biophysical strategies for graded and dynamic actuation of...

20
Biophysical strategies for graded and dynamic actuation of cellular signaling NSF Workshop on Biologically Enabled Wireless Networks Arlington, VA July 19-20, 2011 Sanjay Kumar, M.D., Ph.D. Department of Bioengineering University of California, Berkeley

Upload: others

Post on 06-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Biophysical strategies for graded and dynamic actuation of cellular

    signaling

    NSF Workshop on Biologically Enabled Wireless Networks

    Arlington, VA July 19-20, 2011

    Sanjay Kumar, M.D., Ph.D. Department of Bioengineering

    University of California, Berkeley

  • Cells are actuators that can convert physical inputs into biochemical outputs

    Discher et al., Science (2005)

    Wang et al., Nature (2005) ~15 min

    Shu Chien, Roger Tsien, Michael Berns

  • Strategies to actuate cell behavior with biophysical inputs

    •  Nanomagnetic activation of receptor-mediated signaling

    MAGNETIC INPUT à BIOCHEMICAL OUTPUT

    •  Laser nanosurgery to probe and control cell shape and mechanics

    OPTICAL INPUT à MECHANICAL OUPUT

  • Nanomagnetic activation of receptor-mediated signaling

    MAGNETIC INPUT à BIOCHEMICAL OUTPUT

  • Receptor clustering as a critical event in signal transduction

    Chen, Nature Nanotech (2008)

    Binding and clustering are often coupled.

    Can we introduce control by uncoupling these processes?

  • http://www.med.osaka-u.ac.jp/pub/molonc/www/eng/ achievements/03.html

    http://microbiology2009.wikispaces.com/Histamines--What+ They+Do+%26+What+Anti-Histamines+Do+to+Stop+Them

    CORE CONCEPT: Can we use magnetic forces to control clustering and hence signal

    transduction?

    -  Load FceRI receptors with anti-DNP IgE

    -  Treat cells with magnetic nanoparticles coated with DNP

    -  Cluster particles using magnetic needle

  • Monovalent (DNP-Lys)

    Multivalent (DNP-HSA)

    SOLUBLE receptor agonist

    IgE-based signaling depends on ligand valency

    NANOPARTICLE-BOUND receptor agonist

    Decreasing coating density

    Mannix,* Kumar* et al., Nature Nanotech (2008)

  • Magnet activation induces nanoparticle aggregation and signal activation

    Mannix,* Kumar* et al., Nature Nanotech (2008)

  • Dynamic magnetic inputs produce dynamic biochemical outputs

    Mannix,* Kumar* et al., Nature Nanotech (2008)

  • Laser nanosurgery to probe and control cell shape and mechanics

    OPTICAL INPUT à MECHANICAL OUPUT

  • Parsons et al., Nat. Rev. Cell. Mol. Biol. (2010)

    Castella et al., J Cell Sci (2010)

    Stress fibers, nonmuscle myosin II, and tensional homeostasis

    Goffin et al., J Cell Biol (2006)

  • The femtosecond laser nanoscissor Inspired by: M. Berns (UCSD), K. Konig (Jena), C. Reider (SUNY)

    Shen et al., Mech Chem Biosys (2005)

  • Photoablation of a living stress fiber

    30 sec 10 µm

    Kumar et al., Biophys J (2006)

    Inspired by Michael Berns, Conly Rieder, Karsten König, many others

  • Kumar et al., Biophys J (2006)

    Time (sec)

    Dis

    tanc

    e re

    tract

    ed (µ

    m)

    Control

    ROCK inhibitor

    MLCK inhibitor

    Time (sec)

    Dis

    tanc

    e re

    tract

    ed (µ

    m)

  • Location, location, location: Different myosin activators control different stress fibers

    ROCK: Central SFs MLCK: Peripheral SFs

    Totsukawa et al., JCB (2000) Katoh et al., AJP Cell Physiol (2001) Katoh and Ookawara, Genes to Cells (2007)

  • Do central and peripheral stress fibers differ in their viscoelastic

    retraction properties and contributions to cell shape?

  • Central SF Ablation Peripheral SF Ablation

    0 5 10 15 20 25 300

    2

    4

    6 !U373%Central!U373%Peripheral!U87%Central!U87%Peripheral

    Retraction1distance1(m)

    Time1(s)Combined)Image

    Tanner, Boudreau, Bissell, and Kumar, Biophysical Journal (2010)

    FIBER TYPE

    “ELASTICITY”

    “PRESTRAIN”

    SHAPE STABILITY

    CONTRIBUTION

    Peripheral

    Low

    High

    High

    Central

    High

    Low

    Low

  • !

    0

    10

    20

    30

    %&Area&Change

    0

    10

    20

    30

    untreated%&Area&Change

    **

    *

    *

    *

    *

    0

    10

    20

    30 U373

    %&Area&Change U87

    untreated

    U87

    ML87

    untreated ML87

    Y827632

    Y827632Central Peripheral

    U373

    A

    B

    Contracted&Area Severed&Fiber!

    0

    10

    20

    30

    %&Area&Change

    0

    10

    20

    30

    untreated%&Area&Change

    **

    *

    *

    *

    *

    0

    10

    20

    30 U373

    %&Area&Change U87

    untreated

    U87

    ML87

    untreated ML87

    Y827632

    Y827632Central Peripheral

    U373

    A

    B

    Contracted&Area Severed&Fiber

    Severing a central fiber in the absence of peripheral fibers leads to cell retraction

    Tanner, Boudreau, Bissell, and Kumar, Biophysical Journal (2010)

  • SUMMARY •  Receptor-mediated signaling can be controlled in a dynamic and molecularly-specific fashion using magnetic inputs

    •  Femtosecond laser nanosurgery can be used to investigate cellular mechanics at the sub-micron scale and to manipulate cell shape

    FUTURE CHALLENGES

    •  How do we obtain biochemically specific outputs from nonspecific physical inputs?

    •  Can we build orthogonality into these systems?

    •  How can we incorporate these concepts into devices? [Multiplexing, throughput, automation, … ]

  • Acknowledgements Amit Pathak, Ph.D. Badri Ananthanarayanan, Ph.D. Ching-Wei Chang, Ph.D. Sebastian Rammensee, Ph.D. Nithya Srinivasan, Ph.D. Kandice Tanner, Ph.D. Albert Keung Yushan Kim Joanna MacKay Anuj Patel Theresa Ulrich Vaibhavi Umesh Sophie Wong Diana Guo Charmaine Ramos Nanomagnetics: R. Mannix, D. Ingber (CHB/HMS), M. Prentiss (Harvard SEAS)

    kumarlab.berkeley.edu

    Collaborators: Tejal Desai (UCSF) David Schaffer (UCB) Mina Bissell (LBNL) Brent Reynolds (U Florida) Greg Foltz (Swedish Hospital Seattle)

    NSF CMMI 072742 NSF CMMI 1055965 (CAREER) NIH 1U54CA143836-01 (PSOC) NIH 1DP2OD004213 (New Innovator Award) Beckman Young Investigator Award ARO W911NF-09-1-0507 (PECASE)