bipolar junction transistor

58
Bipolar Junction Transistor Electronic Circuits Electronic Circuits CHO, Yong Heui CHO, Yong Heui

Upload: yong-heui-cho

Post on 03-Dec-2014

1.789 views

Category:

Technology


5 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Bipolar Junction Transistor

Bipolar JunctionTransistor

Electronic CircuitsElectronic Circuits

CHO, Yong HeuiCHO, Yong Heui

Page 2: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

2

1. Physical operation

Device structure

Page 3: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

3

Mode EBJ CBJ

Cutoff Reverse Reverse

Active Forward Reverse

Rev. Act. Reverse Forward

Saturation Forward Forward

1. Physical operation

Device structure

Page 4: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

4

1. Physical operation

Operation in active mode

Page 5: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

5

1. Physical operation

Operation in forward active mode

Page 6: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

6

1. Physical operation

Minority carrier profile

Page 7: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

7

1. Physical operation

Collector current

Page 8: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

8

For short Emitter

LP

IB2 = Qn/τb

1

1 1

Qn = AE·q·1/2·np(0)·W = (AE·q·W·ni2/2NA)evBE/VT

IB = IB1 + IB2 = IC/βDp

Dn

NA

ND

WB

Lp

W2

2Dnτbβ = +[ ]

-1: common emitter current gain

1. Physical operation

Base current

Page 9: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

9

: common base current gain

α = αF, β = βF : at forward active

1. Physical operation

Emitter current

Page 10: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

10

1. Physical operation

Equivalent model

Page 11: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

11

1. Physical operation

Ebers-Moll model

Page 12: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

12

Ebers-Moll Model at saturation Mode

1. Physical operation

Ebers-Moll model

Page 13: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

13

Saturation Mode

1. Physical operation

Saturation mode

Page 14: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

14

1. Physical operation

PNP transistor

Page 15: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

15

2. I-V

Example

Page 16: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

16

2. I-V

Common-base

Page 17: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

17

iC = ISeVBE/VT·(1+vCE/VA)

∂iC

∂vCE

ro ≡vBE=constant

-1

2. I-V

Common-emitter

Page 18: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

18

βdc = ICQ/IBQ

βac = ΔiC/ΔiB : vCE=constant

2. I-V

Current gain

Page 19: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

19

βforced = ICsat/IB

βforced < βF

2. I-V

Saturation voltage

Page 20: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

20

∂vCE

∂iCRCEsat ≡ iB=IB

iC=ICsat

2. I-V

Saturation resistance

Page 21: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

21

∂vCE

∂iCRCEsat ≡ iB=IB

iC=ICsat

2. I-V

Saturation resistance

Page 22: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

22

vO = vCE = VCC - RCiC

vO = VCC - RC·ISevI/VT : at active

ICsat = (VCC – VCEsat)/RC

0 < vI < 0.5 : Cutoff (switch off)

: at saturation

Av ≡dvo

dvi vI=VBE

= -(1/VT)·ISeVBE/VT·RC

= -ICRC/VT = -VRC/VT

VRC = VCC - VCE

For max gain and swing

3. Amplifier

Large signal

Page 23: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

23

vCE = VCC-RCiC

iC = VCC/RC – vCE/RC

vBE = VBB-RBiB

iB = VBB/RB – vBE/RB

3. Amplifier

Graphical analysis

Page 24: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

24

3. Amplifier

Graphical analysis

Page 25: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

25

IB(EOS)

3. Amplifier

Bias point

Operation as switch

Page 26: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

26

4. BJT circuits

Example

Page 27: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

27

-

4. BJT circuits

Example

Page 28: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

28

4. BJT circuits

Example

Page 29: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

29

4. BJT circuits

Example

Page 30: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

30

RE : negative feedback

5. Bias

Discrete-circuit biasing

Page 31: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

31

Biasing using a collector-to-base feedback resistor

VCB = IBRB = IERB/(β+1)

Small RB small swing

5. Bias

Discrete-circuit biasing

Page 32: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

32

I = IREF = (VCC + VEE – VBE)/R

Large RB 사용가능

5. Bias

Current source biasing

Page 33: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

33

6. Small-signal operation

Bias point

Page 34: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

34

6. Small-signal operation

Transconductance

Page 35: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

35

Small signal Emitter resistance : re

Voltage Gain

vc = -icRC = gmvbeRC = (-gmvbe)RC Av = vc/vbe = -gmRC = -ICRC/VT

6. Small-signal operation

Input resistance

Page 36: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

36

6. Small-signal operation

Hybrid model

Page 37: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

37

6. Small-signal operation

T model

Page 38: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

38

6. Small-signal operation

Example

Page 39: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

39

6. Small-signal operation

Example

Page 40: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

40

Av = vc/vbe = -gm(RC//rO)

6. Small-signal operation

Output resistance

Page 41: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

41

Bypass Capacitor : CE

Coupling Capacitor : CC1, CC2

At DC analysis

7. BJT amplifier

Common-emitter amplifier

Page 42: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

42

Rib = rπ Rin = vi/ii = RB//Rib ≒ rπ vsigvi =Rin

Rin+Rsig

vsig= rπ

rπ+Rsig

vi = vπvO = -gmvπ(RC∥RL∥rO)

Av = -gm(RC∥RL∥rO) Avo = -gm(RC∥rO) ≒ -gmRC (rO≫RC)

Rin

Rin+Rsig

AvGv =

rπ+Rsig

≒ - gm(Rc∥RL∥rO) ≒ Av (rπ≫Rsig)

Rout = RC∥rO ≒ RC

Ais = ios/ii = -gmRin ≒ -gmrπ= -β

7. BJT amplifier

Small signal circuit

Page 43: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

43

vi

re+Re

vo = -ic(RC∥RL) = -αie(RC∥RL) = -α(RC∥RL)

Rin = RB//Rib Rib = vi/ib = (β+1)(re+Re) ≒ rπ(1+gmRe)

rO = ∞

Av ≒ -(RC∥RL)/(re+Re)

Avo = -αRC/(re+Re) ≒ -gmRC/(1+gmRe) Rout = RC∥rO ≒ RC

Ais = ios/ii = -αie/(vi/Rin) = -αRinie/vi = -α(RB∥Rib)/(re+Re) = -α(β+1)(re+Re)/(re+Re) = -β

ie = vi/(re+Re)

7. BJT amplifier

Emitter resistance

Page 44: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

44

Rin

Rin+Rsig

AvGv =

Rin

Rin+Rsig

= -α(RC∥RL)

re+Re ≒ -

β(RC∥RL)

Rsig+(β+1)(re+Re)

: less sensitive to β

vπ = vi re

re+Re

11+gmRe

≒ vi

Rib is increaed by the factor (1+gmRe)

The voltage gain is reduced by the factor (1+gmRe)

For the same nonlinear distortion, vi can be increased by the factor (1+gmRe)

Overall voltage gain is less sensitive to β

High frequency response is improved.

Effects of negative feedback through Re

7. BJT amplifier

Emitter resistance

Page 45: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

45

vi

re+Re

vo = -αie(RC∥RL) = α(RC∥RL) ie = -vi/reRin = re

Av = gm(RC∥RL) Avo = gmRC Rout = RC

Ais = ios/ii = -αie/(-ie) = αvi

vsig

Rin

Rin+Rsig

re

re+Rsig

==

re

re+Rsig

AvGv = = gm(RC∥RL)

re

re+Rsig

α(RC∥RL)

re+Rsig

=

7. BJT amplifier

Common base amplifier

Page 46: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

46

Rib = vb/ib = (β+1)[re+(ro∥RL)]

Rin = RB∥Rib

7. BJT amplifier

Emitter follower

Page 47: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

47

vo/vsig ≒RL

[Rsig/(β+1)] +re+RL

RB≫Rsig, ro≫RL

Rout = ro∥Rsig∥RB

re + β+1[ ] Rsig∥RB

re + β+1≒

Gvo =ro

[(Rsig∥RB)/(β+1)] +re+roRsig+R

B

RB

7. BJT amplifier

Emitter follower

Page 48: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

48

8. BJT capacitance

Internal capacitance

Page 49: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

49

hfe : CE short-circuit current gain

Ib = Vπ· (1/rπ//sCπ//sCμ) Ic = Vπ· (gm - sCμ)

hfe ≡ Ic/Ib = 1/rπ+ sCπ+ sCμ

gm - sCμ

1 + s(Cπ+Cμ)rπ

gmrπ≒1 + s/ωβ

β0=: STC LPF

(Cπ+Cμ)rπ

1ωβ = ωT = β0·ωβ =

Cπ+Cμ

gm fT = 2π(Cπ+Cμ)

gm

8. BJT capacitance

High frequency model

Page 50: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

50

High level Injection

8. BJT capacitance

Collector current

Page 51: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

51

RB//rπ

RB//rπ+Rsig

AM = - gm(Rc∥RL∥rO)

9. Frequency response

Frequency bands

Page 52: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

52

9. Frequency response

High frequency model

Page 53: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

53

Iμ = sCμ(Vπ-Vo)

= sCμ(Vπ+ gmRL’Vπ)

= sCμ(1 + gmRL’)Vπ

= sCeqVπ

Ceq = sCμ(1 + gmRL’)

1 + s/ω0

1V’sigVπ =

ω0 = 1/CinRsig’

9. Frequency response

High frequency response

Page 54: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

54

1 + s/ω0

1Vo

Vsig

RB

RB + Rsig

AM =1 + s/ω0

1= -

rπ+rx+(RB∥Rsig)

rπ·gmRL’

9. Frequency response

High frequency response

Page 55: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

55

ωP1

ss+ ωP2

ss+ ωP3

ss+

Vo

Vsig

= - AM

High Freq. gain X 3 poles

9. Frequency response

Low frequency response

Page 56: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

56

(RB//rπ)+Rsig+ sCC1

1

RB//rπVsigVπ =Vo = - gmVπ(Rc∥RL)

(RB//rπ)+Rsig

RB//rπ gm(Rc∥RL)

CC1[(RB//rπ)+Rsig]1

s +

s ωP1

ss+

Vo

Vsig

= - AM= -

9. Frequency response

Capacitance effect

Page 57: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

57

(RB//Rsig)+(β+1)(re sCE

11

VsigIb =Vo = - βIb(Rc∥RL)

Vo

VsigωP2

ss+

= - AM= -

)

RB

RB + Rsig

CE[re+

1s +

s

RB//Rsig

β+1 ]

RB

RB + Rsig

β(Rc∥RL)

(RB//Rsig)+(β+1)re

9. Frequency response

Capacitance effect

Page 58: Bipolar Junction Transistor

Electronic CircuitsElectronic Circuits

EM Wave EM Wave LabLab

58

(RB//rπ)+Rsig

RB//rπVsigVπ = Vo = - gmVπ

sCC2

1RC

++R

L

RL

RC

(RB//rπ)+Rsig

RB//rπ gm(Rc∥RL)

CC2(RC+RL)1

s +

s ωP3

ss+

Vo

Vsig

= - AM= -

9. Frequency response

Capacitance effect