blood gas analysis: a practical approach - wild apricot · blood gas analysis: a practical approach...

70
Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012 Bert Bammens

Upload: buikhue

Post on 18-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Blood Gas analysis:

a practical approach

Advanced course in General Internal Medicine

KU Leuven session, May 25 2012

Bert Bammens

Page 2: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Normal acid-base physiology

3 processes involved in normal acid-base balance

extra- & intracellular buffering

elimination of CO2 by lungs

reabsorption & new formation of HCO3- by kidney

Page 3: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

extra- & intracellular buffers

Intracellular buffers

Proteins & organic phosphates buffer extracellular H+

exchanging intra-cellular Na+ en K+.

Normal acid-base physiology

Page 4: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

extra- & intracellular buffers

The bone as a buffer

Important contribution in case of chronic acid load.

Normal acid-base physiology

Page 5: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

extra- & intracellular buffers

Blood buffers

Changes in pH are buffered proportionally by different buffers.

Normal acid-base physiology

Page 6: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

extra- & intracellular buffers

Bicarbonate: most important extracellular buffer

• Quantitatively important

• Analysis is easy

• OPEN

STRONG buffer!

Normal acid-base physiology

Page 7: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

extra- & intracellular buffers

Bicarbonate: most important extracellular buffer

CO2(d) + H2O H+ + HCO3-

Dissociation constant: K = [H+].[HCO3-] / [CO2(d)]

Logarithmic form: pH = pK + log([HCO3-] / [CO2(d)])

OR pH = pK + log([HCO3-] / s.pCO2)

Normal acid-base physiology

Page 8: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

extra- & intracellular buffers

Bicarbonate: most important extracellular buffer

pH = pK + log([HCO3-] / s.pCO2)

pH = 6.1 + log([HCO3-] / 0.03.pCO2)

Henderson-Hasselbalch equation

at 37°C in plasma

of mammals

Normal acid-base physiology

Page 9: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

extra- & intracellular buffers

Bicarbonate: most important extracellular buffer

pH = 6.1 + log([HCO3-] / 0.03.pCO2)

OPEN

STRONG buffer!

Normal acid-base physiology

Page 10: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Bicarbonate buffer is OPEN thanks to kidneys and lungs!

pH = 6.1 + log([HCO3-] / 0.03.pCO2)

elimination of CO2 by lungs

reabsorption & new formation of HCO3- by kidneys

Normal acid-base physiology

Page 11: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

• Net non-volatile acid production: 40 mmol/day

• Net non-volatile acid intake (food): 20 mmol/day

Net non-volatile base loss in stool: 10 mmol/day

We need to get rid of an “acid load” of 70 mmol/day

(i.e. 1 mmol/kg/day)

Normal acid-base physiology

reabsorption & new formation of HCO3- by kidneys

Page 12: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Normal acid-base physiology

Moreover: reabsorption

of filtered HCO3-!

reabsorption & new formation of HCO3- by kidneys

Page 13: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

HCO3- reabsorption: 80% in proximal tubule

HCO3- + H+ H2CO3

CO2 + H2O

Carbonic anhydrases

fasten this “slow” reaction.

Normal acid-base physiology

reabsorption & new formation of HCO3- by kidneys

Page 14: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

“new” HCO3-, titratable acid:

Normal acid-base physiology

reabsorption & new formation of HCO3- by kidneys

Page 15: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

“new” HCO3-, NH3: synthesis & secretion in proximal tubule,

secretion & reabsorption remainder of nephron*

“Diffusion trapping”

keeps NH4+ in

tubular lumen.

*

Normal acid-base physiology

reabsorption & new formation of HCO3- by kidneys

Page 16: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Normal values

plasma pH 7.35-7.45

acidemia pH < 7.35

alkalemia pH > 7.45

plasma [HCO3-] 24 mmol/L

plasma pCO2 40 mmHg

Acid-base pathophysiology

Page 17: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Acid-base pathophysiology

ACIDEMIA: the lab result

ACIDOSIS: the physiopathological process

the lab result: ALKALEMIA

the physiopathological process: ALKALOSIS

Page 18: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Acid-base pathophysiology

Consider

Metabolic acidosis

Metabolic alkalosis

Respiratory acidosis (acute or chronic)

Respiratory alkalosis (acute or chronic)

Mixed acid base disorders

more than just 2 pathological conditions

when compensation is absent or greater than expected

Page 19: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

compensation & mixed disorders

expected compensation in primary metabolic disorders

ACIDOSIS: pCO2 = 1.5 x [HCO3-] + 8 ( 2) (last 2 digits of pH)

ALKALOSIS: pCO2 = 0.9 x [HCO3-] + 16 ( 5) (last 2 digits of pH)

expected compensation in primary respiratory disorders

ACUTE ACIDOSIS: ∆[HCO3-] = 0.1 x ∆pCO2

CHRONIC ACIDOSIS: ∆[HCO3-] = 0.4 x ∆pCO2

ACUTE ALKALOSIS: ∆[HCO3-] = 0.2 x ∆pCO2

CHRONIC ALKALOSIS: ∆[HCO3-] = 0.5 x ∆pCO2

Acid-base pathophysiology

Page 20: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Expected compensation in METABOLIC ACIDOSIS

pCO2 = 1.5 x [HCO3-] + 8 ( 2) (last 2 digits of pH)

Voorbeeld:

Metabolic acidosis pH = 7.31 with [HCO3-] 15 mmol/L

95% CI expected pCO2 in case of maximal respiratory compensation:

1.5 x 15 + 8 ( 2) = 30.5 ( 2), so from 28.5 to 32.5 mmHg

compensation & mixed disorders

Acid-base pathophysiology

Page 21: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Expected compensation in METABOLIC ACIDOSIS

pCO2 = 1.5 x [HCO3-] + 8 ( 2) (last 2 digits of pH)

Voorbeeld:

Metabolic acidosis pH = 7.31 with [HCO3-] 15 mmol/L

95% CI expected pCO2 in case of maximal respiratory compensation:

1.5 x 15 + 8 ( 2) = 30.5 ( 2), so from 28.5 to 32.5 mmHg

compensation & mixed disorders

Acid-base pathophysiology

Page 22: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

STEP 1: interpret the pH!

ACIDOSIS: pH < 7.35

ALKALOSIS: pH > 7.45

STEP 2: define metabolic vs. respiratory!

ACIDOSIS = respiratory when pCO2 > 40 mmHg

ACIDOSIS = metabolic when [HCO3-] < 24 mmol/L

ALKALOSIS = respiratory when pCO2 < 40 mmHg

ALKALOSIS = metabolic when [HCO3-] > 24 mmol/L

Acid-base pathophysiology

Page 23: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Case 1

22-year old woman, type I diabetes

nausea, vomiting, polyuria, polydipsia

abdominal discomfort

hyperventilating, orthostatic hypotension, dry tongue

pH 7.23 [Na+] 132 mmol/L

[HCO3-] 10 mmol/L [K+] 6 mmol/L

pCO2 23 mmHg [Cl-] 93 mmol/L

[Glucose] 720 mg/dL

[Creatinine] 2.6 mg/dL

[Ureum] 70 mg/dL

Page 24: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Which acid-base disorder?

pH 7.23 [Na+] 132 mmol/L

[HCO3-] 10 mmol/L [K+] 6 mmol/L

pCO2 23 mmHg [Cl-] 93 mmol/L

[Glucose] 720 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

1

Page 25: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Which acid-base disorder?

pH 7.23 [Na+] 132 mmol/L

[HCO3-] 10 mmol/L [K+] 6 mmol/L

pCO2 23 mmHg [Cl-] 93 mmol/L

[Glucose] 720 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

STEP 1: low pH acidosis

STEP 2: low [HCO3-] metabolic acidosis

1

Page 26: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Compensation?

pCO2 = 1.5 x [HCO3-] + 8 ( 2) (last 2 digits of pH)

pCO2 = 1.5 x 10 + 8 ( 2) (23)

pCO2 = 23 ( 2) (23)

pH 7.23 [Na+] 132 mmol/L

[HCO3-] 10 mmol/L [K+] 6 mmol/L

pCO2 23 mmHg [Cl-] 93 mmol/L

[Glucose] 720 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

metabolic acidosis with

respiratory compensation

1

Page 27: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Which acid-base disorder?

pH 7.23 [Na+] 132 mmol/L

[HCO3-] 10 mmol/L [K+] 6 mmol/L

pCO2 23 mmHg [Cl-] 93 mmol/L

[Glucose] 720 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

Which cause?

1

STEP 1: low pH acidosis

STEP 2: low [HCO3-] metabolic acidosis

Page 28: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

pH 7.23 [Na+] 132 mmol/L

[HCO3-] 10 mmol/L [K+] 6 mmol/L

pCO2 23 mmHg [Cl-] 93 mmol/L

[Glucose] 720 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

STEP 3: calculate the plasma anion gap

1

Which acid-base disorder?

Which cause?

STEP 1: low pH acidosis

STEP 2: low [HCO3-] metabolic acidosis

Page 29: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

STEP 3: calculate the plasma anion gap!

(difference between “measurable cations” and “measurable anions”)

[Na+] – ([HCO3-] + [Cl-]) normal 12

OR

([Na+] + [K+]) – ([HCO3-] + [Cl-]) normal 16

METABOLIC ACIDOSIS

Acid-base pathophysiology

Page 30: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

pH 7.23 [Na+] 132 mmol/L

[HCO3-] 10 mmol/L [K+] 6 mmol/L

pCO2 23 mmHg [Cl-] 93 mmol/L

[Glucose] 720 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

[Na+] – ([HCO3-] + [Cl-]) = 132 – (10 + 93) = 29

1

STEP 3: calculate the anion gap

Which acid-base disorder?

Which cause?

STEP 1: low pH acidosis

STEP 2: low [HCO3-] metabolic acidosis

Page 31: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

pH 7.23 [Na+] 132 mmol/L

[HCO3-] 10 mmol/L [K+] 6 mmol/L

pCO2 23 mmHg [Cl-] 93 mmol/L

[Glucose] 720 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

[Na+] – ([HCO3-] + [Cl-]) = 132 – (10 + 93) = 29

high anion gap

metabolic acidosis

1

STEP 3: calculate the anion gap

Which acid-base disorder?

Which cause?

STEP 1: low pH acidosis

STEP 2: low [HCO3-] metabolic acidosis

Page 32: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Causes

KUSSMALE

high anion gap METABOLIC ACIDOSIS

Acid-base pathophysiology

Page 33: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

DIABETIC KETO-ACIDOSIS

UREMIA

SALICYLATE INTOXICATION

STARVATION KETO-ACIDOSIS

METHANOL INTOXICATION

ALCOHOLIC KETO-ACIDOSIS

LACTATE ACIDOSIS

ETHYLENE GLYCOL INTOXICATION

high anion gap METABOLIC ACIDOSIS

Acid-base pathophysiology

KUSSMALE

Page 34: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Which high anion gap metabole acidose?

KUSSMALE

pH 7.23 [Na+] 132 mmol/L

[HCO3-] 10 mmol/L [K+] 6 mmol/L

pCO2 23 mmHg [Cl-] 93 mmol/L

[Glucose] 720 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

1

Page 35: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Which high anion gap metabole acidose?

KUSSMALE

Look for ketonuria!

pH 7.23 [Na+] 132 mmol/L

[HCO3-] 10 mmol/L [K+] 6 mmol/L

pCO2 23 mmHg [Cl-] 93 mmol/L

[Glucose] 720 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

1

Page 36: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Which high anion gap metabole acidose?

KUSSMALE

clinical signs of dehydration,

potential tissue hypoxia

Analyse lactate level (blood gas analysis, central lab)

pH 7.23 [Na+] 132 mmol/L

[HCO3-] 10 mmol/L [K+] 6 mmol/L

pCO2 23 mmHg [Cl-] 93 mmol/L

[Glucose] 720 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

1

Page 37: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Which high anion gap metabolic acidosis?

KUSSMALE

pH 7.23 [Na+] 132 mmol/L

[HCO3-] 10 mmol/L [K+] 6 mmol/L

pCO2 23 mmHg [Cl-] 93 mmol/L

[Glucose] 720 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

1

Page 38: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

DIABETIC KETO-ACIDOSIS

UREMIA

SALICYLATE INTOXICATION

STARVATION KETO-ACIDOSIS

METHANOL INTOXICATION

ALCOHOLIC KETO-ACIDOSIS

LACTATE ACIDOSIS

ETHYLENE GLYCOL INTOXICATION

CAVE: high lactate and ketonuria are NON SPECIFIC!

Acid-base pathophysiology

ketonuria

ketonuria, high lactate

ketonuria

ketonuria

lactate

lactate?

Page 39: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

DIABETIC KETO-ACIDOSIS

UREMIA

SALICYLATE INTOXICATION

STARVATION KETO-ACIDOSIS

METHANOL INTOXICATION

ALCOHOLIC KETO-ACIDOSIS

LACTATE ACIDOSIS

ETHYLENE GLYCOL INTOXICATION

CAVE: high lactate and ketonuria are NON SPECIFIC!

Acid-base pathophysiology

Consider patient history

+ other lab values

ketonuria

ketonuria, high lactate

ketonuria

ketonuria

lactate

lactate?

Page 40: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

DIABETIC KETO-ACIDOSIS

UREMIA

SALICYLATE INTOXICATION

STARVATION KETO-ACIDOSIS

METHANOL INTOXICATION

ALCOHOLIC KETO-ACIDOSIS

LACTATE ACIDOSIS

ETHYLENE GLYCOL INTOXICATION

CAVE: high lactate and ketonuria are NON SPECIFIC!

Acid-base pathophysiology

ketonuria

ketonuria, high lactate

ketonuria

ketonuria

lactate

lactate?

• serum salicylate > 40 mg/dL

• often mixed acid base disorder:

metabolic acidosis + respiratory alkalosis

Page 41: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Case 2

22-year old student, no relevant medical history

found at home after being missed for a day, slight drunken

appearance, disorientated in space and time

pH 7.11 [Na+] 138 mmol/L

[HCO3-] 6.8 mmol/L [K+] 6 mmol/L

pCO2 22 mmHg [Cl-] 93 mmol/L

[Glucose] 110 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

Page 42: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

2 pH 7.11 [Na+] 138 mmol/L

[HCO3-] 6.8 mmol/L [K+] 6 mmol/L

pCO2 22 mmHg [Cl-] 93 mmol/L

[Glucose] 110 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

Another high anion gap metabolic acidosis

no ketonuria

no salicylates

elevated lactate

Page 43: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

2 pH 7.11 [Na+] 138 mmol/L

[HCO3-] 6.8 mmol/L [K+] 6 mmol/L

pCO2 22 mmHg [Cl-] 93 mmol/L

[Glucose] 110 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

Another high anion gap metabolic acidosis

no ketonuria

no salicylates

elevated lactate

KUSSMALE

Page 44: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

2 pH 7.11 [Na+] 138 mmol/L

[HCO3-] 6.8 mmol/L [K+] 6 mmol/L

pCO2 22 mmHg [Cl-] 93 mmol/L

[Glucose] 110 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

Lactate acidosis.

But why?

Page 45: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

2 pH 7.11 [Na+] 138 mmol/L

[HCO3-] 6.8 mmol/L [K+] 6 mmol/L

pCO2 22 mmHg [Cl-] 93 mmol/L

[Glucose] 110 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

Lactate acidosis.

But why?

Type A hypoperfusion, hypoxia

Type B metabolic disorders, medication,

problematic clearance of lactate (CKD, liver)

D-lactate jejuno-ileal bypass, short bowel…

Page 46: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

2 pH 7.11 [Na+] 138 mmol/L

[HCO3-] 6.8 mmol/L [K+] 6 mmol/L

pCO2 22 mmHg [Cl-] 93 mmol/L

[Glucose] 110 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

Lactate acidosis.

But what if you don’t find a reasonable explanation for lactate

overproduction from history or circumstances?

Which simple additional test would you perform?

Page 47: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Calculate the OSMOLAL GAP

= measured osmolality – calculated osmolality

Acid-base pathophysiology

2 (Na+ + K+) + urea + glucose - 10

2 (Na+) + urea + glucose

2 (Na+)

6 18

6 18

Na+, K+: mEq/L ureum, glucose: mg/dL

Page 48: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

2 pH 7.11 [Na+] 138 mmol/L

[HCO3-] 6.8 mmol/L [K+] 6 mmol/L

pCO2 22 mmHg [Cl-] 93 mmol/L

[Glucose] 110 mg/dL

osmolality 336 mOsm/L [Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

Calculate the OSMOLAL GAP

= measured osmolality – calculated osmolality

= 336 – 293

OSMOLAL GAP > 10

Page 49: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

OSMOLAL GAP > 10

Consider presence of “abnormal osmoles”, such as

ethanol

isopropyl alcohol

methanol high anion gap acidosis

ethylene glycol high anion gap acidosis

Acid-base pathophysiology

Page 50: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

ETHYLENE GLYCOL INTOXICATION

Oxalate crystal formation in urine

BUT late (and aspecific) finding

Acid-base pathophysiology

Page 51: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

2 pH 7.11 [Na+] 138 mmol/L

[HCO3-] 6.8 mmol/L [K+] 6 mmol/L

pCO2 22 mmHg [Cl-] 93 mmol/L

[Glucose] 110 mg/dL

[Creatinine] 2.6 mg/dL

[Urea] 70 mg/dL

Another high anion gap metabolic acidosis

no ketonuria

no salicylates

elevated lactate

WHY?

KUSSMALE

Page 52: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

ETHYLENE GLYCOL INTOXICATION

Acid-base

Page 53: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Case 3

47 year old diabetic patient admitted to the emergency

room because of symmetrical weakness in the legs

History of hypertension treated with Aldactone®

(spironolactone) en Tritace® (ramipril) since 2006

Page 54: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Case 3

Page 55: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Hypokalemia: pathogenesis

LOW POTASSIUM INTAKE

HIGH POTASSIUM LOSS

SHIFT TO INTRA-CELLULAR COMPARTMENT

Page 56: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Hypokalemia: pathogenesis

HIGH POTASSIUM LOSS

RENAL or EXTRA-RENAL (GI/SKIN)

HOW TO DISTINGUISH?

Page 57: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Case 3

Page 58: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Case 3

URINE POTASSIUM IS LOW

GI or SKIN LOSS? SHIFT? LOW INTAKE?

Page 59: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Case 3

TRANSTUBULAR POTASSIUM GRADIENT

TTKG = [Urine [K] ÷ (Urine osmolality / Plasma osmolality)] ÷ Plasma [K]

TTKG is an estimation of how the kidneys handle potassium.

In case of hypokalemia, expected TTKG < 3

In case of hyperkalemia, expected TTKG > 10

If NOT, a primary RENAL CAUSE should be suspected.

Page 60: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Hypokalemia: pathogenesis

HIGH RENAL POTASSIUM LOSS

DIURETICS

carbonic anhydrase inhibitors (acetazolamide)

lisdiuretics (furosemide, bumetanide)

thiazides (hydrochloorthiazide, chloortalidon)

osmotic diuretics

MECHANISM

- high flow and sodium delivery to the

“DISTAL K+ SECRETORY SYSTEM”

- lowering of ECF volume RAAS high aldosterone

inhibitie Na+ reabsorptie

door blokkade Na+ transport

in specifieke nefronsegmenten

DIURETICA

30

Page 61: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

NON-REABSORBABLE ANIONS in glomerular filtrate

keep Na+ in tubular lumen

higher distal Na+ delivery

bv.

HCO3- in case of high GI fluid loss

in case of proximal RTA (type 2)

β-hydroxybutyric acid in diabetic keto-acidosis

Hippuric acid in toluene-poisoning (glue-sniffing)

Hypokalemia: pathogenesis

HIGH RENAL POTASSIUM LOSS

Page 62: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

MINERALOCORTICOID EXCESS SYNDROMES

primair (hyper)aldosteronism (Conn’s syndrome)

Cushing syndrome (excess of glucocorticoids)

licorice, glycyrrhetinic acid

renovascular disease

Na+ balans: RAAS

65

Hypokalemia: pathogenesis

HIGH RENAL POTASSIUM LOSS

Page 63: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

RENAL TUBULAR DEFECTS

Bartter’s syndrome (defect NKCC2 mimics loop diuretic)

Gitelman’s syndrome (defect NCC mimics thiazide)

RTA (type 1 en 2)

Liddle’s syndrome

Liddle’s syndrome (autosomal dominant)

Overexpression of ENac in principal cells

Na+ retention

K+ secretion

Mimics aldosteronism with hypertension,

hypokalemia en alkalosis, but without high

aldosteron levels

(pseudo-aldosteronism)

Hypokalemia: pathogenesis

HIGH RENAL POTASSIUM LOSS

Page 64: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Hypokalemia: pathogenesis

HIGH RENAL POTASSIUM LOSS

Further clinical differentiation based on

assessment of volume status.

In the present case, physical examination

suggested

mineralocorticoid excess syndrome.

Page 65: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Case 3

65

Page 66: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Acid-Base DIAGNOSTIC FLOW-CHART

STEP 1: interpretet the pH!

METABOLIC ALKALOSIS

STEP 2: define metabolic vs. respiratory!

STEP 3: intake/generation of alkali?

YES

NO

STEP 4: assess ECF

volume status!

Zuur-base: pathogenese/oorzaken

47

Oorzaken

milk-alkali syndroom vroeger: melkinfuzen, CaCO3 voor peptisch maaglijden

nu: CaCO3 (of andere alkali) “over the counter”

bicarbonaat infuus

bij oxidatie van zouten van zwakke zuren exogeen of endogeen tijdens herstel lactaat of keto-acidose

NaA + H2CO3 HA + NaHCO

ALKALOSE ontstaat vooral wanneer renale eliminatie van

HCO3- gestoord is: hypokalemie, hypochloremie, hypovolemie.

metabole alkalose door inname/vorming van alkali

ECV contraction

gastro-intestinal

renal

ECV expansion

mineralocorticoids

Page 67: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Zuur-base: pathogenese/oorzaken

38

Oorzaken Hoe differentiëren?

GASTRO-INTESTINAAL

RENAAL: nierinsufficiëntie, RTA

DILUTIE

1. Anamnese, KO, dossier (nierinsufficiëntie, dilutie)

2. Urine pH > 6.0 RTA (meestal type 1)

3. Urine pH < 6.0: meet urinaire anion gap ([Na+] + [K+] – [Cl-])

urinaire anion gap > -10 RTA (meestal type 2)

urinaire anion gap < -20 gastro-intestinaal

STAP 4: bekijk urine pH en bepaal urinaire anion gap!

non anion gap METABOLE ACIDOSE

Acid-base DIAGNOSTIC FLOW-CHART

STEP 1: interpret the pH!

METABOLIC ACIDOSIS

STEP 2: define metabolic vs. respiratory!

STEP 3: calculate plasma anion gap!

HIGH GAP

NON GAP

Zuur-base: pathogenese/oorzaken

14

Oorzaken

KUSSMALE

high anion gap METABOLE ACIDOSE

STEP 4: watch urine pH &

calculate urinary anion gap!

Page 68: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Acid-base DIAGNOSTIC FLOW-CHART

STEP 1: interpret the pH!

RESPIRATORY ACIDOSIS

STEP 2: define metabolic vs. respiratory!

STEP 3: differentiate between central causes, nerve

conduction problems and peripheral causes

Zuur-base: pathogenese/oorzaken

59

STAP 3: differentieer tussen centrale oorzaken,

geleidingsproblemen en perifere oorzaken!

RESPIRATOIRE ACIDOSE

respiratoire acidose door centraal probleem

Hyponatremie: symptomen

39

Symptomen van hersenoedeem en intracraniële overdruk

bradypnee (Cheyne-Stokes-ademhaling)

Zuur-base: pathogenese/oorzaken

60

RESPIRATOIRE ACIDOSE

respiratoire acidose door geleidingsprobleem

Zuur-base: pathogenese/oorzaken

61

RESPIRATOIRE ACIDOSE

respiratoire acidose door perifere oorzaken

)

Zuur-base: pathogenese/oorzaken

62

RESPIRATOIRE ACIDOSE

respiratoire acidose door perifere oorzaken

Page 69: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Acid-base DIAGNOSTIC FLOW-CHART

STEP 1: interpret the pH!

RESPIRATORY ALKALOSIS

STEP 2: define metabolic vs. respiratory!

STEP 3: differentiate between central,

peripheral and iatrogenic causes

Zuur-base: pathogenese/oorzaken

68

STAP 3: differentieer tussen centrale oorzaken,

perifere en iatrogene oorzaken!

RESPIRATOIRE ALKALOSE

respiratoire alkalose door centrale oorzaken

Zuur-base: pathogenese/oorzaken

69

RESPIRATOIRE ALKALOSE

respiratoire alkalose door perifere oorzaken

Zuur-base: fysiologie

• CPG in hersenstam genereert

het normale (onbewuste) adem-

halingsritme.

• Wijzigingen in pCO2, pH en pO2

worden gedetecteerd door

perifere en centrale

chemoreceptoren.

• Dit leidt tot efferente signalen

die diepte en frequentie van

ademhaling wijzigen.27

Zuur-base: pathogenese/oorzaken

70

RESPIRATOIRE ALKALOSE

respiratoire alkalose door iatrogene oorzaken

Page 70: Blood Gas analysis: a practical approach - Wild Apricot · Blood Gas analysis: a practical approach Advanced course in General Internal Medicine KU Leuven session, May 25 2012

Thank you!