biomedical engineering junior sophister handbook 2013 - … bio handbook.pdfbiomedical engineering...

44
Biomedical Engineering Junior Sophister Handbook 2013 - 2014 Neural Engineering Cardiovascular Biomaterials Regenerative Musculoskeletal Medicine

Upload: others

Post on 21-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

               

Biomedical Engineering Junior Sophister Handbook

2013 - 2014

 

Neural Engineering Cardiovascular Biomaterials Regenerative Musculoskeletal

Medicine

Page 2: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

1

MSc

in B

ioen

gine

erin

g |

D irector’s Welcome  

Welcome  to  the  Junior  Sophister  Year  in  Biomedical  Engineering    

As  students  of  the  Biomedical  Engineering  stream  of  School  of  Engineering,  you  are  among  the  select  few  who  have   joined  the  biomedical  engineering  community  at  Trinity  College  Dublin  for  an  education  that  will  enable  you  to  become  the  next  leaders  in  the  field  of  biomedical  engineering.  

Some   of   the   most   exciting   work   in   engineering   today   takes   place   at   the   intersection   of  disciplines.  Research   in  biomedical  engineering   is  an  example  of  where  the  biological,  physical  and  digital  worlds  intersect  and  where  you  have  the  opportunity  to  have  a  profound  impact  on  society.  

Engineering  is  not  just  about  crunching  numbers  or  solving  problems;  it  is  seeing  how  problems  affect  society  and  how  society  actually  changes  because  of  the  solutions  you  provide.  You  have  an  opportunity   here   as   students   in   biomedical   engineering   to   come   involved   in   that   community,   so  that,  as  you  move   into  your  professional   life,  you  will  become  a   leader  who  has  an   impact  on   the  human  condition.    To  see  this  impact,  I  recommend  you  watch  the  following  video:  http://www.embs.org/member-­‐communities/students/where-­‐engineering-­‐meets-­‐imagination  

You  are  part  of  a  discipline  that  offers  great  opportunities  for  learning  and  advancement  within  Ireland’s  premier  university.    You  are  now  part  of  the  Trinity  Centre  for  Bioengineering.  The  Centre  has  over  20  academics  from  all  School  of  Engineering,  School  of  Medicine,  Dublin  Dental  University  Hospital,  School  of  Natural  Sciences  and  has  over  25  postdoctoral,  75  PhD  and  28  MSc  researchers.      All   of   these   researchers   are   involved   in   exciting   new   developments   in   biomedical   engineering  ranging   from  developing   new  materials   for   use   in   cardiac   care,   analysing  minute   electrical   signals  changes   in   the   brain   for   neurological   diagnosis   to   artificially   growing   new   tissue   for   organ  transplantation.  The  Trinity  Centre   for  Bioengineering  has  extensive  clinical   research   in  all   the   five  teaching  hospitals   in  Dublin  (St  James’s  Hospital,  Tallaght  Hospital,  St  Vincent’s  University  Hospital,  The   Mater   Misericordiae   Hospital   and   Beaumont   Hospital).   As   member   of   this   biomedical  community,  use  the  opportunity  to  learn  from  activities  in  the  Trinity  Centre  for  Bioengineering,  so  that  you  can  relate  your  course  material  to  the  real  clinical  challenges  that  are  being  researched  and  the  solutions  being  generated.  

The   Trinity   Centre   for   Bioengineering   is   based   in   the   Trinity   Biomedical   Sciences   Centre   and  many   of   its   laboratories   are   located   here.     You   will   be   sent   emails   of   seminars,   news   and   other  developments.  Keep  up  to  date  with  these  and  your  studies  will  become  more  fruitful  and  relevant.  

This   handbook   contains   information   regarding   the   course   including   modules,   assessment,  course  regulations,  faculty  members  and  important  contact  details.    

On  behalf  of  all  the  lecturers  and  staff,  I  would  like  to  wish  you  every  success.  We  look  forward  to  you  becoming  part  of  the  Trinity  College  Biomedical  Engineering  family  as  you  embark  on  making  your  mark  on  society  at  large.  

If  you  have  any  questions  or  comments,  please  do  not  hesitate  to  contact  us.    

 

Professor  Richard  Reilly      Course  Director  MAI  Program  in  Bioengineering        

Page 3: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

2

MSc

in B

ioen

gine

erin

g |

TABLE OF CONTENTS  

 Welcome  from  Program  Director               1    Table  of  Contents                   2    Mission  Statement                   3    Course  Structure,  Annual  Schedule  &  Dates  of  Examinations         4    JS  Modules  and  Timetables  and  Key  Dates             10        College  Regulations                   29    

                   College  Information                       32  

 

   

 

Page 4: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

3

MSc

in B

ioen

gine

erin

g |

B iomedical Engineering – Mission Statement The  Trinity  Centre  for  Bioengineering  (TCBE)  in  the  School  of  Engineering  at  Trinity  College  Dublin  carries  out  world  class  research  in  five  research  themes:  Biomaterials,  Regenerative  Medicine,  Musculoskeletal  Bioengineering,  Cardiovascular  Systems  and  Neural  Engineering.  These  themes  are  based  on  the  intersection  of  biomedical  science  and  engineering  and  form  the  foundation  for  advances  in  external  and  implantable  devices,  surgical  and  medical  device  design,  as  well  as  informing  clinical  studies  and  interventions  in  ageing,  neurodegeneration  and  rehabilitation.  The  Centre  provides  a  structure  to  bring  bioengineers,  basic  scientists  and  clinicians  together  to  focus  on  important  clinical  needs.    

The  TCBE  also  has  a  long  and  distinguished  tradition  in  postgraduate  education,  combining  fundamental  research  with  translation  to  clinical  practice.  The  new  Biomedical  Engineering  stream  now  extends  this  to  the  undergraduate  BA/MAI  programme  within  the  School  of  Engineering.  The  main  objective  of  this  new  stream  is  the  pursuit  of  excellence  in  teaching  and  research  in  Biomedical  Engineering  with  the  central  aim  of  producing  graduate  engineers  with  a  capacity  for  independent  thought  in  problem  solving  and  creative  analysis  &  design.  

To  achieve  this,  we  must:  

• instill  in  students  an  enthusiasm  for  the  art  and  practice  of  Biomedical  Engineering;    

• teach  engineering,  medical  sciences  and  mathematics  which  underpin  the  subject  areas  of  Biomedical  Engineering;  

• demonstrate  the  application  of  these  principles  to  the  analysis,  synthesis  and  design  of  biomedical  engineering  components  and  systems;  

• foster  the  development  of  team  working  skills;  

• encourage  students  to  exercise  critical  judgment  and  develop  communication  skills  necessary  to  make  written  and  oral  presentations  of  their  work.  

 

These  objectives  are  underpinned  by  :  

• undertaking  both  basic  and  applied  research  

• provision  of  advanced  facilities  for  students  to  undertake  graduate  research  degrees  

• the  development  of  academic  staff  in  teaching  and  research  by  ensuring  that  adequate  resources  are  available  to  assist  them    

• ensuring  that  the  research  work  is  of  the  highest  international  standard  by  participation  in  international  conferences  and  publication  in  peer-­‐reviewed  scientific  journals.  

 

In  addition,  we  must  consider:  

• the  requirements  of  the  relevant  professional  institutions  

• the  needs  of  Irish  and  European  industry  in  the  curriculum.  

Page 5: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

4

MSc

in B

ioen

gine

erin

g |

JS Modules and Timetables The  Junior  Sophister  year  is  based  on  the  general  Freshman  years  and  is  the  start  of  your  specialization  in  Biomedical  Engineering.  In  your  studies  you  should  aim  to  work  a  minimum  of  50  hours  per  week.  With  a  timetabled  schedule  of  about  25  hours  per  week,  this  means  you  should  be  planning  independent  study  of  at  least  25  hours  per  week.    This  includes  reading  course  material  prior  to  lectures  -­‐  you  should  not  expect  to  be  given  all  the  module  material  in  the  lectures  and  tutorials.  The  table  below  shows  the  JS  modules,  their  credit  value  and  the  coordinator.    

 

Code   Module  Title   ECTS   Term   Module  Coordinator  

3E1   Engineering  Mathematics  V   5   S1   Prof.  Brendan  Browne  ([email protected])  

3B2   Fluid  Mechanics   5   S1   Prof.  Craig  Meskell  ([email protected])  

3B4   Engineering  Materials   5   S1   Prof.  Kevin  O’Kelly  ([email protected])  

3B5   Mechanics  of  Machines   5   S1   Dr.  Ciaran  Simms  ([email protected])  

3C1   Signals  &  Systems   5   S1   Dr.  David  Corrigan  ([email protected])  

3BIO1   Anatomy  &  Physiology   5   S1   Prof.  Aoife  Gowran  ([email protected])  

3BIO3   Probability  Modelling   5   S1   Prof.  Anthony  Quinn  (anthony.quinn.tcd.ie)  

3E2   Numerical  Methods   5   S2   Dr.  Ciaran  Simms  ([email protected])  

3E4   Management  for  Engineers   5   S2   Prof.  Niamh  Harty  ([email protected])  

3B3   Mechanics  of  Solids   5   S2   Dr.  Bruce  Murphy  ([email protected])  

3C3   Analogue  Circuits   5   S2   Dr.  Edmund  Lalor  ([email protected])  

3BIO2   Biomedical  Device  Design  Project   5   S2   Dr.  Sonja  Hermann  ([email protected])  

 

         

Page 6: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

5

MSc

in B

ioen

gine

erin

g |

Prerequisites The  MAI  programme  is  structured  to  facilitate  delivery  of  higher-­‐level  content  through  prerequisite  modules.   The   term   ‘prerequisite’   indicates   a  module   that  must   be   completed   prior   to   engaging   a  new  one.  Only  in  exceptional  circumstances  will  a  student  be  permitted  to  progress  without  having  completed  a  prerequisite  module.  Some  of   the   fourth   year  modules   are  prerequisites   for   some  of  the   fifth-­‐year  modules  and  some  MAI  projects  in   the  different  disciplines.   In  general,   it  will   not  be  possible   to   take   fifth-­‐year   modules   or   MAI   projects   without   having   completed   the   required  prerequisites   for   these   activities   (see   module   descriptors   for   details).   Accordingly,   for   students  opting   for   a   placement   in   their   fourth   year,   or   for   those   following   Unitech/Erasmus   or   another  period   of   study   abroad,   it   will   be   necessary   to   ensure   prerequisites   are  met   for   a   suitable   set   of  modules  and  the  project  work  in  the  fifth-­‐year.  

Meeting  the  prerequisites  in  cases  where  a  student  opts  for  a  placement  in  their  fourth  year  or  for  those  following  Unitech/Erasmus  or  another  period  of  study  abroad  might  be  achieved  by:  

1. in  the  case  of  a  half-­‐year  placement,  the  student  taking  the  prerequisite  modules  for  their  intended  fifth-­‐year  modules/project  work  in  the  semester  they  spend  at  College  (this  will  generally  be  the  first  semester).  Prerequisite  modules  will,  where  possible,  be  timetabled  for  the  first  semester.  

2. in  the  case  of  a  period  of  study  abroad,  the  student  taking  modules  equivalent  to  the  prerequisites  for  their  intended  fifth-­‐year  modules/project  work  during  their  period  of  study  abroad  in  their  fourth  year  

3. by  the  student  taking  only  fifth-­‐year  modules/projects  which  do  not  have  prerequisites  

4. by  student  taking  fourth  year  prerequisite  modules  in  the  first  semester  of  their  fifth-­‐year.  However,  for  the  latter  option,  since  this  would  be  on  a  case-­‐by-­‐case  basis,  the  timetable  cannot  be  specifically  arranged  to  facilitate  this.  

Thus,  a  student  who  opts  for  a  placement  or  for  a  period  of  study  abroad  must  understand  that  this  will  influence  their  options  in  the  fifth-­‐year.  Accordingly,  a  student  intending  to  pursue  this  option  must  do  so  in  consultation  with  their  Head  of  Department  or  his/her  delegate.  In  special  circumstances,  where  a  student  can  demonstrate  to  the  module  coordinator  that  he/she  has  substantially  met  the  learning  outcomes  of  a  prerequisite  module  through  other  means,  students  may  be  allowed  to  take  the  fifth-­‐year  module  without  having  completed  the  designated  fourth  year  prerequisite(s).  

     

Page 7: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

6

MSc

in B

ioen

gine

erin

g |

Lecture and Tutorial Timetable Attendance  at  lectures  is  compulsory.            Attendance  at  laboratories  and  tutorials  is  compulsory  The  timetable  for  lectures  is  provided  below.    The  tutorial  Schedules  will  be  announced  at  the  start  of   each   semester.   Please   note   that   you  must   attend   the   particular   tutorial   sessions   to  which   you  have  been  assigned.    Students  cannot  swap  sessions  because  of  the  complexity  of  the  timetable,  the  large  numbers  in  the  year  and  the  limited  accommodation  available.    The  most  up  to  date  timetable  is  always  online  at  :  

https://www.tcd.ie/Engineering/undergraduate/pdf/JSTimetable_BIO.PDF  You  are  advised  to  check  the  online  timetable  regularly.    

 

 

 

Page 8: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

7

MSc

in B

ioen

gine

erin

g |

Laboratories Each  module   in  JS  has  one  or  two  laboratory  experiments  attached  to   it.  Students  are  expected  to  keep  a  log  book  recording  the  details  of  every  experiment  performed  and  to  write  a  technical  report  about  each  experiment.  Each  student   is  required  to  submit  her/his  report  neatly  presented  and  by  the  date  specified  to  avoid  penalty.  Guidelines  as  to  the  required  length  and  format  of  each  report  will  be  specified  by  the  lecturer  concerned.  

Laboratory  groups  and  timetable  will  be  published  at  the  beginning  of  the  semester.  Please  note  that  you   must   attend   the   particular   laboratory   sessions   to   which   you   have   been   assigned.     Students  cannot  swap  sessions  because  of  the  complexity  of  the  timetable,  the  large  numbers  in  the  year  and  the  limited  accommodation  available.  

A  no  show  at  a  lab  results  in  a  zero  mark  even  if  a  report  is  submitted.  

No  report  submitted  means  a  zero  mark  even  if  the  lab  was  attended  

Labs   cannot   be   taken   summer/autumn   if   missed   during   the   year   and   marks   for   the   annual  examinations  will  be  carried  forward  to  any  supplementals.  

 

No.   Description   Module   Staff   Location  

3   Pelton  Wheel   3B2   Prof.  Meskell   Parsons  –  Testing  Hall  

5   Vibration  Test   3B5   Dr.  Simms   Parsons  –  Testing  Hall  

7   Lead  Creep   3B4   Prof.  O’Kelly   Parsons  –  Testing  Hall  

8   Strain  Gauges   3B3   Dr.  Murphy   Parsons  –  Testing  Hall  

S1   Signal  Analysis  in  MatLab   3C1   Dr.  Corrigan   Printing  House  –  PC  Lab  

S2   Fourier  Analysis   3C1   Dr.  Corrigan   Printing  House  –  PC  Lab  

A1   Active  Filters   3C3   Dr.  Lalor   Printing  House  –  PC  Lab  

A2   Electronic  Oscillators   3C3   Dr.  Lalor   Printing  House  –  Undergrad  Lab  

       

Page 9: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

8

MSc

in B

ioen

gine

erin

g |

 

Key Dates Semester  1  (Michaelmas  Term)  -­‐  12  weeks      

Monday,  23  September  2013  to  Friday,  13  December  2013.      Semester  2  (Hilary  Term)  -­‐  12  weeks      

Monday,  13  January  2014  to  Friday,  04  April  2014.    Revision  &  Annual  Examinations  (Trinity  Term)  –  7  weeks  

Monday,  07  April  2014  and  finish  at  the  latest  on  Friday  23  May  2014.  

 

Page 10: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

9

MSc

in B

ioen

gine

erin

g |

 

Page 11: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

10

MSc

in B

ioen

gine

erin

g |

T raining and Career Development  Health  Research  Board  Summer  Scholarships  2014  The  Health  Research  Board  will  invite  applications  for  Summer  Student  Scholarships  from  undergraduate  students  in  a  health  or  social  care-­‐related  discipline  to  support  their  participation  in  research  during  summer  2014.  The  purpose  of  the  student  scholarships  is  to  encourage  an  interest  in  research  and  to  give  the  student  an  opportunity  to  become  familiar  with  research  techniques.    Who  can  apply?  Undergraduate  students  who  are  studying  in  a  relevant  discipline  at  a  university/third  level  institute  in  Ireland  but  not  in  the  final  year  of  their  degree  course  and  who  have  not  previously  received  a  Summer  Student  Scholarship  from  the  HRB.          In  line  with  the  HRB  strategy  the  project  must  fall  within  one  of  the  following  research  areas:    patient  oriented  research,  health  services  research,  or  population  health  research.    Applications  that  focus  solely  or  predominantly  on  basic  biomedical  research  are  not  eligible.    What  is  the  value  of  the  award?  The  amount  typically  paid  is  €250  per  week  for  a  maximum  of  eight  weeks.    What  is  the  application  process?  All  applications  for  the  HRB  Summer  Scholarship  Scheme  2014  will  be  via  the  HRB’s  online  Grants  E-­‐Management  System  (GEMS).    The  College  Research  Office  endorses  all  applications  on  behalf  of  the  Dean  of  Research  and  then  makes  the  submissions  (via  GEMS)  to  the  HRB  on  the  applicant’s  behalf.    Prior  to  submission  to  the  College  Research  Office,  the  Heads  of  School  of  Engineering  and  Medicine  must  endorse  your  application.  The  College  Research  Office  has  requested  advance  notice  of  your  interest  in  applying  for  this  scheme,  please  e-­‐mail  [email protected].  The  call  is  not  expected  to  open  until  December  2013.    For  more  information:  http://www.hrb.ie/research-­‐strategy-­‐funding/grants-­‐and-­‐fellowships/hrb-­‐grants-­‐and-­‐fellowships      Summer  Internships  Internships  in  research  labs  in  the  Trinity  Centre  of  Bioengineering  are  available  at  the  end  of  the  SS  year.  Ms  June  O’Reilly  coordinates  information  on  the  availability  of  vacation  internships.  She  can  be  contacted  for  further  information  by  email  at  [email protected].      Vacation  Work  Vacation  work  in  a  number  of  biomedical  companies  is  available  at  the  end  of  the  SS  year.  Dr.  Ciaran  Simms   is   the   industry   liaison   and   Ms   Judith   Lee   coordinates   information   on   the   availability   of  vacation  employment          

Page 12: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

11

MSc

in B

ioen

gine

erin

g |

International and National Biomedical Engineering Societies

 

   IEEE   Engineering   in   Medicine   &   Biology   Society     (IEEE   EMBS:     www.embs.org)  

 The  IEEE  Engineering  in  Medicine  and  Biology  Society  (EMBS)  is  the  world's  largest  international  society  of  biomedical  engineers.  The  organization's  9,100  members  reside  in  some  97  countries  around  the  world.  EMBS  provides  its  members  with  access  to  the  people,  practices,  information,  ideas  and  opinions  that  are  shaping  one  of  the  fastest  growing  fields  in  science.    The  IEEE  EMBS  has  six  publications  which  are  available  online  through  the  Library  to  Trinity  College  students:    

o Transactions  on  Biomedical  Engineering  o IEEE  PULSE  o Transactions  on  Neural  Systems  and  Rehabilitation  Engineering  o Transactions  on  Information  Technology  in  Biomedicine  o Reviews  in  Biomedical  Engineering  o IEEE  Journal  of  Translational  Engineering  in  Health  and  Medicine  (J-­‐TEHM)  

 The  student  subscription  to  the  IEEE  EMBS  is  $27  per  year.    The   IEEE   has   developed   the   Life   Sciences   Portal   (http://lifesciences.ieee.org/),   which   has   become  one   of   the   premiere   global   resources   and   online   communities   for   knowledge,   opportunity,   and  collaboration,  enabling  cross-­‐disciplinary  solutions  in  life  sciences.  Sign  up  to  this  site  to  keep  up  to  date  with  new  developments  and  career  opportunities.    

Biomedical  Engineering  Society  (BMES:    bmes.org)          The   Biomedical   Engineering   Society   (BMES)   aims   to   serve   as   the   world's   leading   society   of  professionals   devoted   to   developing   and   using   engineering   and   technology   to   advance   human  health  and  well-­‐being  he  Mission  of   the  BMES   is   to  build  and   support   the  biomedical   engineering  community,   locally,   nationally   and   internationally,  with   activities   designed   to   communicate   recent  advances,   discoveries,   and   inventions;   promote   education   and   professional   development;   and  integrate  the  perspectives  of  the  academic,  medical,  governmental,  and  business  sectors.          

Page 13: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

12

MSc

in B

ioen

gine

erin

g |

The  Biomedical  Engineering  Society  produces  several  publications  to  keep  its  members  informed  of  activities  in  the  Society  and  developments  in  the  biomedical  engineering  profession.  These  journals  are  available  to  Trinity  College  students  through  online  access  via  the  Library.  • Annals  of  Biomedical  Engineering,    • Cellular  and  Molecular  Bioengineering  • Cardiovascular  Engineering  and  Technology    The  student  subscription  to  the  BMES  is  $30  per  year.      

European  Society  for  Engineering  and  Medicine  (ESEM:  www.esem.org)    The  mission  of  ESEM  is  to  establish  a  platform  of  cooperation  between  medicine  and  engineering  on  a  European  basis.  Such  a  bridge  between  medicine  and  engineering  is  vital  in  today's  highly  technological  multi-­‐disciplinary  health  care.  Without  this,  medical  doctors  cannot  keep  up  with  rapidly  developing  health  care  technology  and  cannot  provide  their  patients  with  state-­‐of-­‐the-­‐art  medical  diagnosis  and  treatment.  Equally,  without  close  contact  with  medical  doctors,  engineers  cannot  focus  their  efforts  upon  the  most  pressing  medical  problems.    ESEM's  mission  brings  benefits  to  medicine,  to  engineering  and  hence  to  the  community,  by  supporting  and  identifying  to  medical  doctors  current  and  developing  engineering  contributions  and  technical  developments  in  medicine;  and  by  identifying  for  engineers  specific  medical  problems  which  need  to  be  solved  by  appropriate  technological  means.      The  basic  objectives  of  ESEM  are  the  following  :  • To  promote  cultural  and  scientific  exchanges  at  a  European  level  between  engineers  (of  all  

disciplines),  related  industries,  and  the  medical  profession.  • To  encourage  the  creation  of  European  research  and  clinical  networks.  • To  reinforce  (by  wider  dissemination  of  information)  European  potentialities  in  engineering  and  

medicine.  • To  contribute  to  the  promotion  of  European  Union  programmes  in  the  fields  of  Engineering  and  

Medicine.  • To  participate  in  specific  education  and  training  courses  for  European  engineers  and  European  

medical  and  health  care  workers.  • To  cooperate  closely  with  other  relevant  international  and  national  organisations  concerned  with  

engineering  and/or  medicine   The  student  subscription  to  ESEM  is  €20  per  year.  

 Engineers  Ireland  

 (www.engineersireland.ie/Groups/Dviisions/Biomedical.aspx)  

With  almost  24,000  members  from  every  discipline  of  engineering,  Engineers  Ireland  is  the  voice  of  the  engineering  profession  in  Ireland.    1600  engineers  are  estimated  to  be  working  in  the  biomedical  industry  in  Ireland.  This  industry  accounts  for  approximately  8%  of  Ireland’s  GNP.  The  mission   of   Engineers   Ireland   is   to   provide   a   professional   and   social   network   for   learning   and  developing  potential  businesses  in  the  thriving  field.    The  student  membership  to  Engineers  Ireland  is  free.

Page 14: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

13

MSc

in B

ioen

gine

erin

g |

Junior Sophister Module Sheets  

 

3E1       ENGINEERING  MATHEMATICS  V  (Dept.  of  Mathematics)  

Level:                     Junior  Sophister  

Lecturer:     Dr  Brendan  Browne  

Credits:   5  

Module  organizat ion  The  module   runs   over   12   weeks   of   the   academic   year   and   comprises   of   three   lectures   plus   one  tutorial  per  week  –  the  total  number  of  contact  hours  per  student  is  44.      Semester   Start  

Week  End  Week  

Lectures  per  week  

Lectures  total  

Tutorials  per  week  

Tutorials  total  

1   1   12   3   33   1   11    

A ims/Object ives  Engineering  Mathematics   V   is   a   one   semester   course   available   to   all   JS   Engineering   streams   and  continues  and  extends  the  material  from  the  previous  mathematics  courses  in  the  first  and  second  years   -­‐   1E1,   1E2,   2E1   and   2E2.   The   emphasis   is   primarily   on   the   development   of   analytical  techniques.    Module  Syl labus  

• Review  of  Fourier  Methods    o definition  of  complex  and  real  Fourier  series;  o application  of  Fourier  series  to  solve  ordinary  differential  equations;  o even  and  odd  half-­‐range  expansions;  o definition  of  Fourier  transform;  o interpretation  of  Fourier  modes  as  frequencies;  o convolution.  

• Partial  Differential  Equations  o Laplace’s  equation;  o the  heat  equation;  o the  wave  equation;  o D’Alembert’s  solution;  o fundamental  solutions;  o separation  of  variables;  o application  of  Fourier  analysis  to  initial  value  problems.  

• Optimisation  o linear  programming.  o non-­‐linear  optimization.  Lagrange  multipliers.  

Page 15: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

14

MSc

in B

ioen

gine

erin

g |

o Newton’s  and  Conjugate  Gradient  methods.                                                                                                                    

Recommended  text(s)  • Advanced  Engineering  Mathematics,  E.  Kreyszig,    

 

Learning  outcomes  Upon  completion  of  this  module,  students  will  be  able  to:  

• calculate   the   coefficients   of   both   the   complex   and   the   real   Fourier   series   for   a   variety    functions,  and  to  use  them  to  solve  some  ordinary  differential  equations.  

• calculate   Fourier   transforms,   discrete   or   continuous,   for   a   variety   of   simple   functions   -­‐  students  will  then  be  able  to  use  these  to  compute  convolutions    in  simple  cases;    

• solve  the  Laplace,  heat  and  wave  equations  for  a  variety  of  boundary  conditions  in  domains  of   simple   geometry   and   with   simple   boundary   conditions;   the   techniques   available   will  include,  separation  of    variables,  Laplace  and  Fourier  Transform  methods.  

• solve  linear  and  non-­‐linear  optimization  problems.  • apply  above  methods  to  solve    problems  in  different  areas  of  engineering.  

 

Teaching  strategies  The   teaching   strategy   is   a  mixture   of   lectures   and   problem-­‐solving   tutorials.  Whilst   the   format   of  lectures  is  conventional  and  the  atmosphere  is  informal,  some  interaction  and  discussion  is  common  and  students  are  encouraged  to  ask  questions.  In  the  tutorials,  all  students  work  on  problems  which  practice  and  apply  the  methods  introduced  in  the  lectures.  Discussion  of  problems  in  small  groups  is  encouraged  and  facilitated.  

 Assessment  Assessment  for  this  module  is  carried  out  by  means  of  a  written  two-­‐hour  examination  at  the  end  of  the  academic  year.      The  subject  mark  is  based  entirely  on  the  result  of  this  written  exam.  

     

Page 16: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

15

MSc

in B

ioen

gine

erin

g |

ME3B4   MECHANICAL  ENGINEERING  MATERIALS  

Level:     Junior  Sophister  

Lecturer:     Associate  Prof.  Kevin  O’Kelly  ([email protected])    

Credits:     5    Module  Organisation    The  module  runs  for  12  weeks  of  the  academic  year  and  comprises  three  lectures  per  week.    A  tutorial  is  given  every  week.    Total  contact  time  is  44  hours.    Semester   Start  

Week  End  Week   Lectures  per  

week  Lectures  total  

Tutorials  per  week  

Tutorials  total  

1   1   12   3   33   1   11  

   Aims/Objectives  This  module  builds  on  the  2nd  year  materials  course  introducing  the  student  to  essential  concepts  of  time,   temperature   and   environmental   influences   on   material   behaviour   and   selection.   Fracture  mechanics  builds  on  LEFM  to   including  elastic-­‐plastic   fracture   (EPFM)  and   the   J-­‐integral.   Time  and  temperature   dependent   properties   are   introduced   (fatigue,   creep   and   wear)   as   well   as  environmental   effects   (corrosion).   The   student   obtains   an   overview   of   the   various   considerations  necessary   when   selecting   materials   for   the   life   and   end   of   life   of   the   product.   Ethical   issues   are  discussed  relating  to  safe  design  procedures  (i.e.  design  for  failure).  This  is  a  key  module  in  the  study  of  mechanical  engineering,  which  builds  on  work  established  in  the  second  year  curriculum.    Module  Syllabus  

• price  and  availability  of  materials    • environmental  factors:  sustainability  and  recycling  • fracture  toughness  (LEFM,  EPFM,  J-­‐Integral,  Weibull  statistics)  • fatigue      • creep  • wear  • corrosion  • case  studies  in  materials  selection,  design  and  risk.  

 Recommended  text  

• Engineering  Materials  Books  1  and  2,  Ashby  and  Jones,  Pergamon  • Selection  and  Use  of  Engineering  Materials,  Crane  and  Charles  • Introduction  to  Engineering  Materials,  John  • Materials  Science  and  Engineering,  Callister  • The  New  Science  of  Strong  Materials,  Gordon    

           

Page 17: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

16

MSc

in B

ioen

gine

erin

g |

Learning  outcomes  On  completion  of  this  module  the  student  will  be  able  to:  a) describe   and   conduct   tests   to  measure  mechanical   properties,  making   use   of   data   collection  

and  analysis  systems;  b) predict  the  failure  loads  and  times  for  simple  structures,  appreciate  how  these  predictions  can  

be  made  for  complex  engineering  components  and  how  they  can  be  used  to  ensure  safe  life  in  conjunction  with  maintenance;  

c) describe  the  assumptions  and  approximations  that  must  be  made  in  predicting  deformation  and  failure  and  the  likely  errors  that  will  arise  as  a  result;  

d) describe   the   microstructures   and   phases   that   will   occur   in   material   alloys   in   general   and   in  steels  and  aluminium  alloys  in  particular;  

e) predict   how   microstructure   will   be   affected   by   alloy   composition   and   thermo-­‐mechanical  treatment;  

f) describe   the   structure   and   processing   of   some   typical   engineering   ceramic   materials;   to  compare   the   mechanical   properties   of   these   materials   to   those   of   metals,   explaining   when  ceramics   might   be   used   in   industry   and   to   predict   the   probability   of   failure   of   a   ceramic  structure  using  a  Weibull  analysis;  

g) describe   the   structure,  processing  and  mechanical  properties  of  polymers  and  composites;   to  compare   the   mechanical   properties   of   these   materials   with   those   of   metals   and   to   explain  under   what   circumstances   these   materials   might   be   used   in   industry;   to   estimate   the  mechanical  properties  of  a  composite  material  knowing  the  properties  of  its  constituents;  

h) appreciate  the  considerations   involved   in  materials  selection:  to  use  a  systematic  approach  to  the   selection   of   the   optimum   material   for   a   given   application,   including   considerations   of  material  price  and  availability;  

i) explain   the   importance   of   sustainable   technology   as   applied   to   materials   selection   and   use,  including  recycling  and  maintenance  scheduling;  

j) be   aware   of   the   importance   of   preventing   failure   in   engineering   components,   especially   its  social  and  ethical  consequences;  

k) work  to  solve  a  problem  in  materials  selection  and  failure  prediction.      Teaching  strategies  This  module  is  taught  using  a  combination  of  lectures,   laboratory  classes  and  tutorial  sessions.  The  tutorial   sessions   are   overseen   by   a   Teaching   Assistant   -­‐   during   these   sessions,   students   are  encouraged  to  work  in  groups  to  develop  their  communication  and  teamwork  skills.    Assessment  This  module   is  assessed  by  means  of  a  formal  two-­‐hour  written  examination  contributing  80%  and  with  continuous  assessment  contributing  20%.  Examination  questions  are  designed  to  test  students’  ability   to   use   the   knowledge   gained   in   lectures   to   solve   practical   problems,   bringing   together  different   aspects   of   the   module   and   of   other   modules,   such   as   mechanics   of   solids   and  manufacturing  technology.    Laboratories  

• Lead  Creep      

 

Page 18: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

17

MSc

in B

ioen

gine

erin

g |

3C1       Signals  and  Systems    

Level:       Junior  Sophister    

Lecturer(s):    Assistant  Professor  

                                             Liam  Dowling  

Credits:       5        Module  Organisation    The  module  runs  for  12  weeks  of  the  academic  year  and  comprises  three  lectures  per  week.    A  tutorial  is  given  every  week.    Total  contact  time  is  44  hours.    Semester   Start  

Week  End  Week   Lectures  per  

week  Lectures  total  

Tutorials  per  week  

Tutorials  total  

1   1   12   3   33   1   11  

   Aims/Objectives  

The  Signals  and  Systems  module  is  taken  by  Junior  Sophister  C,  CD,  D  stream  and  Bioengineering  students.  It  provides  a  foundation  for  the  Signal  Processing,  Control,  and  Communications  Engineering  modules  covered  later  in  the  undergraduate  curriculum.      The  module  presents  the  mathematical  techniques  used  for  continuous-­‐time  signal  and  system  analysis.  The  analytical  framework  for  discrete-­‐time  signals  and  systems  is  then  developed.  The  final  part  of  this  module  is  an  introduction  to  control  systems.    Syllabus  

• Continuous-­‐Time  Signals  and  Systems  o Linearity,  time-­‐invariance,  impulse  response  of  a  linear  time-­‐invariant  (LTI)  system;  

the  convolution  integral;  properties  of  LTI  systems;  unit  step  response  o Periodic  functions;  Fourier  series;  properties  of  the  Fourier  series  o Laplace  Transform;  properties  of  the  Laplace  transform;  transfer  function  of  LTI  

system;  poles,  zeros  and  stability  of  an  LTI  system  o The  Fourier  transform  and  its  properties  o Frequency  response;  steady  state  response;  lowpass  and  highpass  filtering  o Representation  of  a  continuous-­‐time  signal  by  its  samples;  the  sampling  theorem;  

reconstruction  of  a  continuous-­‐time  signal  from  its  samples    

• Discrete-­‐Time  Signals  and  Systems  o The  unit-­‐impulse  response  of  an  LTI  discrete-­‐time  system;  the  convolution  sum;  

properties  of  discrete-­‐time  LTI  systems;  unit  step  response  o Fourier  series  representation  of  discrete-­‐time  periodic  signals;  properties  of  discrete-­‐

time  Fourier  series  o The  discrete-­‐time  Fourier  transform  (DTFT);  properties  of  the  DTFT  o The  z-­‐transform;  region  of  convergence  for  the  z-­‐transform;  inverse  z-­‐transform;    

properties  of  the  z-­‐transform  

Page 19: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

18

MSc

in B

ioen

gine

erin

g |

o Causality;  Stability;  LTI  systems  characterized  by  linear  constant-­‐coefficient  difference  equations    

o FIR  and  IIR  filters    

• Introduction  to  Control  Systems    o Linear  Feedback  Systems,  closed-­‐loop  system  function  o Root-­‐locus  analysis  of  linear  feedback  systems  o The  Nyquist  stability  criterion  o Gain  and  phase  margins    

 Associated  Laboratory/Project  Programme  

Lab  S1:    Analysis  of  the  Transient  and  Steady  State  Responses  of  Dynamic  Systems  Lab  S2:    Control  Systems  and  Signal  Analysis  in  the  Frequency  Domain  Note:          Laboratory  reports  must  be  written  after  each  laboratory  and  submitted  for  marking      Recommended  Text(s)  

• A.  V.  Oppenheim,  A.  S.  Willsky  with  S.  H.  Nawab,  Signals  and  Systems,  2nd  Ed.,  Prentice  Hall,  1996  

• R.  C.  Dorf  and  R.  H.  Bishop,  Modern  Control  Systems,  12th  Ed.,  Prentice  Hall,  2012      Learning  Outcomes  

 On  completion  of  this  module  the  student  should  be  able  to:  • Represent  both  continuous-­‐time  and  discrete-­‐time  periodic  signals  as  a  Fourier  series.  • Use  the  Fourier  transform  and  the  Laplace  transform  to  analyze  continuous-­‐time  signals  and  

systems  • Use  the  discrete-­‐time  Fourier  transform  and  the  z-­‐transform  to  analyze  discrete-­‐time  signals  

and  systems  • Determine  the  impulse  response,  step  response  and  frequency  response  of  both  continuous-­‐

time  and  discrete-­‐time  systems  • Determine  the  response  of  the  LTI  system  to  any  input  signal  • Determine  the  stability  of  a  feedback  system  

 Teaching  Strategies  

The  module  is  taught  using  a  combination  of  lectures,  tutorials  and  two  supporting  laboratories.        Assessment  Mode(s)  

The  two-­‐hour  written  examination  will  contribute  85%  and  the  laboratories  will  contribute  15%  of  the  overall  subject  mark  at  the  Annual  and  Supplemental  examinations.        

Page 20: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

19

MSc

in B

ioen

gine

erin

g |

3BIO3               PROBABILITY  MODELLING    

Level:     Junior  Sophister    

Lecturer(s):    Associate  Professor  Anthony  Quinn        

Credits:     5    Module  Organisation    Semester   Start  

Week  End  Week  

Lectures  per  week  

Lectures  total  

Tutorials  per  week  

Tutorials  total  

1   1   12   3   33   1   11      Aims/Objectives  This   module   provides   a   thorough   grounding   in   probability   for   electrical,   computer   and   bio-­‐  engineering  students.  In  particular,  it  equips  the  student  with  methods  for  dealing  with  uncertainty  in   engineering   practice,   notably   in   the   analysis   of   experiments,   and   the   interpretation   and  processing   of   data.   The   keystone   of   the  module   is   a   philosophical   one.   The   relationship   between  uncertainty  and  information  (learning)  is  explored  from  the  start.  A  full  review  of  propositional  logic  is  provided,   so   that   the   student  can  be  confident   in   formulating  propositions  around  an  uncertain  experiment,   and   in   understanding   the   logical   relationships   between   propositions.   The   probability  calculus   is   developed   as   a   consistent   means   of   quantifying   and   manipulating   belief   in   these  uncertain  propositions  (i.e.  the  Bayesian  perspective).  In  this  way,  the  foundation  of  the  module  is  a  unified  one,  with  uncertainty,   logic,   information,  observation  and   imprecision   (noise)  all  embraced  within  a  Bayesian  notion  of  probability.  

The   main   aim   is   to   confront   engineering   contexts   that   induce   the   canonical   probability  models,   in   both   the   discrete   case   (Bernoulli,   geometric,   binomial,   multinomial,   Poisson)   and   the  continuous   case   (rectangular,   exponential,  m-­‐Erlang,   normal).   Their  mixtures   and   transformations  are   developed,   as   a   response   to   practical   modelling   needs.   There   is   a   special   emphasis   on   the  concept  of  dependence  (conditioning),  and  its  relation  to  the  key  engineering  notions  of  correlation  and  prediction.  Sequential  dependence  is  handled  in  the  discrete  case  only,  via  a  full  introduction  to  Markov   chains.   A  main   learning   outcome   for   the   student   is   knowledge   of  which  model   applies   in  which  context,  and  the  assumptions  justifying  the  deployment  of  each  model.  

This   theory   is   not   separated   from   the   engineering   practice   it   aims   to   serve.   Rather,   the  module   carries   a   number   of   extended   case   studies   throughout,   each   progressively   refined   as   our  new   probability   tools   become   available   to   us.   The   main   case   studies   are   (i)   the   noisy   digital  communication   system,   using   discrete   models   and,   later,   the   additive   Gaussian   noise   model;   (ii)  Poisson  count  bio-­‐imaging  contexts   (FLIM,  SPECT,  FLIM);  and  (iii)   reliability  and  traffic  modelling   in  large  device  assemblies.    A  feature  of  the  module  is  that  it  develops  statistics  consistently  using  the  same  inductive  inference  principles.  Typically  a  black-­‐spot  in  the  formation  of  the  engineering  student,  statistical  inference  is  re-­‐cast   as   a   problem   of   probability  modelling.   Only   the   simple   nonparametric   case   is   considered,  using  the  elegant  device  of   the  empirical  distribution,   readily  allowing  students   to  derive  sampling  statistics   for   their   data.     Themes   of   importance   to   engineers  within   the   data   analysis   context   are  

Page 21: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

20

MSc

in B

ioen

gine

erin

g |

emphasized:  (a)  quantization  error,   (b)  probability  estimation  from  survey  data,  and  (iii)  regression  between  variables.    The   module   primes   the   student   for   later   modules   on   random   processes   and   statistical   signal  processing.   In   its   own   terms,   it   is   an   invitation   to   confront   uncertainty   as   a   fundamental  phenomenon  –  and  resource  –  in  engineering  systems,  and  to  appreciate  probability  as  a  consistent  framework  for  the  design,  analysis  and  optimization  of  such  systems.    Module  Syllabus  

• Review  of  Propositional  Logic  o Uncertain  experiments  in  electrical,  computer  and  bio-­‐  engineering  o Sample  space,  propositions  and  events  o Propositional  logic:  equivalence,  necessity,  sufficiency,  mutual  exclusivity  

 • The  Foundation  of  Probability  Modelling  

o The  axioms  of  probability  and  the  probability  triple  o Conditional  probability;  independence    o Key  relationships:  chain  rule,  Bayes’  rule,  theorem  of  total  probability  

 • Sequential  Experiments  

o Independent   sequential   experiments:   geometric,   binomial   and   multinomial  probability  laws    

o Homogeneous  Markov  chains    

• Univariate  Random  variables  o Probability  functions  for  random  variables  (cdf,  pdf,  pmf)  o Key  discrete  probability  models  (BernoulliàgeometricàbinomialàPoisson)  o Key  continuous  probability  models  (rectangular,  exponential,  m-­‐Erlang,  normal)  o Functions  of  random  variables  o Expectation  

 • Multiple  random  variables    

o Marginal  and  conditional  distributions  o Discrete-­‐continuous  case:  finite  mixture  models  o The  bivariate  normal  distribution  o Correlation  and  linear  regression    o Introduction  to  graphical  models  o Statistics  and  Data  Analysis  o Random  sampling:  the  empirical  distribution  and  its  moments  (sampling  statistics)  o Probability  estimation  from  survey  data  o Quantification  of  error;  quantization  noise  

         

Page 22: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

21

MSc

in B

ioen

gine

erin

g |

Recommended  Text(s)  • The  main  recommended  text  for  the  module  is:  

o Leon-­‐Garcia,   A.,   Probability,   Statistics,   and   Random   Processes   for   Electrical  Engineering,  3rd  ed.,  Prentice  Hall,  2008.  

 • Secondary  recommended  texts  are  as  follows:  

o Bertsekas,   D.P.   and   Tsitsiklis,   J.N.,   Introduction   to   Probability,   2nd   ed.,   Athena  Scientific  Press,  2008.  

o Applebaum,  D.,  Probability  and  Information,  2nd  ed.,  Camb  Univ  Press,  2008.      Learning  Outcomes  On  successful  completion  of  this  module,  the  student  will  be  able  to:    

• Quantify   beliefs   in   uncertain   propositions   related   to   key   electrical,   computer   and   bio-­‐  engineering  contexts,  such  as  noisy  communication,  bio-­‐imaging,  and  large  assemblies  

• Distinguish   between   the   vital   notions   of   independence   and   dependence,   and   relate   the  latter  to  the  idea  of  prediction      

• Apply   and   analyze   the   key   parametric   probability   models   (distributions)   governing  uncertainty  in  these  contexts  

• Evaluate  measures  of  location,  spread  and  dependence  for  these  distributions  • Convert  random  experimental  data  (samples  and  surveys)  into  quantified  beliefs,  summarize  

these  data  via  sampling  statistics,  and  assess  dependence  between  data    Teaching  Strategies  There   is   a  3:1   ratio  between   lectures  and   tutorials.   The  notes  are  provided  after  each   lecture,   via  scans  uploaded   to   the  webpage.  Problem-­‐solving  experience   is   vital,   and  gained  primarily   through  the  weekly  tutorials,  but  also  via  regular  homework  sheets,  with  solutions  provided  on  the  webpage.  Students  are  reminded  that  attendance  at  all  timetabled  activities  is  compulsory.    Assessment  70%  of  the  final  mark  is  determined  via  the  annual  examination.  The  remaining  30%  is  reserved  for  continuous  assessment,  by  means  of  about  5  assignments  during  the  semester,  and  a  one-­‐hour  end-­‐of-­‐semester  quiz.      

Page 23: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

22

MSc

in B

ioen

gine

erin

g |

3E2                 NUMERICAL  METHODS  

Level:     Junior  Sophister  

Lecturer(s):  Assistant  Prof.  Ciaran  Simms  ([email protected])    

                                           Assistant  Prof.  Tim  Persoons  ([email protected])  

Credits:     5    Module  Organisation    The  module   runs   for   12   weeks   of   the   academic   year   and   comprises   three   lectures   per   week.     A  tutorial  is  given  every  week.    Total  contact  time  is  44  hours.    

Semester   Start  Week  

End  Week   Lectures  per  week  

Lectures  total  

Tutorials   per  week  

Tutorials  total  

1   1   12   3   33   1   11    Aims/Objectives  This  is  a  module  on  the  application  of  mathematical  methods  to  gain  approximate  solutions  to  real  world  problems  in  Civil  and  Mechanical  and  Biomedical  Engineering.  This  module  demonstrates  why  there   is   frequently  a  need  for  numerical  solutions  to  real-­‐world  problems,  and   introduces  the  high  level   programming   environments   of   Excel   and   Matlab   to   code   basic   solutions   to   problems  experienced  in  Civil  and  Mechanical  and  Biomedical  Engineering.  The  Mathematics  which  underpins  this  module  has  been  covered  in  previous  Mathematics  modules,  and  the  physical  problems  solved  are   typically   taken   from   accompanying   Civil   and   Mechanical   and   Biomedical   Engineering   core  subjects,  and  this  module  therefore  provides  a  link  between  pure  Mathematics  and  the  Engineering  applications  students  will  encounter  in  research  and  industry.    Module  Syllabus  

• The  need  for  numerical  methods  • Machine  representation  of  numbers  and  associated  errors  • Review  of  the  Taylor  Series    • Roots  of  non-­‐linear  equations  • Roots  of  systems  of  linear  equations    • One  dimensional  nonlinear  optimization  • Multidimensional  linear  optimization    • Curve  fitting  and  basic  statistics  • Numerical  integration    • Numerical  differentiation  • Solutions  to  differential  equations    • The  linear  finite  element  method    

Recommended  Texts  • Matlab  primer  

o Introduction  to  Matlab  7,  Etter,  Kunkicky  &  Moore,  Pearson  Prentice  Hall,  2005.  o Matlab  for  Engineers,  Biran  &  Breiner,  Addison  Wesley,  1995.  o The  Matlab  Handbook,  Enander,  et  al.,  Addison  Wesley,  1996.    

• Numerical  Methods    

Page 24: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

23

MSc

in B

ioen

gine

erin

g |

o Numerical  Methods   for   Engineers   by   Steven   Chapra   &   Raymond   Canale,  McGraw  Hill,  5th  Edition  2006.  

o Numerical  Methods  with  Matlab  –  Recktenwald,  Prentice  Hall,2000  o Numerical  Methods  using  Matlab  –  Mathews  &  Fink,  Prentice  Hall,  1999  

 Learning  Outcomes  On  successful  completion  of  this  module,  students  will  (be  able  to):    

• understand  the  need  for  numerical  solutions  to  engineering  problems  • understand  how  numerical  methods  incur  errors  • use  Matlab  and  Excel  to  code  basic  solution  methods  for  Civil  &  Mechanical  and  Biomedical  

Engineering  problems    • perform  basic  statistical  analysis    • use  the  Taylor  Series  as  a  basis  for  error  estimation  in  numerical  techniques    • find  numerical  solutions  to  systems  of  linear  and  nonlinear  algebraic  equations    • perform  1-­‐Dimensional  nonlinear  optimization  • perform  multidimensional  linear  optimization  • program  basic  curve  fitting  techniques  • perform  numerical  integration  and  differentiation  • find  numerical  solutions  to  partial  and  ordinary  differential  equations  • understand   the  basis   of,   and   apply,   the   linear   finite   element  method   to  basic   engineering  

problems    Teaching  Strategies  Lectures:  The  teaching  strategy  attempts  to  mainly  follow  a  single  text  book  for  the  core  material,  to  assist   in   student   revision.   Examples   from   the   lecturer’s   research   experience   are   frequently  introduced  to  demonstrate  the  need  for  the  methods  covered.  Tutorials:   there   are   weekly   tutorials   using   either   Excel   or   Matlab   to   implement   each   numerical  method.  These  tutorials  are  taught  by  teaching  assistants  who  are  recruited  from  the  postgraduate  student  body  in  the  School  of  Engineering.    Assessment  Modes  The   assessment   is   by   a   2   hour   examination   which   is   held   at   the   end   of   the   Trinity   term   and   by  grading  of   a   random  selection  of   6  of   the  11   submitted  assignments  done  on  a  weekly  basis.   The  written   examination   carries   70%   of   the   total  marks   and   the   6   graded   assignments   together   carry  30%  of  the  marks.    Lab  Assignments  Where  practical,  each  topic  is  covered  in  two  podium  lectures,  one  demonstration  lecture  showing  the   techniques   implemented   in  Excel  or  Matlab,   and  one   computer  based   tutorial  which   students  submit  for  grading.      

Page 25: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

24

MSc

in B

ioen

gine

erin

g |

3E4             MANAGEMENT  FOR  ENGINEERS    

Level:     5  

Lecturer(s):   Dr.  Niamh  Harty      

  Ms.  Joanna  Gardiner  

  Dr.  Brian  Caulfield      

Credits:     5        Module  Organisation    Semester   Start  

Week  End  Week  

Associated  Practical  Hours  

Lectures   Tutorials  Per  week   Total   Per  week   Total  

2   13   24   0   2   24   1   12      Aims/Objectives  Management   for   Engineers   introduces   engineering   students   to   Entrepreneurship   and  Communication.  The  aims  of  the  module  are:    

• To  foster  a  sense  of  entrepreneurship  among  the  JS  Engineering  students,  by  requiring  the  students  to  come  up  with  a  business  idea  and  during  the  semester  produce  a  business  plan.  

• To  enable  students  to  communicate  well   in  engineering  contexts,  both  when  talking  about  projects,  plans  and  problems,  and  when  writing  about  these.    

 Module  Syllabus  The  module  covers  the  following  topics:    Entrepreneurship: Communication

• Coming  Up  with  a  Business  Idea • Intersubjectivity  • Marketing • Emails  • Feasibility • Reports  • Market  Research • Presentations  • Legal  Issues   • Intercultural  communication  • Finance  and  Accounting • Media  Interviews  • Business  Plan •  • Ethics •  

 Recommended  Text  To  be  announced          Learning  Outcomes  

Page 26: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

25

MSc

in B

ioen

gine

erin

g |

On  completion  of  this  module  the  student  will  be  able  to:  • Prepare  a  business  plan,  including  details  of  marketing,  market  research,  finance,  legal  issues  

and  growth.  • Give  a  presentation  • Summarise  a  technical  article  

 Assessment    There  will  be  three  assignments  on  Entrepreneurship,  and  two  assignments  on  Communication,  plus  a  final  examination.    Entrepreneurship  counts  for  50%  of  overall  mark  in  3E4.  Marks  for  Entrepreneurship  will  be  divided  60%  for  continuous  assessment,  and  40%  for  questions  on  the  Final  examination.    Communication  counts  for  50%  of  overall  mark  in  3E4.  Marks  for  Communication  will  be  divided  40%  for  continuous  assessment,  and  60%  for  questions  on  the  Final  examination.      Further  Information  Web  page:  http://www.tcd.ie/Engineering/Modules/BAI/JS_Subjects/3E3/          

Page 27: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

26

MSc

in B

ioen

gine

erin

g |

3BIO1   Anatomy  and  Physiology    

Level   Junior  Sophister  

Lecturer(s)   Professor  Veronica  Campbell  

  Dr  Á  Kelly  

  Dr  S  Harney  

Specialist  lecturers:  

  Dr  AM  Baird  

  Prof  O  Sheils  

  Dr  E  Roche    

  Dr  E  Harris  

 Credits   5  

Module  Organisation  

The   module   aims   to   give   an   introduction   to   human   biology   and   disease,   such   that   students   can  appreciate   the   basis   for   scientific/technical   procedures   in   the   diagnosis,   treatment   and   basic  research   associated   with   human   disease.   A   basic   understanding   of   terminology   and   practice   is  emphasized.      The  lecture  series  will  outline  the  physiology  and  anatomy  of  the  main  body  systems  and  introduces  the   cellular   basis   of   these   systems.   Some   principles   of   disease   conditions   will   be   covered.   The  specialist   lectures  will  provide  an   insight   into   the  role  of  various   technologies   in   the  diagnosis  and  management  of  patients.  Additionally   they  will   show   the   integration  of  basic   sciences,   technology  and  clinical  medicine  across  the  continuum  of  care.    The  module   is   aimed   at   students   who   have   no   prior   knowledge   of   physiology   and   or   biology.   In  addition   to   UG   Engineering   students,   the   following   MSc   programmes   participate   in   the   module:  Bioengineering,  Physical  Sciences  in  Medicine,  Health  Informatics  and  Medical  Device  Design.    

Learning  Outcomes

When  students  have  successfully  completed  this  module  they  should  be  able  to:  

• Describe  the  basic  functions  of  the  human  physiological  systems.  • Describe  the  morphological  characteristics  of  mammalian  cell  types.  • Explain  the  functional  roles  of  these  cell  types  and  how  their  form  fits  their  function.  • Appreciate  how  these  cells  interact  in  the  various  organ  systems.  • Explain   the   homeostatic   mechanisms   of   each   organ   system   (you   should   be   able   to   give  

examples).  • Differentiate  normal  and  pathological  anatomy  and  physiology.    • Explain  the  mechanisms  of  disease  (e.g.  diabetes,  neurodegeneration  etc).  • Be  familiar  with  the  diagnostic  procedures  and  medical  interventions  for  diseases.  • Analyse  the  BMS  material  and  integrate  with  information  from  their  own  discipline.  

 

Page 28: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

27

MSc

in B

ioen

gine

erin

g |

At  the  end  of  each  lecture  you  will  receive  more  specific  learning  outcomes  for  the  lecture  and  you  will  be  expected  to  undertake  complete  self-­‐directed  further  reading  and  research.  

Syllabus  

• Introduction:    o Integration   of   organ   function,   levels   of   biological   organization,   concepts   of   form  

fitting  function,  homeostasis  (mechanisms  of  control  and  disturbances).    

• Cells,  Tissues,  Organs:    o the   cell   theory,   the   cell   as   a   basic   unit   of   life,   cellular   ultrastructure,   intracellular  

organelles,  cellular  fucntion  in  health  and  disease.    • Blood:    

o composition,   function   of   plasma   proteins,   cellular   component   of   blood,  haemoglobin   and   oxygen   transport,   role   of   white   blood   cells   in   immunity,   blood  clotting,  blood  pathology  (anaemia,  abnormal  clotting).  

 • The  Immune  System:    

o sources  of  immune  challenges,  immunological  memory  and  specificity,  mediators  of  immunity,   immune   responses,   antibodies,   self   tolerance,   blood   typing,   immune  system  pathology.  

 • The  cardiovascular  system:    

o components,   path   of   blood   flow   through   the   system,   anatomy   of   heart,   heart  rhythms,  regulation  of  heart,  blood  vessel  anatomy,  blood  flow  to  organs,  anatomy  of  the  respiratory  system,  mechanics  of  breathing,  gas  transport.    

 • The  excitable  tissues  -­‐  brain  and  muscle:    

o divisions   of   the   nervous   system,   basic   brain   anatomy   and   physiology,  electroencephalogram   (EEG),   spinal   cord,   reflexes,   neural   cell   form   and   function,  neural   communication,   neurogenesis   and   neurodegeneration,  muscle   tissue   types,  muscle   contraction,   communication   systems   in   muscle,   neural   muscular   junction,  physics   of   joint   movement,   muscle   metabolism,   muscle   fibre   types,   adaptive  changes  in  muscle.  

 • Bone  and  Cartilage:    

o functions,   types,   anatomy,   extracellular   matrix   composition,   cellular   component,  growth  and  repair,  skeletal  pathologies,  concept  of  bone  as  an  organ,  pathologies  of  bone  and  cartilage.  

 • The  Endocrine  System:    

o components,   functions,   control   systems,   abnormal   endocrine   function,   pancreatic  hormones,  insulin,  diabetes.    

 • The  Renal  and  Digestive  Systems:    

Page 29: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

28

MSc

in B

ioen

gine

erin

g |

o components,   function,   micturition,   renal   functional   units   (the   nephron),   renal  processes   (filtration,   reabsorption,   secretion),   water   balance,   renal   pathology,  digestion  (absorption,  motility,  secretion),  accessory  organs  (pancreas,  liver).  

 

Specialist  lectures    

Cancer,  Histopathology,  Paediatric  diabetes  patients-­‐  benefits  of  technology,  Orthopaedics.  • Note:  these  lectures  have  a  clinical  focus  and  are  delivered  in  a  conference  presentation  

style.  Lecture  notes  are  NOT  provided  therefore  students  should  take  adequate  notes  for  their  own  requirements.  

 

Patient  Investigation  Laboratory  Visits  

• Histopathology  Laboratory,  St  James’s  Hospital,  Dublin  8.  • Diagnostic  Imaging  Laboratory,  St  James’s  Hospital,  Dublin  8.    

Assessment  

Assessment  is  based  on  an  individual  written  assignment.      This  will  be  a  written  paper  based  on  a  choice  of  topics.    

The  paper  should  be  a  maximum  of  4000  words,  4  tables/figures,  with  references  numbered  in  the  text  and  listed  at  the  end  of  the  assignment  in  order  of  appearance.      Marks  for  the  written  assignment  will  be  awarded  as  follows:  integration  of  relevant  basic  medical  sciences  information  (50%),  appropriate  definitions  and  examples  e.g.,  disease  conditions  (30%),  integration  of  relevant  information  from  students  own  course  (20%).    Important  Dates:  

• 22nd  November  –  assignment  topics  will  be  announced  • 13  December  –  deadline  for  submission  of  assignment.  A  single  HARD  copy  of  this  paper  

should  be  submitted  to  Physiology,  Level  2,  Trinity  Biomedical  Sciences  Institute,  Pearse  St.        Recommended  texts    

• Human  Physiology  by  Lauralee  Sherwood  2010  Brooks  &  Cole.  • Fundamentals  of  anatomy  &  physiology  by  Martini,  Nath  &  Bartholomew  • Wheater's  functional  histology:  a  text  &  colour  atlas    by  Burkitt,  Young  &  Heath  • Essential  cell  biology  by  Bruce  Alberts  et  al.  • Gray's  anatomy  for  students  by  Drake  et  al.  

Lecture  notes  etc.,  are  available  at:  

https://medicine.tcd.ie/physiology/student/  

Page 30: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

29

MSc

in B

ioen

gine

erin

g |

Lecture Schedule and Locations

Date Time Topic, speaker Location

4th October 2-5pm Cells, tissues & organs, Prof V Campbell

Stanley Quek LT The immune system, Prof V Campbell

11th October 2-5pm

Stanley Quek LT Cardio vascular system, Dr Á Kelly

18th October 2-6pm

Specialist Lecture: Cancer, Dr AM Baird

Stanley Quek LT The nervous system Prof V Campbell

25th October

2-3.30pm Connective tissue- Bone & Cartilage Prof V Campbell

Stanley Quek LT

4-5.30pm Musle Prof V Campbell

1st November 2-4pm

Stanley Quek LT Specialist Lecture: Bioengineering a solution to

faecal incontinence Prof James Jones

8th November 2-3.30pm

4-5.30pm

Endocrine system Prof V Campbell

Stanley Quek LT Specialist Lecture: Histopathology, Prof O Shiels

15th November

2-3.30pm

Stanley Quek LT

The digestive system Prof V Campbell

4.30-6pm Specialist lecture: Orthopaedic implant surgery (tbc)

22nd November

2-3.30pm Specialist lecture: Paediatric diabetes patients- benefits of technology,

Prof E Roche Stanley Quek LT

4-5pm The renal system, Prof V Campbell

Page 31: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

30

MSc

in B

ioen

gine

erin

g |

29th November

2-3.30pm Patient investigation: Histopathology lab visit 1

St James Hospital

3.30-4.30pm Patient investigation: Diagnostic imaging lab visit 2

6th December 2-6pm

Private study on written assignment

       

Page 32: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

31

MSc

in B

ioen

gine

erin

g |

3BIO2   BIOMEDICAL  DESIGN  PROJECT    

Level:                   Junior  Sophister  

Lecturer:   Dr.  Sonja  Hermann  ([email protected])  

Credits:     5    Module  Organisation  The  module  runs  for  12  weeks  of  the  academic  year  and  comprises  one  3  hour  combined  theory  and  practice  session  per  week.  Total  contact  time  is  33  hours.    Semester   Start  

Week  End  Week   Lectures  per  

week  Lectures  total  

Tutorials  per  week  

Tutorials  total  

2   1   12   2   22   1   11  

 Aims/Objectives  This  module  aims  to  develop  design  skills  according  to  a  Conceive-­‐Design-­‐Implement-­‐Operate  (CDIO)  compliant  methodology.  It  provides  the  students  with  theory,  methods  and  practise  to  create  insights  necessary  to  develop  safe,  effective  and  efficient  medical  devices,  which  are  optimised  for  user  interaction,  environment  and  context.    

It  provides  an  understanding  how  human  physical  and  cognitive  abilities  play  an  important  role  in  selecting  appropriate  engineering  principles  to  enable  a  successful  design.  The  theory  of  different  design  approaches,  relevant  to  medical  device  design  is  reviewed,  different  design  schools  are  discussed.    

It  gives  an  overview  of  all  stages  of  a  user  centered  design  process.  Students  will  be  provided  with  the  necessary  theory  and  practise  to  identify  and  understand  relevant  users,  their  abilities,  preferences  and  user  experiences,  and  a  framework  to  apply  learned  theory  at  all  stages  of  the  design  process  to  optimise  the  design  outcome.  It  provides  methods  for  evaluation  and  testing,  which  can  be  utilized  at  different  stages  of  the  design  process  to  review  and  test  medical  design  concepts  and  prototypes.    

The  students  learn  how  an  insight  into  the  underlying  problem  is  created  and  how  it  is  used  to  develop  an  innovative  human  centered  concept  solution.  It  discusses  the  role  and  value  of  user  centred  design  in  innovation  and  demonstrates  how  effectively  to  apply  user  centred  design  methods  to  foster  innovation.    

It  provides  the  students  with  an  introduction  to  team  work  and  multidisciplinary  project  teams  and  the  opportunity  to  apply  learned  knowledge  to  a  real  world  problem  within  group  project  work.    

The  module  structure  is  based  on  project  based  learning,  Each  week  students  are  introduced  to  new  content,  which  they  learn  to  apply  by  engaging  in  activities,  practical  implementation  and  discussion  to  their  own  project.  Projects  are  based  on  real  world  problems,  which  are  provided  by  PI’s  from  the  Trinity  Center  of  Bioengineering  in  collaboration  with  clinicians.              

Page 33: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

32

MSc

in B

ioen

gine

erin

g |

Module  Syllabus  • Introduction  to  the  iterative  design  process  • Overview  of  different  design  approaches  to  create  an  insight  into  a  design  problem  set  • Introduction  to  anthropometrics,  fundamentals  of  biomechanics,  human  factors  theory                        and  practice,  display  and  control  design,  as  they  apply  to  medical  devices  • The  role  of  the  user  in  the  design  process  for  medical  devices  • Universal  design,  user  experience  • Problem  analysis,  iterative  problem  shaping  • Analyse  a  task  • Prototype  testing:  mock-­‐ups,  paper,  semi  functional  and  functional  prototypes,  rapid                  prototyping  • Overview  of  computational  simulation  of  user  modelling  for  user  testing  in  early  design                            stages  • Effective  application  of  insight  into  user  device  interaction  and  how  to  foster  this  for                  foster  innovation  • Introduction  to  team  work  and  multidisciplinary  project  teams  

 Recommended  Text(s)    (Selected  chapters  in):  Handbook  of  Human  Factors  in  Medical  Device  Design  by  Matthew  Bret  Weinger  Engineering  psychology  and  human  performance  by  Christopher  D.Wickens  Human  memory  by  Alan  Baddeley  Questionnaire  Design  by  A.N.  Oppenheim    Learning  Outcomes  On  successful  completion  of  this  module,  students  will  (be  able  to):  

• Understand  human  factor  concepts  and  methods,  user  centred  design  process  and  how  to  use  related  methods  in  an  iterative  design  process  

• Understand   and   analyse   the   medical   context,   including   the   task,   environment   and   user  groups  

• Apply   human   factors   theory   and  methods   in   analysing  medical   device   design   problem,   to  help  create  an  insight  into  the  problem  set  and  to  provide  an  adequate  concept  solution.  

• Identify  the  needs  of  different  user  groups  and  understand  how  those  affect  and  impact  engineering  design  decisions  

• Understand  the  user  and  associated  abilities  and  preferences  • Analyse  a  task  and  understand  how  this  informs  user  centred  design  process  • Select  adequate  engineering  knowledge  and  methods  to  optimise  the  engineering  design  

solution  to  provide  an  effective,  efficient,  safe  and  comfortable  fit  to  the  user(s)  groups  • Understand  the  value  of  user  centred  design  in  innovation  and  how  to  facilitate  user  centred  

design  methods  for  innovation  • Understand  theory  and  practice  of  multidisciplinary  teams  work,  team  member  roles  and  

structures      

Page 34: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

33

MSc

in B

ioen

gine

erin

g |

Teaching  Strategies  The  module  structure  is  based  on  project  based  learning,  students  having  the  opportunity  to  immediately  apply  learned  theory  on  their  project.  The  students  are  asked  to  do  some  prepatory  work,  which  will  be  facilitated  by  the  use  of  blackboard.  Students  will  be  using  discussion  groups  and  other  social  media  for  learning  and  assessment.    Module  Notes  Blackboard    Assessment  Modes  Continuous  assessment  40%    including  bimonthly  project  reviews  between  the  design  teams  and  a  design  process  diary,  Project  report  (40%),  Idea/  design  concept  presentation  (5%),  final  project  presentation  (15%)      Note:   As   the   module   is   evaluated   fully   through   continuous   assessment,   there   are   no   exams.  Therefore,   there   are   no   associated   supplemental   exams   which   can   be   taken   if   the   subject   is  failed.   Similarly,   it   is   not   possible   to   complete   work   over   the   summer   individually,   as   an  alternative  to  exams.  This  is  due  to  the  group  work  nature  of  the  module.  

   

   

 

   

Page 35: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

34

MSc

in B

ioen

gine

erin

g |

Information on Electronic Engineering Labs Introduction:  

The  programme  of  Electronic  Engineering  Laboratories  is  intended  to  complement  and  enhance  the  material   covered   in   lectures   for   the   wide   range   of   subjects   in   the   Junior   Sophister   year.  Marks   awarded   for   these   laboratories   will   contribute   to   the   overall   mark   for   the   particular  subject   at   Annual   and   Supplemental   Examinations.   Each   laboratory   will   require   a   properly  structured  report  to  be  written  up  and  submitted  by  each  individual  student,  which  will  then  be  marked  by  the  laboratory  demonstrator  and  returned  to  the  student.  

Attendance:  

Attendance  at   the   laboratories   is  compulsory  and  will  be  monitored   throughout   the  year.  Any  report  submitted  by  a  student  who  has  not  attended  the  corresponding   laboratory  will  not  be  marked.  If  a  laboratory  is  missed  due  to  illness  or  participation  in  an  official  College  activity  this  should   be   certified   and   arrangements   will   be   made   where   possible   for   the   laboratory   to   be  undertaken  at  a   later  stage.  Casual  or  unexplained  absences  will  not  be   facilitated.  Please  also  note  that  laboratories  not  completed  during  the  teaching  semesters  cannot  be  repeated  during  the  summer  vacation  for  supplemental  examinations  and  existing  marks  will  be  carried  forward  to  the  supplemental  results.  

Reports:  

You  are  required  to  write  up  a  properly  structured  report  on  each  laboratory  undertaken.  You  may   also   be   requested   by   the   demonstrator   to   save   or   print   out   some   electronic   files   from  computer  simulations  as  part  of  the  submission.  The  report  may  be  typed  or  handwritten.  If  it  is  handwritten   it  must  be  clearly   legible  to  the  demonstrator.  The  structure  of   the  report  should  include:  

Name:  The  student’s  name  and  ID  number.  

 

Title:  The  code  and  name  of  the  laboratory.  

 

Date:  Date  on  which  laboratory  was  undertaken.  

 

Aims:  The  specific  intentions  and  objectives  of  the  laboratory  

 

Experimental   Set-­‐up:   Details   of   the   equipment   used   and   the   experimental   set-­‐up.   If   the  laboratory  is  a  simulation  type  the  name  and  function  of  the  software  packages  used  should  be  given.  

 

Page 36: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

35

MSc

in B

ioen

gine

erin

g |

Procedure:   An   account   of   the   steps   involved   in   carrying   out   the   experiment.   A   summarised  version  of  the  more  detailed  instructions  given  in  the  laboratory  handout  will  suffice.  

Results:   A   clear   and   accurate   record   of   the   results   obtained.   This   should   include   tables   of  experimental   data,   numerical   parameters,   printouts   of   simulation   waveforms   or   other  appropriate   forms   of   results.   It   should   be   possible   from   the   results   for   a   reader   to   get   a  complete  understanding  of  the  outcome  of  the  laboratory.  

Discussion:   A   detailed   analysis   and   criticism   of   the   results   obtained.   You   should   discuss   the  accuracy   of   the   results,   any   limitations   and   their   significance.   You   should   relate   them   to   the  material   covered   in   the   lectures  where   possible.   You   should   indicate  what   you   have   learned  from  the  laboratory  that  is  important  in  your  discipline.  

Conclusion:  You  should  consider  the  importance  and  implications  of  the  experiment  you  have  carried   out   in   the  wider   context   of   Electronic   Engineering.   You   should   give   your   opinions   on  what   is   good   or   bad   practice   concerning   the   topic   covered   by   the   laboratory   and   any  professional  ethical  issues  you  feel  are  important.  

Submission:   The   deadline   for   handing   up   your   report   is   1  week   after   completion   of   the   lab  unless  otherwise  stated  by  the  relevant  lecturer.  Reports  are  submitted  by  placing  them  in  the  marked  box  in  the  PC  Lab  on  the  first  floor  of  the  printing  house.  The  box  will  be  emptied  once  a  week  and  you  will  receive  an  email  acknowledgement  of  your  submission.  

 

Note:  Please  keep  a  copy  of  your  report  for  your  records  

 

 

 

Page 37: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

36

MSc

in B

ioen

gine

erin

g |

COLLEGE RULES AND REGULATIONS  

Description  of  the  European  Credit  Transfer  and  Accumulation  System  (ECTS)  

The  ECTS  is  an  academic  credit  system  based  on  the  estimated  student  workload  required  to  achieve  the  objectives  of  a  module  or  programme  of  study.  It  is  designed  to  enable  academic  recognition  for  periods  of  study,  to  facilitate  student  mobility  and  credit  accumulation  and  transfer.  The  ECTS  is  the  recommended  credit  system  for  higher  education  in  Ireland  and  across  the  European  Higher  Education  Area.  

The  ECTS  weighting  for  a  module  is  a  measure  of  the  student  input  or  workload  required  for  that  module,  based  on  factors  such  as  the  number  of  contact  hours,  the  number  and  length  of  written  or  verbally  presented  assessment  exercises,  class  preparation  and  private  study  time,  laboratory  classes,  examinations,  clinical  attendance,  professional  training  placements,  and  so  on  as  appropriate.    There  is  no  intrinsic  relationship  between  the  credit  assigned  to  a  module  and  its  level  of  difficulty.  The  European  norm  for  full-­‐time  study  over  one  academic  year  is  60  credits.      

ECTS  credits  are  awarded  to  a  student  only  upon  successful  completion  of  the  module  year.    Progression  from  one  year  to  the  next  is  determined  by  the  module  regulations.    Students  who  fail  a  year  of  their  degree  will  not  obtain  credit  for  that  year  even  if  they  have  passed  certain  component  modules.    Exceptions  to  this  rule  are  one-­‐year  and  part-­‐year  visiting  students,  who  are  awarded  credit  for  individual  modules  successfully  completed.    

 Examinations  and  Assessment  Individual   module   results   are   based   on   a   combination   of   written   examination   and/or   continuous  assessment  as  described   in  the   individual  module  descriptors   included  in  this  handbook.  Note  that  some  modules  do  not  have  a  written  examination  and  are   therefore  not   available   for   assessment  during  the  Supplemental  Exam  period.    

The   overall   result   for   the   year   is   the   weighted   average   of   the   individual   module   results.   The  weighting  is  based  on  the  ECTS  credits  associated  with  each  module.  

Students   are   obliged   to   be   present   and   make   a   serious   attempt   at   all   their   examinations.  Examination   timetables   are   published   on   College   and   School   websites   some   weeks   before   the  examinations  take  place.  It  is  your  responsibility  to  note  these  carefully  –  you  will  be  informed  that  timetables  have  been  published  but  you  must  check  them  continuously,  as  examination  details  may  change.  All  marks  for  labs/assignments  are  provisional  until  after  the  court  of  examiners  meet.  

The  rules  for  progressing  from  the  JS  year  are  laid  out  in  the  Calendar  (Section  M).  

For  those  leaving  College  after  the  Senior  Sophister  year,  20%  of  the  total  mark  achieved  at  the  first  sitting  of  examinations  in  Junior  Sophister  year  will  count  towards  the  final  degree  classification.  

   

Page 38: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

37

MSc

in B

ioen

gine

erin

g |

Progression  to  MAI  The   accrediting   body   for   engineering,   Engineers   Ireland,   has   stipulated   that   the   educational  requirement   for   Chartered   Engineering   is   a   master’s   degree.   In   Trinity   this   is   the   MAI   which   is  awarded   after   5   years.   Progression   requirements   to   the   5th   year   are   described   in   the   Calendar  (Section  M).  In  summary  it  is  limited  to  those  students  who  have  been  awarded  either:  

1. a  second  class  (first  division)  grade  or  better  in  their  4th  year    

or    2. a  second  class  (second  division)  grade  or  better  in  both  their  3rd  and  4th  years.    

 In  both  cases,  the  grade  is  determined  at  the  first  sitting  of  examinations.  NOTE:    Students  who  elect  to  pursue  the  MAI  degree  will  not  do  4E2  (Project)  in  4th  year.  Should  a  student  not  satisfy  either  of  the  criteria   for  progression   to   the  5th  year,  he/she  may  be  awarded  a  BAI.   In   these   the  cases   the  student  will  graduate  without  completing  4E2.    

 Attendance,  Non-­‐Satisfactory  Attendance,  Module  Work  

Please  note   the   following  extract   from  the  University  Calendar:    “For  professional   reasons,   lecture  and   tutorial   attendance   in   all   years   is   compulsory   in   the   School   of   Engineering.”     Attendance   at  practical  classes  is  also  compulsory.  

All  students  must  fulfil  the  requirements  of  the  School  with  regard  to  attendance  and  module  work.    Students  whose  attendance  or  work  is  unsatisfactory  in  any  year  may  be  refused  permission  to  take  all  or  part  of   the  annual  examinations   for   that  year.    Where  specific  attendance   requirements  are  not  stated,  students  are  non-­‐satisfactory  if  they  miss  more  than  a  third  of  a  required  module  in  any  term.  

At   the   end   of   the   teaching   term,   students   who   have   not   satisfied   the   department   or   school  requirements  may  be  returned  to  the  Senior  Lecturer’s  Office  as  non-­‐satisfactory  for  that  term.     In  accordance  with  the  regulations  laid  down  by  the  University  Council,  non-­‐satisfactory  students  may  be  refused  permission  to  take  their  annual  examinations  and  may  be  required  by  the  Senior  Lecturer  to   repeat   their   year.     See   also   the   sections   dealing   with   College   and   engineering   examination  regulations.  

College   regulations  are   set  out   in   the  University  Calendar,  which  may  be   consulted   in  any  College  Library,  the  Enquiries  Office,  any  academic  or  administrative  office  or  online  –  www.tcd.ie/calendar/.  You  are  expected  to  be  aware  of  the  various  regulations  -­‐  ignorance  of  the  regulations  is  not  a  valid  reason  for  failure  to  comply.  

 

 

 

 

Page 39: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

38

MSc

in B

ioen

gine

erin

g |

Collaboration  and  Individual  Work  

Engineering  is  about  co-­‐operation,  but  also  individual  effort.  The  everyday  fruits  of  engineering,  such  as   jet   aircraft,   suspension   bridges,  microprocessors   or   software   systems,   have   been  designed   and  built   by   teams   of   hundreds,   even   thousands,   of   engineers   working   together.   These   engineers  exchange  ideas  and  ultimately  co-­‐ordinate  their  efforts  to  achieve  the  overall  project  goal.  However,  each   component   of   even   the   largest   project   is   the   result   of   one   individual’s   engineering   skill   and  imagination.   If   you  want   to   become   a   successful   engineer,   you  must   develop   your   own   ability   to  analyse  problems.  This  means  that,  while  it  is  useful  to  work  as  a  team  initially,  you  must  ultimately  produce   your   own   work.   For   example,   for   a   computing   exercise,   discuss   the   task   with   your  classmates,  swap  ideas  on  how  to  solve  the  problem,  but  at  the  end  of  the  day,  implement  your  own  solution.  The  examinations  will  test  your  ability  rather  than  just  your  knowledge  and  the  only  way  to  develop   your   ability   for   engineering   analysis   is   to   complete   the   laboratory   and   tutorial   exercises  yourself.  

 Plagiarism  

In  the  academic  world,  the  principal  currency  is  ideas.  As  a  consequence,  you  can  see  that  plagiarism  –  i.e.  passing  off  other  people’s  ideas  as  your  own  –  is  tantamount  to  theft.  The  College’s  policy  on  plagiarism   is  set  out   in   the  College’s  General  Regulations  and   Information  booklet,  or  Section  H  of  the  College  Calendar.    There  is  no  substitute  to  reading  the  regulations  but  here  are  a  few  of  the  key  points.  Plagiarism  arises  from;  

• copying  another  student’s  work  • enlisting  another  person  or  persons  to  complete  an  assignment  on  the  student’s  behalf  • quoting  directly,  without   acknowledgement,   from  books,   articles   or   other   sources,   either   in  

printed,  recorded  or  electronic  format  • paraphrasing,  without  acknowledgement,  the  writings  of  other  authors  

 Plagiarism  is  serious  whether  the  plagiarism  is  deliberate  or  has  arisen  through  carelessness.  The  key  areas   of   the   JS   year   where   plagiarism   may   be   an   issue   are   laboratory   reports   and   written  assignments.  Be  careful  when  you  are  writing  a  report  to  make  sure  that  you  reference  your  work  properly,  giving  credit  to  the  sources  you  have  used.    

     

 

 

Page 40: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

39

MSc

in B

ioen

gine

erin

g |

COLLEGE INFORMATION Student  Disability  Services  

Do   you   know  what   supports   are   available   to   you   in   College   if   you   have   a   disability   or   a   specific  learning  disability?  If  you  have  a  disability  or  a  specific  learning  disability  (such  as  dyslexia)  you  may  want  to  register  with  Student  Disability  Services.  Further  information  on  our  services  can  be  found  at  www.tcd.ie/disability.    Declan  Reilly  and  Alison  Doyle  are  the  Disability  Officers  in  College.    You  can  make  an  appointment  to  see  them  by  phoning  6083111,  or  emailing  them  at:    [email protected].  

 

Skills4Study  Campus  (S4SC)  

Skills4studycampus  (S4SC)  is  a  fully  interactive  e-­‐learning  resource,  which  helps  students  to  develop  study  skills  and  is  suitable  for  students  on  all  modules  and  in  any  year  of  study.  

Published   by   Palgrave   Macmillan,   core   skills   are   developed   through   personalized   interactive  activities,  tests  and  assessments.  Utilised  by  HEIs  in  UK  and  in  ROI  includes  UCC  and  UCD.  

In  2011  –  2012  piloted  to  all  JF  students  in  School  of  Nursing  and  Midwifery,  Social  Work  and  Social  Policy,  Drama  and  Theatre  Studies,  TAP,  Mature  and  disability  students.  

Feedback   from   staff   has   been   very   encouraging.   Fully   embedded   by   School   of   Nursing   (module  handbook,   skills   module)   and   end   of   year   analysis   of   academic   performance   indicates   positive  correlation  with  S4SC  usage  /  module  completion.  

Study   skills   can   be   provided   ‘anytime,   anywhere’,     fully   accessible   to   students   living   outside   of  Dublin,  or  who  commute   long  distances,  have   family  or  work  commitments,  extensive  off   campus  placements,  or  heavy  timetables.  

Due  to  the  large  number  of  students  it  is  not  possible  to  provide  this  via  the  Blackboard  Learn,  the  College  Disability  Service  will  fund  access  to  S4SC  for  all  TCD  undergraduate  students  and  academic  staff   for   AY   2012   –   2013.     Login   will   continue   to   be   provided   via   the   link   on   www.tcd.ie/local,  additional   links  should  be  added  on  Student  Homepage,  Orientation  website  and  the  new  student  portal  my.tcd.ie.  

A   key   factor   is   engagement   and   support   from   academic   staff   and   embedding   of   resource   within  module   materials.   The   College   Disability   Service   proposes   to   present   S4SC   to   all   Directors   of  Undergraduate  Teaching  and  Learning  at  the  beginning  of  the  next  academic  year.  

The  first  module   ‘Getting  ready  for  academic  study’   is  a  free  open  resource.     It   is  suggested  that  a  link   is   added   to   the   registration   email   issued   to   all   prospective   students   via   GeneSIS.     This   will  identify  this  resource  at  the  point  of  pre-­‐entry  so  that  students  have  already  been  familiarised  with  its  structure  and  content.  

 

 

Page 41: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

40

MSc

in B

ioen

gine

erin

g |

Student  2  Student  

S2S  offers   trained  Peer   Supporters   if   you  want   to   talk   confidentially   to   another   student  or   just   to  meet   a   friendly   face   for   a   coffee   and   a   chat.     Peer   Supporters   are   there   to   assist  with   everything  from  giving  you  the  space  to   talk  about   things   to  helping  you  access  resources  and  services   in   the  College.    You  can  email  us  directly  to  request  a  meet-­‐up  with  a  Peer  Supporter  or  can  pop  in  to  the  Parlour  to  talk  directly  to  one  of  our  volunteers  and  arrange  a  meeting.  

S2S  is  supported  by  the  Senior  Tutor's  Office  and  the  Student  Counselling  Service.  http://student2student.tcd.ie,  E-­‐mail:  [email protected],  Phone:  +  353  1  896  2438  

 

Safety  

We  operate  a  ‘safe  working  environment’  policy  and  we  take  all  practical  precautions  to  ensure  that  hazards   or   accidents   do   not   occur.   We   maintain   safety   whilst   giving   you   the   student   very   open  access   to   facilities.  Thus   safety   is  also  your  personal   responsibility  and   it   is  your  duty   to  work   in  a  safe  manner.  By  adopting  safe  practices  you  ensure  both  your  own  safety  and  the  safety  of  others.      

 Please  read  the  following  Safety  Documents  for  working  practices  in  the  Departments  of  Mechanical  and  Manufacturing  Engineering  and  in  the  Department  of  Electronic  and  Electrical  Engineering:  

 http://www.mme.tcd.ie/    (bottom  left  tab)    http://www.mee.tcd.ie/safety/SS2012.pdf    

Please   ensure   you   comply   with   the   instructions   given   in   these   important   documents.     Failure   to  behave  in  a  safe  manner  may  result  in  your  being  refused  the  use  of  departmental  facilities.    

 

Staff/Student  Committee  

The  Staff/Student  Committee  meets  once  a  semester  to  discuss  matters  of  interest  and  concern  to  students  and  staff.    It  comprises  class  representatives  from  each  year.  

 

Facilities  

All  modules   in  the  Sophister  years  are  supplemented  by  a  full  programme  of   laboratory  work.  The  Junior   Sophister   laboratory   timetable   is   co-­‐ordinated  by  Dr.  Gareth  Bennett   in   the  Department  of  Mechanical  and  Manufacturing  Engineering  and  Dr.  David  Corrigan  in  the  Department  of  Electronic  and   Electrical   Engineering.     The   laboratories   are   well   equipped   for   undergraduate   work   and,   in  addition,  we  have  extensive  research  facilities,  which  are  available  for  projects.  The  Department  of  Mechanical   and   Manufacturing   Engineering   has   its   own   well-­‐equipped   workshops   which   are  managed  by  Mr.  Mick  Reilly.  The  Computer  Applications  Laboratories  are  administered  by  Mr.  John  Gaynor  and  we  have   state  of   the  art  work   stations  which  are  used  extensively   in  both   the  Design  Module  in  third  year  and  for  the  Project  work  in  fourth  and  fifth  years  as  appropriate.  Students  are  encouraged  to  make  use  of  these  facilities.    

Page 42: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

41

MSc

in B

ioen

gine

erin

g |

The   department   of   electronic   and   electrical   engineering   has   an   undergraduate   experimental  laboratory   on   the   ground   floor   of   the   printing   house   with   bench   facilities   and   equipment   for  approximately  50  students.   It  also  houses  a  computer   laboratory  with  provision  of  state  of   the  art  PC’s  for  30  students.  There  is  also  a  project  laboratory  shared  by  Senior  Sophister  students.  Teaching  facilities  in  Áras  an  Phiarsaigh  include  a  20  seat  laboratory  containing  music  technology  application  hardware   and   software,   a   smaller   teaching   laboratory   as  well   as   a   small   recording   studio   and   an  audio/video   editing   facility.   The  Microelectronics   Technology   Laboratory   located   in   the   Sami  Nasr  building  has  a  class  1,000  area  which  contains  a  wet  bench  and  two  furnaces  where  undergraduate  students   can   carry   out   experiments   in   the   integrated   circuit   fabrication   process   under   close  supervision.  A  mask  aligner,  Micromanipulator   test  probe  set-­‐up  and  various  microscopes  are  also  available.  

 

New  Student  Information  System  (SITS)    

The  way  that  you  do  things   in  College   is  changing  –   including  how  you  have  just  registered  for  the  year.   The   College   has   recognised   that   some   of   the   administrative   processes   in   College   were  becoming  somewhat  outdated   (such  as  queueing   in   the  rain   to   register  or   trying   to  get  a   letter   to  prove  that  you  are  a  student)  and  has  invested  in  a  brand  new  student  information  system  which  is  accessible  to  all  staff  and  students  via  the  web  portal  my.tcd.ie    This  means  that,  from  2012/2013  onwards,  all  communications  from  College  will  be  sent  to  you  via  your  online  portal  which  will  give  you  access  to  an  ‘intray’  of  your  messages.  You  will  also  be  able  to  view   your   timetables   online,   both   for   your   teaching   and   for   your   examinations.   All   fee  invoices/payments,  student   levies  and  commencement  fees  will  be   issued  online  and  all  payments  will  be  carried  out  online.  You  will  be  able  to  view  your  personal  details  in  the  new  system  –  some  sections   of   which   you   will   be   able   to   edit   yourself.   Up   until   now,   all   examination   results   were  published   online   by   the   Examinations   Office   at   http://www.tcd.ie/vpcao/examinations.php   –   in  future,  it  is  planned  that  your  results  will  also  be  communicated  to  you  via  the  online  portal.  Future  plans   for   the   new   system   include   online   module   registration   and   ongoing   provision   of   module  assessment  results.      As  this  is  a  brand  new  way  of  doing  things  in  Trinity,  full  user  helpline  facilities,  including  emergency  contact  details,  will  be  available  from  when  you  register  to  guide  you  through  these  new  processes  and  to  answer  any  queries  that  you  may  have    

               

Page 43: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

42

MSc

in B

ioen

gine

erin

g |

CAMPUS  MAP                                                                                                      

Page 44: Biomedical Engineering Junior Sophister Handbook 2013 - … Bio Handbook.pdfBiomedical Engineering Junior Sophister Handbook 2013 - 2014 ! Neural Engineering Cardiovascular Biomaterials

43

MSc

in B

ioen

gine

erin

g |

Location  of  the  TRINITY  CENTRE  FOR  BIOENGINEERING  (TCBE)    and  SCHOOL  OF  MEDICINE