of the threaded jointand security against loss.

Caution!The safety qualities shown in the following table relating toloosening, backing out and / or loss are based exclusively onfield experience.

It is the responsibility of the user to examine the differentelements and methods having regard to the specific case ofuse.

Security againstloosening due rotational

Item to setting loosening loss Commentsdiv. 5.8 8.8 10.9 div. 5.8 8.8 10.9

Cheese head screws, hexagon screws and nuts Increased loosening torque due to corrugated basewith corrugated flange (Verbus Ripp )Hexagon head screws and hexagon nuts with Serrated flange surface increases frictionserrated flange (Tensilock )Hex and pan washers Increased bearing area due to the large pan washerhead screws (eco-fix )ThreeBond, DELO, Precote Chemical thread locking adhesives eliminate

thread playScrews with polyamide patch on thread (Tuflok ) Locking against loss by thread friction,

max. 120 °CThread-forming screws for metals DIN 7500 Overall locking effect through a formed,

play-free threadThread-forming screws for thermoplastics (PT ) Overall locking effect through a formed,

play-free threadPrevailing torque nuts DIN 982/985 etc., Locking against loss because of polyamid locking

element on the thread max. 120 °CPrevailing torque nuts DIN 980 / ISO 7042 etc. Locking against loss because of a metallic

locking elementSeal nuts with clamping part (Seal-Lok ) etc. Locking against loss and sealing because of a

polyamid locking element, max. 120 °CElastic nuts (Serpress ) etc. Locking effect through elasticity

no prevailing torqueCastle nuts DIN 935 etc. Cotter pin prevents loss,

Limited loosening is possibleHex lock nuts with spring washer (Comby-S) Attached spring lock washer compensates for setting

Hex lock nuts with toothed lock washer Attached serrated lock washer increases friction(BN 1364)Spring washers DIN 127A / DIN 128A / Compensate settingDIN 7980 etc.Serrated and toothed lock washers Increase frictionDIN 6798 / 6797 etc.Ribbed lock washers BN 791 (Rip-Lock ) etc. Universal lock washer:

compensates setting, increases frictionConical spring washers SN 212745 / Heavy duty type (up to 8.8)DIN 6796 etc.Cotter pins DIN 94 etc. For castle nuts, expensive assembly

Locking effect:

very good

good

moderate

Technical information Thema B No. 1 gives comprehensive information securely fastened joints. Please ask for a copy!

Page 42: Bolt Specs

CD

BA

012/T/042/2000 16.1.1997 8:27:56

E

2000 by Bossard T.042

T

D C

A BE

012/T/042/2000 16.1.1997 8:27:56

EEEE

EE

Shear loads for pins

Dowel pins (clamping sleeves)heavy finish according to ISO 8752 / DIN 1481

up to 8 mm nominal diameter

Nominal diameter, mm 1 1,5 2 2,5 3 3,5 4 4,5 5 6 8 10 12 13 14 16 18 20Shear force single lap joint 0,35 0,79 1,41 2,19 3,16 4,53 5,62 7,68 8,77 13 21,3 35 52 57,5 72,3 85,5 111,2 140,3[kN min.] double lap joint 0,7 1,58 2,82 4,38 6,32 9,06 11,2 15,4 17,5 26 42,7 70,1 104,1 115,1 144,1 171 222,5 280,6

from 10 mm nominal diameter Material: spring steel hardened andtempered to 420 to 560 HV

Nominal diameter, mm 0,8 1 1,2 1,5 2 2,5 3 3,5 4 5 6 8 10 12 14 16Shear force single lap joint 0,21 0,3 0,45 0,73 1,29 1,94 2,76 3,77 4,93 7,64 11,05 19,6 31,12 44,85 61,62 76,02[kN min.] double lap joint 0,4 0,6 0,9 1,46 2,58 3,88 5,52 7,54 9,86 15,28 22,1 39,2 62,24 89,7 123,2 152

Material: spring steel hardened andtempered to 420 to 520 HV

Nominal diameter, mm 1,5 2 2,5 3 4 5 6Shear force single lap joint 0,91 1,57 2,37 3,43 6,14 9,46 13,5[kN min.] double lap joint 1,82 3,14 4,74 6,86 12,2 18,9 27

Material: spring steel hardened andtempered to 420 to 520 HV

up to 8 mm nominal diameter

Nominal diameter, mm 2 2,5 3 3,5 4 4,5 5 6 7 8 10 11 12 13 14 16 18 20Shear force single lap joint 0,75 1,2 1,75 2,3 4 4,4 5,2 9 10,5 12 20 22 24 33 42 49 63 79[kN min.] double lap joint 1,5 2,4 3,5 4,6 8 8,8 10,4 18 21 24 40 44 48 66 84 98 126 158

from 10 mm nominal diameter Material: spring steel hardened andtempered to 420 to 560 HV

Mt

single lap joint double lap joint

F

F F F

2F

Spiral pins, heavy finish according to ISO 8752 (DIN 1481)

Spiral pins, standard finish according to ISO 8750 / DIN 7343

Spiral pins, heavy finish according to ISO 8748 / DIN 7344

Dowel pins (clamping sleeves) light finishaccording to ISO 13337 / DIN 7346

Page 43: Bolt Specs

CD

BA

012/T/043/2000 16.1.1997 8:27:56

E

2000 by Bossard T.043

T

D C

A BE

012/T/043/2000 16.1.1997 8:27:56

EEEE

EE

Constructionrecommendations

Thread forming screws per DIN 7500 produce a strong, chipfree mating thread into flowable materials (steel, HRB 135 max.,aluminum, brass, copper, etc.). Generally, thread formingscrews made of A2 stainless steel can only be driven into alumi-num.

Technical Data and Mechanical Properties

The tapered thread point does not carry any load, which shouldbe considered when determining the nominal screw length. Forharder materials, the hole size should be defined by means ofexperimentation.When used in aluminum, with an engagement depth of over1,5x the diameter, the hole diameter can be reduced by roughly 2%.

Thread forming screws for metalsaccording to DIN 7500

s BC

A

Technical details Nominal thread diameterM2 M2,5 M3 M3,5 M4 M5 M6 M8

Thread pitch P mm 0,4 0,45 0,5 0,6 0,7 0,8 1 1,25Tightening torque max. approx. 80% of breaking torqueBreaking torque Nm 0,5 1 1,5 2,3 3,4 7,1 12 29Tensile force min. kN 1,7 2,7 4 5,4 7 11,4 16 29Material thickness s mm pilot hole diameter d – H11 for steel, HB max. 135; drilled or punched 2 and smaller 1,8 2,25 2,7 3,15 3,6 4,5 5,4 7,25 4 1,85 2,3 2,75 3,2 3,65 4,5 5,45 7,3 6 2,35 2,8 3,25 3,7 4,6 5,5 7,35 8 3,3 3,75 4,65 5,55 7,410 4,7 5,6 7,4512 5,65 7,514 7,516 7,55

Pilot holes and pilot hole geometry for die castingsBecause conditions may vary, it is suggested to carry out appli-cation oriented experiments to double check the given recom-mendations.

Further information (trumped-shaped punched holes etc.) can be obtained from our extensive productdocumentation. Ask for a copy!Our engineering department is prepared to provide technical advice. During the construction phase we can carryout field-related application tests in our laboratory.

d2

d3

d1 d1

t 1

t 3t 1

α α

t 2

A = max. 4 PB = possible bearing thread lengthC = total length, tolerance js 16s = thickness of material

blind hole through hole

α = max. 1°

(t1 + t2 - 1) (t1 + t3 + 4P)

Generalt1 mm: top part of the pilot hole, with significant taper which has benefits for the casting of radii,

strengthening of the mandrel, centering of the screw, prevention of material back-up and

adaptation to standardised and less coastly screw lengths.

t2 / t3 mm: bearing part of the pilot hole, max. taper angle 1°

Screw penetration:

Nominal thread diameter M2,5 M3 M3,5 M4 M5 M6 M8dH12 mm 2.7 3,2 3,7 4,3 5,3 6,4 8,4d1 1) mm 2,36 2,86 3,32 3,78 4,77 5,69 7,63d2 1) mm 2,2 2,67 3,11 3,54 4,5 5,37 7,24d3 1) mm 2,27 2,76 3,23 3,64 4,6 5,48 7,351) + mm 0 0 0 0 0 0 0for d1, d2, d3 – mm 0,06 0,06 0,075 0,075 0,075 0,075 0,09t1 mm variable, minimum 1 x thread pitch Pt2 2) mm 5,3 6 6,9 7,8 9,2 11 142) + mm 0,2 0,2 0,6 0,5 0,5 0,5 0,5for t2 – mm 0 0 0 0 0 0 0t3 mm 2,5 3 3,5 4 5 6 8

Tolerance

Tolerance

Page 44: Bolt Specs

CD

BA

012/T/044/2000 16.1.1997 8:27:56

E

2000 by Bossard T.044

T

D C

A BE

012/T/044/2000 16.1.1997 8:27:56

EEEE

EE

Technical characteristicsand assemblyrecommendations

Direct assembly of thermoplasticparts with eco-syn screws

Eco-syn screws offer great advantages:

0 low driving torque, high stripping torque0 high breaking torque0 excellent security against vibration0 low risk for cracking the base material0 no setting of the assembly due to excessive

relaxation of the plastic material

The head of the eco-syn screw already conforms in shape anddimensions to international ISO standards and therefore also toEuropean standards derived from them:

Raised cheese head ISO 7049 Countersunk head ISO 7050

d1 breaking torqueminimum

2,2 0,5 Nm2,5 0,7 Nm3 1,25 Nm3,5 1,85 Nm4 2,7 Nm5 4,9 Nm6 8 Nm

Breaking torque / tensile breaking load

Assembly recommendations

– evaluate max. thread forming torque and min. stripping / breaking torque

– select tightening torque as low as possible

– use a precision screw driver with dynamic torque control

– max. speed 600 r / min

Flank angle 30° instead of 60° Large thread pitch P Good behaviour of the thermoplastic material

eco-syn tapping screw eco-syn tapping screw eco-syn tapping screw

0 lower fadial forces 0 more plastic material between the points 0 no global deformation and only localizedof the thread stressing of the thermoplastic material

0 larger depth of thread engagement 0 increased shear surface 0 Easy peretration of the thread into theplastic material

0 less pressure of the flanks on the plastic 0 high resistance to stripping 0 no microcracks produced due to excessivematerial stress in the plastic material

0 improved security against possible strippingof the plastic counter-thread

FeFB

tB

60°

te

30°

FA

FRB

60°

FA

FPB

®

FPeFRe

FA

FA

30°

30°

Page 45: Bolt Specs

CD

BA

012/T/045/2000 16.1.1997 8:27:56

E

2000 by Bossard T.045

T

D C

A BE

012/T/045/2000 16.1.1997 8:27:56

EEEE

EE

Assembly and application guidelines for the eco-syn screw

The recommended pilot hole diameters, as well as the engage-ment length are provided for guidance. Because conditions of-ten vary, the user of eco-syn screws should make his own testson prototypes or similar parts to determine whether it fits theparticular use.Pilot hole diameters and engagement lengths should be definedin a manner, so that the plastic is not strained excessively.

The relief counterbore is significant, since it eases the locatingof the hole during assembly. Additionally, it enables a more fa-vorable stress distribution around the margin area.

Material Hole Ø Outside Ø Engagementlenght min.

ABS / PC blend 0,80 x d 2,00 x d 2,00 x dASA 0,78 x d 2,00 x d 2,00 x dPA 4.6 0,73 x d 1,85 x d 1,80 x dPA 4.6 - GF 30 0,78 x d 1,85 x d 1,80 x dPA 6 0,75 x d 1,85 x d 1,70 x dPA 6 - GF 30 0,80 x d 2,00 x d 1,90 x dPA 6.6 0,75 x d 1,85 x d 1,70 x dPA 6.6 - GF 30 0,82 x d 2,00 x d 1,80 x dPBT 0,75 x d 1,85 x d 1,70 x dPBT - GF 30 0,80 x d 1,80 x d 1,70 x dPC 0,85 x d 2,50 x d 2,20 x d1)

PC -GF 30 0,85 x d 2,20 x d 2,00 x d1)

PE (soft) 0,70 x d 2,00 x d 2,00 x dPE (hard) 0,75 x d 1,80 x d 1,80 x dPET 0,75 x d 1,85 x d 1,70 x dPET - GF 30 0,80 x d 1,80 x d 1,70 x dPMMA 0,85 x d 2,00 x d 2,00 x dPOM 0,75 x d 1,95 x d 2,00 x dPP 0,70 x d 2,00 x d 2,00 x dPP - TV 20 0,72 x d 2,00 x d 2,00 x dPPO 0,85 x d 2,50 x d 2,20 x d1)

PS 0,80 x d 2,00 x d 2,00 x dPVC (hard) 0,80 x d 2,00 x d 2,00 x dSAN 0,77 x d 2,00 x d 1,90 x d

d = nominal Ø of screw

1) These plastics are sensitive to stress cracking, thereforeageing tests as recommended by the material manufacturershould be conducted. For these plastics it is particularly im-portant that the relief counterbore is produced exactly asshown.

external Ød

0.3–

0.5

d

s

te

pilot hole Ø

Recommendation for injection moulding

If necessary:

– reduce the external tube diameter DT– increase pilot hole diameter dL

– increase pilot hole depth and thus the penetration of the screw depth in order to compensate for reduced strip resistance.

Choose pilot holes which are deep enough for the assembledscrew not to contact the bottom of the hole.

Unfavourable tube form Improved tube form

s

s s

2/3 s

sink marks

DT DT

dLL

Technical characteristicsand assemblyrecommendations

Our engineering department is prepared to provide technicaladvice. Even in the construction phase we can carry out field-related assembly tests for you in our laboratory for applicationtechnique.

Page 46: Bolt Specs

CD

BA

012/T/046/2000 16.1.1997 8:27:56

E

2000 by Bossard T.046

T

D C

A BE

012/T/046/2000 16.1.1997 8:27:56

EEEE

EE

ConstructionrecommendationsSheet metal joints

(use) according to DIN 7975

The informtion below represents general recommendations forthe use of screws for sheet metal joints. The different types areshown by way of example.

Minimum total thickness of the sheet metals to befastened

The total thickness of the fastened parts shall be bigger than thethread pitch of the applied tapping screw; or else, because ofthe thread run out underneath the head, a sufficient tighteningtorque can not be applied. Should this be the case, joints suchas shown in figure 3 to 6 should be applied.

Fig. 1: Simple fastening(two core holes)

Fig. 2: Simple fasteningwith clearance hole

Fig. 3: Pierced core hole(thin sheet metal)

Fig. 4: Extruded core hole(thin sheet metal)

Fig. 5: Pressed hole fastening joint

Fig. 6: Fastening with spring nut

Page 47: Bolt Specs

CD

BA

012/T/047/2000 16.1.1997 8:27:56

E

2000 by Bossard T.047

T

D C

A BE

012/T/047/2000 16.1.1997 8:27:56

EEEE

EE

Constructionrecommendations

Sheet metal joints(utilisation) according to DIN 7975

The following reference values are valid only for case hardened steel self-tapping screws as shown in Figure 2 on page T.046. Thetightening torques are max. 50% of the minimum breaking torque. Prior tests must be carried for the utilisation of other screws or ot-her sheet metal materials. Punched pilot holes must be 0,1–0,3 mm larger.The screws must be tightened in the direction the hole was punched.

Self-tapping screws / sheet metal thicknesses / pilot hole diameters

Thread Material Diameter of the pilot hole for db thread dimensions ST 2,2 à ST 6,3diameter strength for a sheet metal thickness s [mm]

Rm [N/mm2] 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,2 2,5 2,8 3,0 3,5 4,0 4,5 5,0

from 100 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,8ST 2,2 approx. 300 1,7 1,7 1,7 1,7 1,7 1,7 1,8 1,8 1,8 1,9 1,9

up to 500 1,7 1,7 1,7 1,8 1,8 1,8 1,8 1,9 1,9 1,9 1,9

from 100 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,3ST 2,9 approx. 300 2,2 2,2 2,2 2,2 2,3 2,3 2,3 2,4 2,4 2,4 2,4

up to 500 2,2 2,2 2,3 2,3 2,4 2,4 2,4 2,4 2,5 2,5 2,5

from 100 2,6 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,8 2,9ST 3,5 approx. 300 2,6 2,7 2,7 2,7 2,7 2,8 2,8 2,9 2,9 3,0 3,0

up to 500 2,7 2,8 2,8 2,9 2,9 2,9 2,9 3,0 3,0 3,1 3,1

from 100 2,9 2,9 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,1 3,2 3,3ST 3,9 approx. 300 2,9 2,9 3,0 3,0 3,1 3,1 3,2 3,2 3,2 3,3 3,3 3,3

up to 500 3,0 3,1 3,1 3,2 3,2 3,3 3,3 3,3 3,3 3,4 3,4 3,5

from 100 3,1 3,2 3,2 3,2 3,2 3,2 3,2 3,2 3,2 3,3 3,4 3,5ST 4,2 approx. 300 3,1 3,2 3,2 3,2 3,3 3,3 3,4 3,4 3,5 3,6 3,6 3,6

up to 500 3,3 3,3 3,4 3,4 3,4 3,4 3,5 3,5 3,6 3,6 3,6 3,7

from 100 3,6 3,6 3,6 3,6 3,6 3,6 3,7 3,8 3,9 4,0 4,1ST 4,8 approx. 300 3,6 3,7 3,8 3,8 3,9 3,9 4,0 4,1 4,1 4,2 4,2

up to 500 3,9 3,9 4,0 4,0 4,0 4,1 4,1 4,2 4,2 4,2 4,3

from 100 4,2 4,2 4,2 4,2 4,2 4,4 4,5 4,6 4,7 4,8ST 5,5 approx. 300 4,3 4,4 4,4 4,5 4,7 4,7 4,8 4,8 4,9 4,9

up to 500 4,6 4,6 4,6 4,7 4,8 4,8 4,9 4,9 5,0 5,0

from 100 4,9 4,9 ,49 4,9 5,0 5,2 5,3 5,4 5,5 5,6 5,7ST 6,3 approx. 300 5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,7 5,8 5,8

up to 500 5,3 5,4 5,4 5,5 5,6 5,7 5,7 5,7 5,8 5,8 5,8

Page 48: Bolt Specs

CD

BA

012/T/048/2000 16.1.1997 8:27:56

E

2000 by Bossard T.048

T

D C

A BE

012/T/048/2000 16.1.1997 8:27:56

EEEE

EE

ConstructionrecommendationsSelection criteria for self-tapping

Ensat inserts

Grouping of materials, types and finishes.

Ensat Ensat Ensat Ensat Ensat

type 302 type 305 type 307 / 308 type 337 / 338 type 309

Material Base Recommended Finishes/materialsgroup material works standards

I Heat-treated aluminium with a tensile 302/337 Steel hardenedstrength above 350 N/mm2 307/338 zinc yellow dichromate

308Cast iron in higher hardness range. 302 Steel hardenedbrass, bronze and other non-ferrous zinc yellow dichromatemetals

II Aluminium with a tensile strength 302/337 Steel hardenedup to 350 N/mm2 307/338 zinc yellow dichromate

308Cast iron HB < 190 302 Steel hardened

zinc yellow dichromate

Thermoplastics 302/337 Steel hardenedThermosetting plastics 307/338 zinc yellow dichromate(Polyester plastics, Nylon 66 both 308reinforced, Plexiglas)

III Aluminium with a tensile strength 302/337 Steel hardenedup to 300 N/mm2 307/338 zinc yellow dichromate

308Soft cast iron 302 Steel hardened zinc yellow dichromateThermoplastics 302/337 Steel hardenedThermosetting plastics 307/338 zinc yellow dichromate(Nylon 66, Laminates) 308

302 BrassIV Aluminium with a tensile strength 302 Steel hardened

up to 250 N/mm2 zinc yellow dichromate

Soft metals and aluminium with tensile 302 Steel hardenedstrength up to 180 N/mm2 zinc yellow dichromate

Laminates soft (press-board) 302 Steel hardened zinc yelow or brassThermoplastics 302 Steel hardenedThermosetting plastics zinc yellow or brass(Polyethylene, polypropylene etc.)

V Hardwoods 309 BrassVI Softwoods and plywood 309 Brass

Wood fiber materialsVII Thermoplastics 305 Brass

Page 49: Bolt Specs

CD

BA

012/T/049/2000 16.1.1997 8:27:56

E

2000 by Bossard T.049

T

D C

A BE

012/T/049/2000 16.1.1997 8:27:56

EEEE

EE

Countersinking the pilot holes

ta

60°D

ta

DA

Ensat For material groupstype I II III IV302 Attainable percentage of overlapping threads

30–40% 40–50% 50–60% 60–70%Thread Hole diameter D (mm)M 2,5 4,3– 4,2 4,2– 4,1 4,1 4,1– 4 M 2,6 4,3– 4,2 4,2 4,1 4,1– 4 M 3 4,8– 4,7 4,7 4,6 4,6– 4,5M 3,5 5,7– 5,6 5,6– 5,5 5,5– 5,4 5,4– 5,3M 4 6,2– 6,1 6,1– 6 6,0– 5,9 5,9– 5,8M 5 7,6– 7,5 7,5– 7,3 7,3– 7,2 7,2– 7,1M 6a 8,6– 8,5 8,5– 8,3 8,3– 8,2 8,2– 8,1M 6 9,4– 9,2 9,2– 9 9,0– 8,8 8,8– 8,6M 8 11,4–11,2 11,2–11 11,0–10,8 10,8–10,6M10 13,4–13,2 13,2–13 13,0–12,8 12,8–12,6M12 15,4–15,2 15,2–15 15,0–14,8 14,8–14,6M14 17,4–17,2 17,2–17 17,0–16,8 16,8–16,6M16 19,4–19,2 19,2–19 19,0–18-8 18,8–18,6M18 21,4–21,2 21,2 –21 21,0–20,8 20,8–20,6M20 25,4–25,2 25,2–25 25,0–24,8 24,8–24,6M22 25,4–25,2 25,2–25 25,0–24,8 24,8–24,6M24 29,4–29,2 29,2–29 29,0–28,8 28,8–28,6M27 33,4–33,2 33,3–33 33,0–32,8 32,8–32,6M30 35,4–35,2 35,2–35 35,0–34,8 34,8–34,6

Constructionrecommendations

The recommended hole diameter depends on the Ensat

external thread, the strength and the physical characteri-stics of the workpiece material.Hard and brittle materials require a larger hole than softand flexible ones. Whenever necessary, the most suita-ble hole diameter should be determined by trial.

Ensat For material groupstype I II III307/308 Attainable percentage of overlapping337/338 threads

50–60% 60–70% 70–80%Thread Hole diameter D (mm)M 3,5 5,7– 5,6 5,6 5,6– 5,5M 4 6,2– 6,1 6,1 6,1– 6 M 5 7,7– 7,6 7,6– 7,5 7,5– 7,4M 6 9,6– 9,5 9,5– 9,4 9,4– 9,3M 8 11,5–11,3 11,3–11,2 11,2–11,1M10 13,5–13,3 13,3–13,2 13,2–13,1M12 15,4–15,2 15,2–15,1 15,1–15 M14 17,4–17,2 17,2–17,1 17,1–17

Ensat For material groupstype V VI309 Attainable percentage

of overlapping threads85–90% 90–95%

Thread Hole diameter D (mm)M 2,5 3,8– 3,6 3,6– 3,5M 2,6 3,8– 3,6 3,6– 3,5M 3 4,3– 4,2 4,2– 4,1M 3,5 4,8– 4,7 4,7– 4,1M 4 5,3– 5,2 5,2– 5-1M 5 6,9– 6,7 6,7– 6,6M 6 7,9– 7,7 7,7– 7,6M 8 10,3–10,1 10,1– 9,9M10 12,8–12,6 12,6–12,4M12 15,8–15,6 15,6–15,4

Ensat For materialtype 305 group

VIIHole

diameter DThread (mm)M3 4,6–4,7M4 6 –6,1M5 7,3–7,4M6 9 –9,2

For hard and brittleplastics.DA = D + 0,2 to 0,4t = pilot hole depth

For metallicmaterialsa = 1 to 1,5 x pitch ofexternal thread

Recommended pilot hole diameters

Page 50: Bolt Specs

CD

BA

012/T/050/2000 16.1.1997 8:27:56

E

2000 by Bossard T.050

T

D C

A BE

012/T/050/2000 16.1.1997 8:27:56

EEEE

EE

Constructionrecommendations

Internal drives for screws

– Technical progress and economic factors have resulted in the increasing replacement of slotted head screws by other internaldrive systems.

– It is very important today to take into account the most frequently used drives and their possibilities in design, logistics,procurement and assembly.

– The Phillips cross recessed head is the world's most widely used system.

– Has a conventional cruciform recess with all walls inclined, the end of the screwdriver having trapezoid webs.

– The general dimensions are given in the product information in the catalogue.

– The Pozidriv cross recessed head is used principally in Europe.

– The four «tightening walls» of the cruciforme recess in contact with the screwdriver when tightening, are perpendicular. The other walls are inclined. This can improve assembly if therecess production is reliable. The Pozidriv screwdriver hasrectangular webs at its extremity.

– The general dimensions are given in the product informationin the catalogue.

– Screws with hexagon socket head have proved their worth in the machine and apparatus construction fields.

– The width across flats of hexagon socket head screws is smaller than the WAF of hexagon head screws, permitting more economic design with smaller sizes.

– The general dimensions are given in the product information in the catalogue.

– The notion of a drive with hexalobular sockets are a decisive step in developing drives betteradapted to manual and automated assembly. This drive is becoming increasingly popular throughout the world.

– Compared to drives like cross recesses and conventional hexagon sockets, this system is characerised by a lower risk of deterioration and a lower pressure force requirement. The typical «cam out» slipping of the tool has hence been eliminated and the force transmission improved.

– The general dimensions are given in the product information in the catalogue.

Cross recess H (Phillips) according to ISO 4757

Cross recess Z (Pozidriv) according to ISO 4757

Hexagon socket

Hexalobular socket according to ISO 106641) (Torx )

1) Draft

Page 51: Bolt Specs

CD

BA

060/T/051/2000 10.3.2000 13:17:43

E

2000 by Bossard T.051

D C

A BE

060/T/051/2000 10.3.2000 13:17:43

EEEE

EE

S

Constructionrecommendation

Internal drives for screws

No deterioration of the internal drive; hence reliable un-screwing. Very low assembly tool wear.

High rationalisation potential for the assembly technique,as the drive is suitable for all types of screw.

Economic head from the aspect of size, form and materi-al, corresponding to cheese head screws DIN 84 andDIN 7984, however able to cope with high stresses withrespect to permissible surface pressure.

No problem assembling round head screws according toISO 7380 and recessed flat head screws DIN 7991. Thehigh property class 10.9 of these screws permitting incre-ased strength of the hexagon socket can be reduced toproperty class 8.8.

– The Torx plus drive is defined by ellipses and represents an improvement over the original hexalobular system which is defined by a series of radii.

– The Torx plus system is compatible with the tools provided for the(Torx ) hexalobular system.However, the specific geometric benefits of Torx plus can only optimise assemblywhen using the Torx plus screwdriver bits (tool).

– The general dimensions are given in the product designations in the catalogue.

Torx plus

Technical advantages of hexalobular socket and Torx plus drives

The hexalobular socket and the Torx plus systems have benefits due to their design parameters

– The effective transmission angle of the hexalobular socket is 15° and that of the Torx plus is 0°. The force applied is that actually used for tightening the screw. The geometries of the hexalobular socket and the Torx plus therefore extend the service life of the screwdriver bits by up to 100%.

– The cross section of the Torx plus drive is larger compared to the hexalobular system. Therefore the torsional strength of the driving tool is increased.

– The good force transmission enables low penetration depths.

No need for pressure force as is necessarywhen using cross recessed drives.

Can accept the tightening torques for all pro-perty classes.

Force transmission angle of 60°with hexagon socket drives

Force transmission angle of 0°with Torx plus drives

Force transmission angle of 15°with hexalobular socket drives

15°60°

Page 52: Bolt Specs

CD

BA

012/T/052/2000 10.3.2000 13:17:43

E

2000 by Bossard T.052

T

D C

A BE

012/T/052/2000 10.3.2000 13:17:43

EEEE

EE

Metric ISO threads

General

The thread dimensions and profile accuracy are crucial for de-termining:

0 whether a coating can still be applied to the screw thread.0 whether the parts to be joined can be screwed together on

assembly without difficulty or the need for reworking.

0 whether the thread can transmit the forces for which the components were dimensioned.

0 Tolerances are very small in screw manufacturing. Terms and fitting systems are difficult to understand. To assist. the following illustrations explain dimensions and tolerances.

Basic concept and nominal dimensions according to ISO 724

The dimension system for threads is based on the nominaldimensions for thread, pitch and minor diameter. 60°Nut

D n

omin

al s

ize o

f thr

ead

D m

ajor

dia

met

er

D 2 p

itch

diam

eter

D 1 m

inor

dia

met

er

d 2 p

itch

diam

eter

d m

ajor

dia

met

er

Nut Bolt

Bolt

P pitch

Clearance fit on metric ISO threads according to ISO 965

Screw and nut threads have different tolerance zone positions:screw thread dimensions are situated at the nominal dimensionand below, nut thread dimensions, at the nominal dimensionand above.This produces the necessary clearance and a defined range forpermissible plating thicknesses: a plated screw thread mustnever exceed the nominal dimensions, while a plated nut threadmust never fall below them (see T.027).

Td 2

Td2 2TD

1 2

El2

es2

maj

or d

iam

eter

min

.

pitc

h di

amet

er m

ax.

pitc

h di

amet

er m

in.

min

or d

iam

eter

max

.

min

or d

iam

eter

min

.

pitc

h di

amet

er m

in.

pitc

h di

amet

er m

ax.

maj

or d

iam

eter

min

.

maj

or d

iam

eter

max

.

Nut

Bolt

TD2 2

maj

or d

iam

eter

max

.

Tolerance fields for commercialscrews and nutsaccording to ISO 965

The ISO 965 thread standard recommends tolerance fieldswhich give the desired clearance. For threads ≥ M1,4, thefollowing tolerance fields are standard!

6H 6G

6g 6e

Ø m

ajor

Ø pi

tch

Ø m

inor

Ø m

ajor

Ø pi

tch

Ø m

inor

Larger numbermeans greatertolerance

4 5 6 7 8

TOLERANCE QUALITYDiameter-dependenttolerances for differenttolerance qualitiescan be found in ISO 965.

TOLERANCE ZONE POSITIONPitch-dependent dimensionsfor different tolerancezone positions can be foundin ISO 965.

CLEARANCEBEFOREAPPLICATIONOF PROTECTIVECOATS

GO – H – h

gfe

bolt

thre

ad

nut t

hrea

d

Nut Bolt Surface condition6H 6g bright. phosphated or for standard

electroplatings6G 6e bright (with large clearance) or for

very thick electroplatings

6g-ring ganges for plain screw threads6h-ring ganges for plated screws Tolerance fields of screw and nut threads

Page 53: Bolt Specs

CD

BA

012/T/053/2000 10.3.2000 13:17:43

E

2000 by Bossard T.053

T

D C

A BE

012/T/053/2000 10.3.2000 13:17:43

EEEE

EE

Metric ISO threads

Limits for metric (standard) coarse threadsaccording to ISO 965

Bolts, tolerance 6g (*6h)

Nominal diameter Pitch

series 1 series 2 P 1 0,25 1,2 0,25

1,4 0,3 1,6 0,35

1,8 0,35 2 0,4 2,5 0,45 3 0,5

3,5 0,6 4 0,7 5 0,8 6 1

7 1 8 1,2510 1,512 1,75

14 216 2

18 2,520 2,5

22 2,524 3

27 330 3,5

33 3,536 4

39 4421) 4,5

451) 4,5481) 5

521) 5

Nuts, tolerance 6H (*5H)

Selectionseries for standard threads ISO 262

1) Not contained inISO 262–1973

Thread Length of thread Major diameter Pitch diameter Threadengagement d mm d2 mm root radius

mmfrom to max. min. max. min. min.

M 1* 0,6 1,7 1,000 0,933 0,838 0,785 0,031M 1,2* 0,6 1,7 1,200 1,133 1,038 0,985 0,031M 1,4* 0,7 2 1,400 1,325 1,205 1,149 0,038M 1,6 0,8 2,6 1,581 1,496 1,354 1,291 0,044M 1,8 0,8 2,6 1,781 1,696 1,554 1,491 0,044M 2 1 3 1,981 1,886 1,721 1,654 0,050M 2,5 1,3 3,8 2,480 2,380 2,188 2,117 0,056M 3 1,5 4,5 2,980 2,874 2,655 2,580 0,063M 3,5 1,7 5 3,479 3,354 3,089 3,004 0,075M 4 2 6 3,978 3,838 3,523 3,433 0,088M 5 2,5 7,5 4,976 4,826 4,456 4,361 0,100M 6 3 9 5,974 5,794 5,324 5,212 0,125M 7 3 9 6,974 6,794 6,324 6,212 0,125M 8 4 12 7,972 7,760 7,160 7,042 0,156M10 5 15 9,968 9,732 8,994 8,862 0,188M12 6 18 11,966 11,701 10,829 10,679 0,219M14 8 24 13,962 13,682 12,663 12,503 0,250M16 8 24 15,962 15,682 14,663 14,503 0,250M18 10 30 17,958 17,623 16,334 16,164 0,313M20 10 30 19,958 19,623 18,334 18,164 0,313M22 10 30 21,958 21,623 20,334 20,164 0,313M24 12 36 23,952 23,577 22,003 21,803 0,375M27 12 36 26,952 26,577 25,003 24,803 0,375M30 15 45 29,947 29,522 27,674 27,462 0,438M33 15 45 32,947 32,522 30,674 30,462 0,438M36 18 53 35,940 35,465 33,342 33,118 0,500M39 18 53 38,940 38,465 26,342 26,118 0,500

Thread Length of thread Pitch diameter Minor diameterengagement D2 mm D1 mm

from to max. min. max. min.M 1* 0,6 1,7 0,894 0,838 0,785 0,729M 1,2* 0,6 1,7 1,094 1,038 0,985 0,929M 1,4* 0,7 2 1,265 1,205 1,142 1,075M 1,6 0,8 2,6 1,458 1,373 1,321 1,221M 1,8 0,8 2,6 1,658 1,573 1,521 1,421M 2 1 3 1,830 1,740 1,679 1,567M 2,5 1,3 3,8 2,303 2,208 2,138 2,013M 3 1,5 4,5 2,775 2,675 2,599 2,459M 3,5 1,7 5 3,222 3,110 3,010 2,850M 4 2 6 3,663 3,545 3,422 3,242M 5 2,5 7,5 4,605 4,480 4,334 4,134M 6 3 9 5,500 5,350 5,153 4,917M 7 3 9 6,500 6,350 6,153 5,917M 8 4 12 7,348 7,188 6,912 6,647M10 5 15 9,206 9,026 8,676 8,376M12 6 18 11,063 10,863 10,441 10,106M14 8 24 12,913 12,701 12,210 11,835M16 8 24 14,913 14,701 14,210 13,835M18 10 30 16,600 16,376 15,744 15,294M20 10 30 18,600 18,376 17,744 17,294M22 10 30 20,600 20,376 19,744 19,294M24 12 36 22,316 22,051 21,252 20,752M27 12 36 25,316 25,051 24,252 23,752M30 15 45 28,007 27,727 26,771 26,211M33 15 45 31,007 30,727 29,771 29,211M36 18 53 33,702 33,402 32,270 31,670M39 18 53 36,702 36,402 35,270 34,670

Page 54: Bolt Specs

CD

BA

012/T/054/2000 10.3.2000 13:17:43

E

2000 by Bossard T.054

T

D C

A BE

012/T/054/2000 10.3.2000 13:17:43

EEEE

EE

Metric ISO thread

Limit for metric fine threadsISO 965

Thread Length of thread Major diameter Pitch diameter Threadengagement d mm d2 mm root radius

mmfrom to max. min. max. min. min.

M 8x1 3 9 7,974 7,794 7,324 7,212 0,125M10x1 3 9 9,974 9,794 9,324 9,212 0,156M10x1,25 4 12 9,972 9,760 9,160 9,042 0,156M12x1,25 4,5 13 11,972 11,760 11,160 11,028 0,156M12x1,5 5,6 16 11,968 11,732 10,994 10,854 0,156M14x1,5 5,6 16 13,968 13,732 12,994 12,854 0,188M16x1,5 5,6 16 15,968 15,732 14,994 14,854 0,188M18x1,5 5,6 16 17,968 17,762 16,994 16,854 0,188M18x2 8 24 17,952 17,682 16,663 16,503 0,188M20x1,5 5,6 16 19,968 19,732 18,994 18,854 0,188M20x2 8 24 19,962 19,682 18,663 18,503 0,188M22x1,5 5,6 16 21,968 21,732 20,994 20,854 0,188M22x2 8 24 21,962 21,682 20,663 20,503 0,188M24x2 8,5 25 23,962 23,682 22,663 22,493 0,250M27x2 8,5 25 26,962 26,682 25,663 25,483 0,250M30x2 8,5 25 29,962 29,682 28,663 28,493 0,250M33x2 8,5 25 32,962 32,682 31,663 31,493 0,250M36x3 12 36 35,952 35,577 34,003 33,803 0,375M39x3 12 36 38,952 38,577 37,003 36,803 0,375

Bolts, tolerance 6g

Nominal threaddiameter Pitch P

series 1 series 2 8 110 1,25 11)

12 1,25 1,51)

14 1,516 1,5

18 1,5 21)

20 1,5 21)

22 1,5 21)

24 227 2

30 233 2

36 339 3

Nuts, tolerance 6H

Selection seriesfor fine threadsISO 262

1) Not contained in ISO 262–1973

Thread Length of thread Pitch diameter Minor diameterengagement D2 mm D1 mm

dim. dim. dim. dim.from to max. min. max. min.

M 8x1 3 9 7,500 7,350 7,153 6,917M10x1 3 9 9,500 9,350 9,153 8,917M10x1,25 4 12 9,348 9,188 8,912 8,647M12x1,25 4,5 13 11,368 11,188 10,912 10,647M12x1,5 5,6 16 11,216 11,026 10,676 10,376M14x1,5 5,6 16 13,216 13,026 12,676 12,376M16x1,5 5,6 16 15,216 15,026 14,676 14,376M18x1,5 5,6 16 17,216 17,026 16,676 16,376M18x2 8 24 16,913 16,701 16,210 15,835M20x1,5 5,6 16 19,216 19,026 18,676 18,376M20x2 8 24 18,913 13,701 18,210 17,835M22x1,5 5,6 16 21,216 21,026 20,676 20,376M22x2 8 24 20,913 20,701 20,210 19,835M24x2 8,5 25 22,925 22,701 22,210 21,835M27x2 8,5 25 25,925 25,701 25,210 24,834M30x2 8,5 25 28,925 28,701 28,210 27,835M33x2 8,5 25 31,925 31,701 31,210 30,835M36x3 12 36 34,316 34,051 33,252 32,752M39x3 12 36 37,316 37,051 36,252 35,752

Permissible tolerances for plasticfasteners

Dimensions of the head, screw length andthread approximate according to DIN. Acceptance according to VDI 2544.

The tolerances must be observed 24 hoursafter fabrication, for all other tolerances,refer to ISO 4759, part 1, but withthe factor 2.

These technical recommendationsare of a general nature. For moredetailed specifications, please re-fer to VDI 2544.

Dimension for screw threads for nut threadsmajor Ø e8 2 x G7minor Ø 2xg8 H7pitch Ø 2xg8pitch ± 5%

Page 55: Bolt Specs

CD

BA

012/T/055/2000 10.3.2000 13:17:44

E

2000 by Bossard T.055

T

D C

A BE

012/T/055/2000 10.3.2000 13:17:44

EEEE

EE

1) The fastener sizes in preference class 1 are suggested to be used in all designs. The sizes in this category are generally, readily available.

2) Fasteners in preference class 2 should be chosen only if a size in preference class 1 is not feasible. For preference class 2 sizes, longer lead times have to be expected.

3) Preference class 3 sizes are not recommended for fasteners (normally used for shaft ends etc.)4) Note: Use metric drill sizes whenever possible. The listed US-drill sizes are as close as they possibly can be. Nevertheless,

they may not be adequate in all circumstances.5) No fractional size is close enough.6) Coarse = standard metric thread

Preference class Pitch Drill Closest Drill Closest Clear- Closestsize for recommended size for recommended ance recommended

11) 22) 32) tapping US tapping US hole UScoarse6) fine M coarse size4 M fine size4 size4

1 0,25 0,75 ≠ 69 1,2 ≠ 56 1,2 0,25 0,95 ≠ 63 1,4 ≠ 54

1,4 0,3 1,1 ≠ 57 16 ≠ 52 1,6 0,35 1,5 ≠ 55 1,8 ≠ 50

1,8 0,35 1,4 ≠ 54 2 ≠ 46 2 0,4 1,6 ≠ 52 2,4 ≠ 41

2,2 0,45 1,7 ≠ 50 2,8 ≠ 35 2.5 0,45 2 ≠ 46 2,9 ≠ 32 3 0,5 2,5 ≠ 40 3,4 ≠ 29

3,5 0,6 2,9 ≠ 33 3,9 ≠ 24 4 0,7 3,3 ≠ 30 4,5 ≠ 16 5 0,8 4,2 ≠ 19 5,5 7/32

6 1 5 ≠ 9 6,6 G 7 1 6 15/64 7,6 N

8 1,25 1 6,8 17/64 7 J 9 T 10 1,5 1,25 8,5 Q 8,8 (9) 11/32 (T) 11 27/64

11 1,5 1 9,5 3/8 10 X 12,5 1/2 12 1,75 1,25 (1,5) 10,2 J 10,8 (10,5) 27/64 (Z) 13,5 17/32

14 14 2 1,5 12 15/32 12,5 -1/2 15,5 39/64

15 – 1 14 35/64 16,5 21/32

16 2 1,5 14 35/64 14,5 37/64 17,5 11/16

18 2,5 1,5 15,5 39/64 16,5 21/32 20 51/64

20 2,5 1,5 17,5 11/16 18,5 47/64 22 55/64

22 2,5 1,5 19,5 49/64 20,5 13/16 24 15/16

24 3 2 21 53/64 22 7/8 26 11/64

25 1,5 23,5 50/64 27 11/16

26 1,5 24,5 31/32 28 17/64

27 3 2 24 15/16 25 63/64 30 111/64

28 2 26 11/32 31 17/32

30 3,5 2 26,5 13/64 28 17/64 33 19/32

33 3,5 2 29,5 15/32 31 17/32 36 127/64

36 4 3 32 11/4 33 119/64 39 19/16

39 4 3 35 13/8 36 127/64 42 121/32

42 4,5 3 37,5 115/32 39 117/32 45 125/32

45 4,5 3 40,5 119/32 42 121/32 48 129/32

48 5 3 43 111/16 45 125/32 52 21/16

52 5 3 47 127/32 49 115/16 56 27/32

56 5,5 4 50,5 2 52 21/16 62 27/16

60 5,5 4 54,5 21/8 56 27/32 66 2,59845)

64 6 4 58 25/16 60 23/8 70 2,75595)

68 6 4 62 27/16 64 2,51975) 74 2,91345)

72 6 25/8 66 2,59845) 78 3,07095)

76 6 70 2,75595) 82 3,2285)

80 6 74 2,91345) 86 3,38585)

85 6 79 3,11025) 91 3,58265)

90 6 84 3,30705) 96 3,77955)

95 6 89 3,50395) 101 3,97635)

100 6 94 3,70075) 107 4,21255)

Metric threadsPreference classes / diameter-pitch combination / metric tap drill size and clearance holes (US-drill sizes for reference4))

Page 56: Bolt Specs

CD

BA

012/T/056/2000 10.3.2000 13:17:44

E

2000 by Bossard T.056

T

D C

A BE

012/T/056/2000 10.3.2000 13:17:44

EEEE

EE

Nominal dimensions

Nominal dimensions on Metric Fasteners

L

d 1

L

d 1

L

d 1

L

d 1

L

d 1

L

dd s

Nominal dimensions of Metric FastenersStandard fasteners are defined by: Nominal thread diameter (d) x nominal length . Ex. M8 x 45

Nominal dimensions on shoulder screws

Shoulder screws are defined by: Shoulder diameter and shoulder length

In order to avoid incorrect shipments, it is recommended to indicate the thread diameter as well.

Therefore indicate the following: – shoulder diameter [ds]– shoulder length [L]– thread diameter in parenthesis [d]

Example: ds x L (d) = 6 x 20 (M5)

Determination of nominal dimensions on studs (DIN 939, 938, 835)

L

d 1

Page 57: Bolt Specs

CD

BA

012/T/057/2000 10.3.2000 13:17:44

E

2000 by Bossard T.057

T

D C

A BE

012/T/057/2000 10.3.2000 13:17:44

EEEE

EE

ISO-Tolerances

Tolerances for Metric Fasteners.

The tolerances in the tables shown below are derived from ISO4759: Tolerances for Fasteners Product grades A and B 1.)

The tolerances listed apply for the most common types of metricfasteners. Approximately 98% of the fasteners stocked by Bos-sard are in accordance with DIN and ISO specifications. Other national metric fastener standards derive tolerances from

ISO 4759. However, occasionally some slight modifications aremade.

The tolerances are indicated by tolerance zones. The actual tol-erances in millimeters are then found from the tolerance chart.

For tolerances on fasteners not shown in this table consult:

ISO 4759 or DIN 267 Part 2.

Item DIN ISO Item DIN ISO Item DIN ISOProduct grade: A1)

963 2009 912 4762 931 4014965 7046 960 8765

≤ 5 = h 13 > 5 = h 14Product grade: A1)

84 1207 7991 933 4017961 8676

≤ M5 : h13 / > M5 : h14Product grade: B1)

913 402685 1580 914 4027 931 4014

916 4029 960 8765

≤ M5 : h13 / > M5 : h14Product grade: B1)

964 2010 915 4028 933 4017966 7047 961 8676

439 4035934

7985 7045 ≤ M 12 : h 14 936 4033> M 12 ≤ M 18 : h 15 970

> M 18 : h 16 971 40326330

≤ M5 : h13 / > M5 : h14

1) Product grade A applies to nominal thread diameters up to and including M 24 and lengths not exceeding 10 d or 150 mm,whichever is shorter.

Product grade B applies to sizes above M24 or lengths exceeding 10d or 150 mm, whichever is shorter.

2) js 16 for machine screws with L > 50 mm

js 15/16 2)

+2 P

h 13/14

h 14

h 13

js 15/16 2)

+2 P

h 13/14

h 14

h13

js 15/16 2)

+2 P

h 14

h 13

+ 2°

h13/14

+2 P

h 14

h 13

js 15/16 2)

h 13/14

h13

js 15

h 13

+2 P

+ IT 14

h 14

js 15

+2 P

+ 2°

h 13

js 15

h 14

js 15

+ IT 14

js 14 js 15

+2 P

js 15

h13

js 14 js 15

js 15 js 15

+2 P

js 16

h13

js 15 js 16

js 16

+2 P

h 14

h 13

+ 2°

Page 58: Bolt Specs

CD

BA

012/T/058/2000 10.3.2000 13:17:44

E

2000 by Bossard T.058

T

D C

A BE

012/T/058/2000 10.3.2000 13:17:44

EEEE

EE

ISO-Tolerances

Tolerance zones for sockets, slots and width across the flats

Feature Feature

Hexagon sockets Product Slots*** Productgrade A grade A

Tolerance n Tole-s * ** rance*

0,7 EF8 ≤1 C130,9 JS91,3 K9 >1 C141,5 D9 D102

2,5 D10 D11 Widths across flats Product3 D11 Grade: A2

4 E11 s Tol.5 ≤32 h136 >32 h148 E11 Product

10 E12 Grade: B2

12 s Tol.14 ≤19 h14

>14 >19≤ 60 h15D12 >60≤180 h16

>180 h17

* Tolerance zones for socket set screwsNote: For s 0,7 to 1,3 the actual allowance in the product standards has been slightly modified for technical reasons.

** Tolerance zones for socket head cap screws

s

ee

s

nn

n

s s

ss

Page 59: Bolt Specs

CD

BA

012/T/059/2000 10.3.2000 13:17:45

E

2000 by Bossard

T

D C

A BE

012/T/059/2000 10.3.2000 13:17:45

EEEE

EE

Tables / tolerances /standardsBasic tolerances and tolerance fields

Extract from ISO 286-2

No

min

alS

tan

dar

d t

ole

ran

ces

To

lera

nce

fie

lds

for

dim

ensi

on

[mm

]E

xter

nal

dim

ensi

on

s [m

m]

Inte

rnal

dim

ensi

on

s [m

m]

ran

ge

IT11

IT12

IT13

IT14

IT15

IT16

IT17

b 1

3h

11

h12

h 1

3h

14

h 1

5h

16

h 1

7js

14

js 1

5js

16

js 1

7D

12

H 1

1H

12H

13H

140,

060,

10,

10,

250,

40,

61

1 )–0

,14

0

0 0

0 0

0–

±0,1

25±0

,2±0

,3±0

,51 )

+0,

12+

0,06

+0,

1+

0,14

+0,

25u

p t

o3

–0,2

8–0

,06

–0,1

–0,1

4–0

,25

–0,4

–0,6

+0,

02 0

0 0

0o

ver

30,

075

0,12

0,18

0,3

0,48

0,75

1,2

1 )–0

,14

0 0

0 0

0 0

–±0

,15

±0,2

4±0

,375

±0,6

+0,

15+

0,07

5+

0,12

+0,

18+

0,3

up

to

6–0

,32

–0,0

75–0

,12

–0,1

8–0

,3–0

,48

–0,7

5+

0,03

0 0

0 0

ove

r6

0,09

0,15

0,22

0,36

0,58

0,9

1,5

–0,1

5 0

0 0

0 0

0 0

±0,1

8±0

,29

±0,4

5±0

,75

+0,

19+

0,09

+0,

15+

0,22

+0,

36u

p t

o10

–0,3

7–0

,09

–0,1

5–0

,22

–0,3

6–0

,58

–0,9

–1,5

+0,

04 0

0 0

0o

ver

100,

110,

180,

270,

430,

71,

11,

8–0

,15

0 0

0 0

0 0

0±0

,215

±0,3

5±0

,55

±0,9

+0,

23+

0,11

+0,

18+

0,27

+0,

43u

p t

o18

–0,4

2–0

,11

–0,1

8–0

,27

–0,4

3–0

,7–1

,1–1

,8+

0,05

0 0

0 0

ove

r18

0,13

0,21

0,33

0,52

0,84

1,3

2,1

–0,1

6 0

0 0

0 0

0 0

±0,2

6±0

,42

±0,6

5±1

,05

+0,2

75+

0,13

+0,

21+

0,33

+0,

52u

p t

o30

–0,4

9–0

,13

–0,2

1–0

,33

–0,5

2–0

,84

–13

–2,1

+0,0

65 0

0 0

0o

ver

30–0

,17

up

to

40–0

,56

0 0

0 0

0 0

0+

0,33

+0,

16+

0,25

+0,

39+

0,62

ove

r40

0,16

0,25

0,39

0,62

11,

62,

5–0

,18

–0,1

6–0

,25

–0,3

9–0

,62

–1–1

,6–2

,5±0

,31

±0,5

±0,8

±1,2

5+

0,08

0 0

0 0

up

to

50–0

,57

ove

r50

0,19

0,3

0,46

0,74

1,2

1,9

3–

0 0

0 0

0 0

0±0

,37

±0,6

±0,9

5±1

,5+

0,4

+0,

19+

0,3

+,0

46+

0,74

up

to

80–0

,19

–0,3

–0,4

6–0

,74

–1,2

–1,9

–3+

0,1

0 0

0 0

ove

r80

0,22

0,35

0,54

0,87

1,4

2,2

3,5

– 0

0 0

0 0

0 0

±0,4

35±0

,7±1

,1±1

,75

+0,

47+

0,22

+0,

35+

0,54

+0,

87u

p t

o12

0–0

,22

–0,3

5–0

,54

–0,8

7–1

,4–2

,2–3

,5+

0,12

0 0

0 0

ove

r12

00,

250,

40,

631

1,6

2,5

4–

0 0

0 0

0 0

0±0

,5±0

,8±1

,25

±2+0

,545

+0,

25+

0,4

+0,

63+

1u

p t

o18

0–0

,25

–0,4

–0,6

3–1

–1,6

–2,5

–4+0

,145

0 0

0 0

ove

r18

00,

290,

460,

721,

151,

852,

94,

6–

0 0

0 0

0 0

0±0

,575

±0,9

25±1

,45

±2,3

+0,

63+

0,29

+0,

46+

0,72

+1,

15u

p t

o25

0–0

,29

–0,4

6–0

,72

–1,1

5–1

,85

–2,9

–4,6

+0,

17 0

0 0

0o

ver

250

0,32

0,52

0,81

1,3

2,1

3,2

5,2

– 0

0

0

0

0

0

0

±0

,65

±1,0

5±1

,6±2

,6+

0,71

+0,

32+

0,52

+0,

81+

1,3

up

to

315

–0,3

2–0

,52

–0,8

1–1

,3–2

,1–3

,2–5

,2+

0,19

0 0

0 0

ove

r31

50,

360,

570,

891,

42,

33,

65,

7–

0 0

0 0

0 0

0±0

,7±1

,15

±1,8

±2,8

5+

0,78

+0,

36+

0,57

+0,

89+

1,4

up

to

400

–0,3

6–0

,57

–0,8

9–1

,4–2

,3–3

,6–5

,7+

0,21

0 0

0 0

ove

r40

00,

40,

630,

971,

552,

54

6,3

– 0

0 0

0 0

0 0

±0,7

75±1

,25

±2±3

,15

+0,

86+

0,4

+0,

63+

0,97

+1,

55u

p t

o50

0–0

,4–0

,63

–0,9

7–1

,55

–2,5

–4–6

,3+

0,23

0 0

0 0

1) N

ot

con

tain

ed in

ISO

286

–2

T.059

Page 60: Bolt Specs

CD

BA

012/T/060/2000 10.3.2000 13:17:45

E

2000 by Bossard T.060

T

D C

A BE

012/T/060/2000 10.3.2000 13:17:45

EEEE

EE

Tables / tolerances /standards

SI units system

1. Basic units of the SI system

Quantity Name Symbol

Length meter mMass kilogram kgTime second sElectric current ampere AThermodynamictemperature kelvin KLuminous intensity candela cdAmount of substance mole molPlane angle radian radSolid angle steradian sr

2. Derived SI units

Quantity Name Symbol Defining equation

Frequency hertz Hz 1 Hz = 1 s–1 = 1/sForce newton N 1 N = 1 kg · m/s2

Pressure and mechanical stress pascal Pa 1 Pa = 1 N/m2

Work (energy, heat) joule J 1 J = 1 N · m = 1 W · s

Power, energy flow, heat flow watt W 1 W = 1 N · m/s = J/sElectrical charge, quantity of electricity coulomb C 1 C = 1 A · sElectrical potential,potential, difference voltage volt V 1 V = 1 W/AElectric capacitance farad F 1 F = 1 A · s/V

Impedance ohm Ω 1 Ω = 1 V/AElectrical conductivity siemens S 1 S = 1 Ω–1 = 1/Ω = 1 A/VMagnetic flux weber Wb 1 WB = 1 V · sMagnetic flux density tesla T 1 T = 1 Wb/m2

Inductance henry H 1 H = 1 Wb/A = 1 V · s/ALuminous flux lumen lm 1 lm = 1 cd · srIllumination lux lx 1 lx = 1 lm/m2

Conversion tables

Conversion table for units of force Conversion table for units of mechanical stress

N p kp dyn1 Newton = 1 N 1 102 0,102 105

1 pond = 1 p 9,81 · 10–3 1 10–3 9811 Kilopond = 1 kp 9,81 1000 1 9,81 · 105

1 dyn 10–5 1,02 · 10–3 1,02 · 10–6 1

Pa N/mm2 kp/cm2 kp/mm2

1 Pa = 1 N/m2 1 10–6 1,02 · 10–5 1,02 · 10–7

1 N/mm2 = 1 Mpa 106 1 10,2 0,1021 kp/cm2 = 1 at 9,81 · 104 9,81 · 10–2 1 10–2

1 kp/mm2 9,81 · 106 9,81 100 1

Background

SI is the modern system of units for measurement, accepted andused world wide. It is used in all areas of international standardsand is commonly referred to as the metric system. SI is used in allareas of science, technology and trade and is applied in the sameway world wide.

SI is built of: Base unitsSupplementary unitsAdditional unitsPrefixes

The figures given in the conversion tables are roundedup to 3 or 4 digits.

Page 61: Bolt Specs

CD

BA

012/T/061/2000 5.6.2003 8:20:55

E

2000 by Bossard T.061

T

D C

A BE

012/T/061/2000 5.6.2003 8:20:55

EEEE

EE

1 milligram1 ppm (part per million) per 0,001 g/kgis 1 part out of 1 million parts kilogram (10–3)

2700 litres1 ppb (part per billion) 1 microgramis 1 part out of 1 billion parts per 0,000 001 g/kg

Example: (b = billion, US English for milliard) kilogram (10–6)one lump 2,7 million litresof sugar 1 ppt (part per trillion) 1 nanogramdissolved in: is 1 part out of 1 trillion parts per 0,000 000 001 g/kg

(t = trillion, US English for billion) kilogram (10–9)2,7 billion litres

1 ppq (part per quadrillion) 1 picogramis 1 part out of 1 quadrillion parts per 0,000 000 000 001 g/kg(q = quadrillion, US English for billiard) kilogram (10–12)

2,7 trillion litres

Tables / tolerances /standards

Conversion tables

Conversion table for units of work, energy and heat

J kJ kWh kcal kpm1 J = 1 N · m =1 W · s 1 10–3 2,78 · 10–7 2,39 · 10–4 0,1021 kJ 1000 1 2,78 · 10–4 0,239 1021 kWh 3,6 · 106 3,6 · 103 1 860 3,67 · 105

1 kcal 4,19 · 103 4,19 1,16 · 10–3 1 4271 kpm 9,81 9,81 · 10–3 2,72 · 10–6 2,34 · 10–3 1

Conversion table for units of power and heat flow

Conversion table for units of pressure for gases, vapours and liquids

W kW kcal/s kcal/h kpm/s1 W = 1 N · m/s= 1 J/s 1 10–3 2,39 · 10–4 0,860 0,1021 kW 1000 1 0,239 860 1021 kcal/s 4,9 · 103 4,19 1 3,6 · 103 4271 kcal/h 1,16 1,6 · 10–3 2,78 · 10–4 1 0,1191 kpm/s 9,81 9,81 · 10–3 2,34 · 10–3 8,34 1

Pa bar kp/m2 at Torr1 Pa = 1 N/m2 1 10–5 0,102 1,02 · 10–5 7,5 · 10–3

1 bar = 0,1 MPa 105 1 1,02 · 104 1,02 7501 kp/m2 9,81 9,81 · 10–5 1 10–4 7,36 · 10–2

1 at = 1 kp/cm 2 9,81 · 104 0,981 104 1 7361 Torr = 1/760 atm 133 1,33 · 10–3 13,6 1,36 · 10–3 1

Conversions of other units into SI units

Value Previous unit Symbol New unit Symbol Defining equationLength Ångström Å meter m 1 Å = 10–10 mPressure mm mercury mm Hg pascal Pa 1 mm Hg = 133,3 PaEnergy Erg erg joule J 1 erg = 10–7 JPower horsepower PS watt W 1 PS = 735,5 WDynamic viscosity Poise P pascal · second Pa · s 1P = 0,1 Pa · sKinematic viscosity Stokes St cm2/s 1 St = 1 cm2/sImpact value kpm/cm2 J/cm2 1 kpm/cm2 = 9,087 J/cm2

Heat capacity kcal/°C J/K 1 kcal/°C = 4,187 · 103 J/KHeat conductivity kcal/m.h °C W/K · m 1 kcal/m · h · °C = 1,163 W/K · mSpecific heat kcal/kg °C J/kg · K 1 kcal/kg · °C = 4,187 · 103 J/kg · KMagnetic field strength Oersted Oe ampere / meter A/m 1 Oe = 79,6 A/mMagnetic flux density Gauss G Tesla T 1 G = 10–4 TMagnetic flux Maxwell M Weber Wb 1 M = 10–8 WbLuminous intensity internat. candle IK candela cd 1 lK = 1,019 cdLuminance Stilb sb cd/m2 1 sb = 104 cd/m2

Absorbed dose Rem rem J/kg 1 rem = 0,01 J/kgIon dose Röntgen R C/kg 1 R = 2,58 · 10–4 C/kg

Conversions of part volumes

Page 62: Bolt Specs

CD

BA

012/T/062/2000 5.6.2003 8:20:55

E

2000 by Bossard T.062

T

D C

A BE

012/T/062/2000 5.6.2003 8:20:55

EEEE

EE

Tables / tolerances /standardsConversion tables

metric – USAUSA – metric

metric – USA1 millimeter (mm) 0,039337 inches (in.)1 centimeter (cm) 0,39370 inches (in.)1 meter (m) 39,3700 inches (in.)1 meter (m) 3,2808 feet (ft.)1 meter (m) 1,0936 yards (yd.)1 kilometer (km) 0,62137 miles (m.)

Measures of lengthUSA – metric1 inch 25,400 mm1 inch 2,540 cm1 foot 304,800 mm1 foot 30,480 cm1 foot 0,3048 m1 yard 91,4400 cm1 yard 0,9144 m1 mile 1609,35 m1 mile 1,609 km

metric – USA1 mm2 0,00155 sq.inches (sq.in.)1 cm2 0,1550 sq.inches (sq.in.)1 m2 10,7640 sq.feet (sq.ft.)1 m2 1,196 sq.yard (sq.yd.)1 km2 0,38614 sq.miles (sq.m.)

Measures of areaUSA – metric1 sq.inch 645,16 mm2

1 sq.inch 6,4516 cm2

1 sq.foot 929,00 cm2

1 sq.foot 0,0929 m2

1 sq.yard 0,836 m2

1 sq.mile 2,5889 km2

metric – USA1 milliliter (ml) 0,27 fluid drachms (dr.fl.)1 centiliter (cl) 0,338 fluid ounces (oz.fl.)1 deciliter (dl) 0,0528 pints (pt.)1 liter (l) 1,0567 quarts (qt.)1 liter (l) 0,26 gallons (gal.)1 hectoliter (hl) 26,417 gallons (gal.)

Measures of capacityUSA – metric1 fluid ounce 2,957 cl1 pint 4,732 dl1 pint 0,4732 l1 quart 0,9463 l1 gallon 3,7853 l1 barrel (bl) 119,237 l1 barrel 1,192 hl

metric – USA1 gram (gr.) 15,432 grains (gr.)1 kilogram (kg) 2,2046 pounds (lb.)1 quintal (dz.) 220,46 pounds (lb.)1 tonne (t) 2204,6 pounds (lb.)1 tonne (t) 1,102 short tons (tn.sh.)

WeightsUSA – metric1 grain 64,7989 mg1 ounce 28,35 g1 pound 0,4536 kg1 short 907,200 kg1 short 9,072 dz.1 short 0,9072 t

metric – USA1 N/mm2 = 1MPa = 10 bar 145,14 psi1 Nm 8,85 in lb1 Nm 0,74 ft lb

VariousUSA – metric1 psi 0,00689 N/mm2

1 in lb 0,113 Nm1 ft lb 1,35 Nm

Temperature °F °C °F °C °C °F °C °F212 100 104 40 100 212 35 95200 93,3 100 37,8 95 203 30 86194 90 90 32,2 90 194 25 77190 87,8 86 30 85 182 20 68180 82,2 80 26,7 80 176 15 59176 80 70 21,1 75 167 10 50170 76,7 68 20 70 158 5 41160 71,1 60 15 65 149 – –158 70 50 10 60 140 0 32150 65,6 40 4,4 55 131 – 5 23140 60 – – 50 122 –10 14130 54,4 32 0 45 113 –15 5122 50 30 – 1,1 40 104 –17,8 0120 48,9 20 – 6,7110 43,3 14 –10

10 –12,2 0 –17,8

°C = °F(exact)

Conversionfrom Celsiusinto FahrenheitMultiply by 118;add 32 to result.

ConversionfromFahrenheit intoCelsiusSubtract 32; divideresult by 1,8.

Page 63: Bolt Specs

CD

BA

012/T/063/2000 5.6.2003 8:20:55

E

2000 by Bossard T.063

T

D C

A BE

012/T/063/2000 5.6.2003 8:20:56

EEEE

EE

Conversion tablespsi to MPa

conversion factor1 psi = 0,00689 MPa (N/mm2)1 MPa (N/mm2) = 145 psi

PSI kp/mm2 MPa PSI kp/mm2 MPa PSI kp/mm2 MPa(N/mm2) (N/mm2) (N/mm2)

30000 21,09 206,831000 21,80 213,7 66000 46,40 455,1 105000 73,82 723,932000 22,50 220,6 67000 47,11 461,9 110000 77,34 758,433000 23,20 227,5 68000 47,81 468,8 115000 80,85 792,934000 23,90 234,4 69000 48,51 475,7 120000 84,37 827 ,435000 24,61 241,3 70000 49,21 482,6 125000 87,88 861,836000 25,31 248,2 71000 49,92 489,5 130000 91,40 896,337000 26,01 255,1 72000 50,62 496,4 135000 94,91 930,838000 26,72 262,0 73000 51,32 503,3 140000 98,43 965,339000 27,42 268,9 74000 52,03 510,2 145000 101,95 999,740000 28,12 275,8 75000 52,73 517,1 150000 105,46 1034,241000 28,83 282,7 76000 53,43 524,0 160000 112,49 1103,242000 29,53 289,6 77000 54,10 530,9 170000 119,52 1172,143000 30,23 296,5 78000 54,84 537,8 180000 126,55 1241,144000 30,94 303,4 79000 55,54 544,7 190000 133,58 1310,045000 31,64 310,3 80000 56,25 551,6 200000 140,61 1379,046000 32,34 317,2 81000 56,95 558,5 210000 147,64 1447,947000 33,04 324,1 82000 57,65 565,4 220000 154,68 1516,848000 33,75 330,9 83000 58,35 572,3 230000 161,71 1585,849000 34,75 337,8 84000 59,06 579,2 240000 167,74 1654,750000 35,15 344,7 85000 59,76 586,1 250000 175,77 1723,751000 35,86 351,6 86000 60,46 592,9 260000 182,80 1792,652000 36,56 358,5 87000 61,17 599,8 270000 189,83 1861,653000 37,26 365,4 88000 61,87 606,7 280000 196,86 1930,554000 37,97 372,3 89000 62,57 613,6 290000 203,89 1999,555000 38,67 379,2 90000 63,28 620,5 300000 210,92 2068,456000 39,37 386,1 91000 63,98 627,457000 40,07 393,0 92000 64,68 634,358000 40,78 399,9 93000 65,39 641,259000 41,48 406,8 94000 66,09 648,160000 42,18 413,7 95000 66,79 655,061000 42,89 420,6 96000 67,49 661,962000 43,59 427,5 97000 68,20 668,863000 44,29 434,4 98000 68,90 675,764000 45,00 441,3 99000 69,60 682,665000 45,70 448,2 100000 70,31 689,5

Conversion table psi to MPa

Page 64: Bolt Specs

CD

BA

012/T/064/2000 5.6.2003 8:20:56

E

2000 by BossardT.064

T

D C

A BE

012/T/064/2000 5.6.2003 8:20:56

EEEE

EE

Tables / tolerances /standards

Hardness comparison tableaccording to DIN 50150

Tensilestrength Vickers Brinell hardness1) Rockwell hardness

hardnessN/mm2 (F≥98 N) HRB HRC HRA 255 80 76 270 85 80,7 41 285 90 85,5 48 305 95 90,2 52 320 100 95 56,2 335 105 99,8 350 110 105 62,3 370 115 109 385 120 114 66,7 400 125 119 415 130 124 71,2 430 135 128 450 140 133 75 465 145 138 480 150 143 78,7 495 155 147 510 160 152 81,7 530 165 156 545 170 162 85 560 175 166 575 180 171 87,1 595 185 176 610 190 181 89,5 625 195 185 640 200 190 91,5 660 205 195 92,5 675 210 199 93,5 690 215 204 94 705 220 209 95 720 225 214 96 740 230 219 96,7 755 235 223 770 240 228 98,1 20,3 60,7 785 245 233 21,3 61,2 800 250 238 99,5 22,2 61,6 820 255 242 23,1 62 835 260 247 (101) 24 62,4 850 265 252 24,8 62,7 865 270 257 (102) 25,6 63,1 880 275 261 26,4 63,5 900 280 266 (104) 27,1 63,8 915 285 271 27,8 64,2 930 290 276 (105) 28,5 64,5 950 295 280 29,2 64,8 965 300 285 29,8 65,2 995 310 295 31 65,81030 320 304 32,2 66,41060 330 314 33,3 671095 340 323 34,3 67,61125 350 333 35,5 68,11155 360 342 36,6 68,71190 370 352 37,7 69,2

Tensilestrength Vickers Brinell hardness1) Rockwell hardness

hardnessN/mm2 (F≥98 N) HRB HRC HRA1220 380 361 38,8 69,81255 #### 371 39,8 70,31290 400 380 10,8 70,81320 410 390 41,8 71,41350 420 399 42,7 71,81385 430 409 43,6 72,31420 440 418 44,5 72,81455 450 428 45,3 73,31485 460 437 46,1 73,61520 470 447 46,9 74,11555 480 (465) 47,7 74,51595 490 (466) 48,4 74,91630 500 (475) 49,1 75,31665 510 (485) 49,8 75,71700 520 (494) 50,5 76,11740 530 (504) 51,1 76,41775 540 (513) 51,7 76,71810 550 (523) 52,3 771845 560 (532) 53 77,41880 570 (542) 53,6 77,81920 580 (551) 54,1 781955 590 (561) 54,7 78,41995 600 (570) 55,2 78,62030 610 (580) 55,7 78,92070 620 (589) 56,3 79,22105 630 (599) 56,8 79,52145 640 (608) 57,3 79,82180 650 (618) 57,8 80

660 58,3 80,3670 58,8 80,6680 59,2 80,8690 58,7 81,1700 60,1 81,3720 61 81,8740 61,8 82,2760 62,5 82,6780 63,3 83800 64 83,4820 64,7 83,8840 65,3 84,1860 65,9 84,4880 66,4 84,7900 67 85920 67,5 85,3940 68 85,6

The figures in brackets represent hardness values beyond the definedscope of the standardised hardness test but which are frequently used asappoximate values in practice. Furthermore the Brinell hardness values in brackets are only valid if the test was carried out with a hard metal ball.

1) Calculated with: HB = 0,95 · HV

The comparison table below is valid only for carbon steels, lowalloy steels and cast steels in the hot formed and heat treatedcondition.

For high alloyed and / or cold headed steels [4.8. 5.8] (6.8. A1 toA4) there are considerable differences to be expected.

The Vickers testing method is applicable over a wide hardness range. The referee method per ISO 898/1 is the Vickers method.The Rockwell C method is suitable for hardened steels, Rockwell A for sintered steel and Rockwell B for soft steels, copper alloys,etc. The Brinell hardness method extends over a wide hardness range too.

Page 65: Bolt Specs

CD

BA

012/T/065/2000 5.6.2003 8:20:56

E

2000 by Bossard T.065

T

D C

A BE

012/T/065/2000 5.6.2003 8:20:55

EEEE

EE

Tables / tolerances /standardsDesignations of different national

standards

Country Abbreviation

Albania / Albanie DCSAlgeria / Algérie INAPIArgentina / Argentine IRAMAustralia / Australie SAAAustria / Autriche ONBangladesh BSTIBelgium / Belgique IBNBrazil/Brésil ABNTBulgaria / Bulgarie BDSCanada SCCChile / Chili INNChina / Chine CSBTSColombia / Colombie ICONTECCuba NCCyprus / Chypre CYSCzech Republic / Tchèque, Rép. CSNISlovakia / Slovaquie CSNIDenmark / Danemark DSEgypt / Egypte EOSEthiopia / Ethiopie EASEurope ENFinland / Finlande SFSFrance AFNORGermany / Allemagne DINGhana GSBGreece / Grèce ELOTHungary / Hongrie MSZTIndia/Inde BISIndonesia / Indonésie BSNInternational ISOIran ISIRIIreland / Irlande NSAIIsrael / Israël SIIItaly / Italie UNIJamaica / Jamaïque JBSJapan / Japon JISC

Country Abbreviation

Kenya KEBSKorea, Dem.P.Rep.of / Rép.dém.p.de Corée CSKKorea, Rep. of / Rép. de Corée KNITQLebanon / Liban LNCSMMalaysia / Malaisie DSMMexico / Mexique DGNMongolia / Mongolie MNCSMMarocco / Maroc SNIMANetherlands / Pays-Bas NNINew Zealand / Nouvelle-Zélande SNZNigeria SONNorway / Norvège NSFPakistan PSIPhilippines BPSPoland / Pologne PKNPortugal IPQRomania / Roumanie IRSSaudi Arabia / Arabie Séoudite SASOSingapore / Singapour PSBSouth Africa, Rep. of / Rép. d'Afrique du Sud SABSSpain / Espagne AENORSri Lanka SLSISweden / Suède SISSwitzerland / Suisse SNVSyria / Syrie SASMOTanzania / Tanzanie TBSThailand / Thaïlande TISITrinidad and Tobago / Trinité-et-Tobago TTBSTurkey/Turquie TSEUnited Kingdom / Royaume-Uni BSIUSA ANSIUzbekistan UZGOSTVénézuela COVENINViet Nam, Socialist Republic of / Républiquesocialiste du Vietnam TCVNYugoslavia / Yougoslavie SZS

Copyright:

This catalogue is protected by the laws of intellectual propertyand competiton. All rights are reserved, including reproduction,translation and recording and processing in electronic datasystems.

Copyright 2001 by Bossard AG Schrauben, CH-6305 Zug

Printed in Switzerland.