biomechatronics - lecture 12. artificial motor control i

30
Biomechatronics Delft University of Technology Course 2006-2007 (Wb 2432) Frans van der Helm Lecture 13 Artificial motion control

Upload: tu-delft-opencourseware

Post on 12-Nov-2014

1.216 views

Category:

Education


1 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Biomechatronics - Lecture 12. Artificial motor control I

BiomechatronicsDelft University of Technology

Course 2006-2007(Wb 2432)

Frans van der Helm

Lecture 13Artificial motion control

Page 2: Biomechatronics - Lecture 12. Artificial motor control I

Contents• Artificial motor control

– Full artificial control– Modulation of natural control system

• Model of human controller– stability analyis– limitations and adaptation

• Supervisory control situations– supervisor over automated control loops

Page 3: Biomechatronics - Lecture 12. Artificial motor control I

artificial motor control

Page 4: Biomechatronics - Lecture 12. Artificial motor control I

artificial motor control interacts with physiological control

Reflexivecontrol

Artificialmotorcontrol

Physiologicalfeedforward

control

Page 5: Biomechatronics - Lecture 12. Artificial motor control I

reflexcontroller

Controlsignals

assistive concepts

Sensorysignals

1.Take over

control

2.influencingbehaviour

control system

3.training

Page 6: Biomechatronics - Lecture 12. Artificial motor control I

reflexcontroller

Controlsignals

Sensorysignals

1.Take over

control

assistive concepts

Page 7: Biomechatronics - Lecture 12. Artificial motor control I

Bionic gloveDr. Prochaska, Edmonton

Take over control

Cleveland FES Center

Page 8: Biomechatronics - Lecture 12. Artificial motor control I

stimRRD: Dr. Hermens

Dr. KenneyDr. Nene

UT: Ing. BulstraDr. HolsheimerVerloop

MST: Dr. v.d. AaDr. Buschman

2 channel stimulator for drop foot

Take over control

Page 9: Biomechatronics - Lecture 12. Artificial motor control I

Take over control

FES for complete spinal cord lesion

Page 10: Biomechatronics - Lecture 12. Artificial motor control I

reflexcontroller

Controlsignals

Sensorysignals

2.influencingbehaviour

Control system

assistive concepts

Page 11: Biomechatronics - Lecture 12. Artificial motor control I

Influencing behaviour control system

Parkinson patient

Dr. Lenders, MSTMedtronic

Brain stimulationwith Parkinson

Page 12: Biomechatronics - Lecture 12. Artificial motor control I

Dr. Holsheimer, UT

Influencing sensationSpinal cord stimulation

against pain

Influencing behaviour control system

Page 13: Biomechatronics - Lecture 12. Artificial motor control I

stim

reflexcontroller

attenuationhypersensitive reflexesby reciprocal inhibition

Influencing behaviour control system

Page 14: Biomechatronics - Lecture 12. Artificial motor control I

Spasticity calf muscle

The problemCVApatient

t (s)0.0 1.0

200

ϕ(deg)

SoleusEMG (uV)

200

-20

ϕ(deg/s)

.

0

0

0

Ankle

Page 15: Biomechatronics - Lecture 12. Artificial motor control I

stim

reflexcontroller

Shank front Shank back

Influencing behaviour control systemattenuation

hypersensitive reflexesby reciprocal inhibition

Page 16: Biomechatronics - Lecture 12. Artificial motor control I

100

Vm

stretch only

-0.2 0 0.2 0.4time [s]

stimulation + stretch

200 d

eg/s

soleus EMG

angular velocity0 200

0

150

0 2002

9

v [deg/s]v [deg/s]

soleus EMG Moment

mea

n m

omen

t [N

m]

peak

str

etch

ref

lex

EM

G [

µV]

no stimulation

stimulation

no stimulation

stimulation

results

Influencing behaviour control systemAttenuation hypersensitive reflexes

by reciprocal inhibition

Page 17: Biomechatronics - Lecture 12. Artificial motor control I

0 2 5 0 5 0 0 7 5 0

0

1 0 0

2 0 0

3 0 0

Stimulation

no stimulation

.ϕ (deg/s)

EM

G (u

V)

During walking

(Voormolen et al, 2000)

Stimulationand stretchduring initialswing phaseof gait

Experiments were performed at Aalborg University

Spinalcontroller

delay

stretchsensors

stimϕ (deg/s)

EM

G (u

V)

Page 18: Biomechatronics - Lecture 12. Artificial motor control I

artificial motor controlHierarchical control

Assistive system Human body

Intention detectionand sensory feedback

to the user

Conscious motorplanning and sensing

Task coordinationMotor coordination

andsensory integration

Low levelactuator control

Muscle controlwith proprioceptive

feedback

Page 19: Biomechatronics - Lecture 12. Artificial motor control I

artificial motor controluser interaction

continuous operator control

intention detection

Artificialreflex

Impedancecontrol

High level

Low level

Continuouscontrol

Discretetime control

Assistive system Human body Intention detection

and sensory feedbackto the user

Conscious motorplanning and sensing

Task coordinationMotor coordination

andsensory integration

Low levelactuator control

Muscle controlwith proprioceptive

feedback

Page 20: Biomechatronics - Lecture 12. Artificial motor control I

continuous operator control

intention detection

Artificialreflex

Impedancecontrol

High level

Low level

Continuouscontrol

Discretetime control

standing

sitting

Standing(right legin front)

Standing(left legin front)

standup

Step right

standup

Step left

Finite state control

Page 21: Biomechatronics - Lecture 12. Artificial motor control I

artificial motor control

Principle Control a relation betweenposition and force

K

continuous operator control

intention detection

Artificialreflex

Impedancecontrol

High level

Low level

Continuouscontrol

Discretetime control

Fy

yr

r ky = F + ky

F

yr y

y

FZ C

Plant+

loadFr

yr

Page 22: Biomechatronics - Lecture 12. Artificial motor control I

artificial motor controlPhysiological Impedance control

of the human body

Crago et al., CWRU

Control of FES assisted

hand grasp

Page 23: Biomechatronics - Lecture 12. Artificial motor control I

MIT, Hogan, Krebs

artificial motor controlartificial Impedance control

of assistive system

Impedance controlled systemfor standing-up training

(Kamnik & Bajd, Ljubljana)

Page 24: Biomechatronics - Lecture 12. Artificial motor control I

Physical Therapy

Page 25: Biomechatronics - Lecture 12. Artificial motor control I

Lokomat system

Page 26: Biomechatronics - Lecture 12. Artificial motor control I

LOPES

Page 27: Biomechatronics - Lecture 12. Artificial motor control I

LOPES

Page 28: Biomechatronics - Lecture 12. Artificial motor control I

BLEEX

Page 29: Biomechatronics - Lecture 12. Artificial motor control I

HAL5

Page 30: Biomechatronics - Lecture 12. Artificial motor control I

HAL5