biomasa bioetanol sc

Upload: vlad-kemenes

Post on 03-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Biomasa Bioetanol SC

    1/61

    Shiro Saka

    Graduate School of Energy Science

    Kyoto University

    Kyoto, Japan

    January 29, 2009

    Biorefinica Conference Workshop

    Osnabruck, Germany

    Recent Progress in Biorefineries as Introduced by

    Supercritical Fluid Science and Technology

  • 8/12/2019 Biomasa Bioetanol SC

    2/61

    Gasoline Engine

    Biodiesel

    Biorefinery from Biomass by Supercritical

    Fluid Technologies

    Water

    Methanol

    Alcohol

    WasteOils/Fats

    Diesel EngineBiopower

    Waste Wood

    WasteBiomass

    CO2

    BiomassH2O

    Waste Wood

    CO2

    H2O

    ThinningWood

    Waste Paper

    Waste oilTwig

    WastePaper

    Diesel Engine

    Substit

    utionfortheF

    ossilFuels

    Mitigation

    oftheEnvironmentalLoading

    LPG Engine

    MethaneBiomethanol

    Supercritical Fluid

    Science

    Bioplastics

    Liquid Biofuel

    Biochemicals

    Bioethanol

  • 8/12/2019 Biomasa Bioetanol SC

    3/61

    Supercritical FluidSupercritical Fluid

    A pure substance may be changed into 3 phases such as gas, liquid and

    solid. Among these, the critical point exists between the gas and liquid.

    Above the critical point, there exists the high-density fluid which cannot becondensed any more, even if temperature and/or pressure are increased.Such a substance is called supercritical fluid.

    Temperature

    Pressure

    Solid Liquid

    Triple Point

    Critical Point

    Critical

    Pressure

    Critical Temp.

    Gas

    Temperature-Pressure relationof the Pure Substance

    MeOHCritical Point: 239, 8.09MPa

    Under SC condition,Ionic Products: Increased(H2O Hydrolysis)

    Dielectric Constant: Decreased(Hydrophilic Hydrophobic)

    H2O

    Critical Point: 374, 22.1MPa

    SupercriticalFluid

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

  • 8/12/2019 Biomasa Bioetanol SC

    4/61

    Butch Continuous

    Liquid-Liquid

    Continuous

    Solid-LiquidSakas Laboratory, Graduate School of Energy Science, Kyoto University

    Supercritical Fluid Biomass Conversion SystemsSupercritical Fluid Biomass Conversion Systems

    Continuous

    Liquid-LiquidTwo Steps

    Direct Observation

    through Sapphirewindow

    Gas-Charging

    Unit

    Butch (Two Steps)

    Pilot Plant for BDF

  • 8/12/2019 Biomasa Bioetanol SC

    5/61

    368 370 372 374 376

    19

    20

    21

    22

    23

    24

    Temperature ( )

    Pressur

    e(MPa)

    Liquid Water

    C.P.

    SC H2O

    C

    B

    Gas Steam

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    A

    Phase Changes of Water in a VicinityPhase Changes of Water in a Vicinity

    of Its Critical Pointof Its Critical Point

  • 8/12/2019 Biomasa Bioetanol SC

    6/61

    Biodiesel

    Organic AcidsBiomethane

    Liq ue fa c tio n o f Lig no c e llu lo sic s b y Sup e rc ritic a l Alc oho l Te c hno lo g ie s

    Biofuels by Supercritical Fluid TechnologiesBiofuels by Supercritical Fluid Technologies

    Bioplastics

    Liquid Biofuel

    Biochemicals

    Bioethanol

  • 8/12/2019 Biomasa Bioetanol SC

    7/61

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Supercritical MethanolSupercritical Methanol TreatmentTreatment

    350350 /43MPa/43MPa

    Wood flo ur MeOH MeOH- inso lub le

    residue

    MeOH-soluble

    port ion

    Ref: Minami and Saka, 2003J Wood Sci 49:73-78.

  • 8/12/2019 Biomasa Bioetanol SC

    8/61

    Study by Dimeric Lignin Model CompoundsStudy by Dimeric Lignin Model Compounds

    270270 /27MPa/27MPa

    Condensed-Tye Linkage Ether Linkage

    5-5 -1 -O-4 -O-4Structure

    R=H R=CH3 R=CH3 R=H R=CH3 R=H R=CH3

    Reactivity VeryLow

    VeryLow

    Low High High VeryHigh

    High

    10-3/sec 2.8 0.34 NM 0.17

    Ea kJ/mol 68.9 85.2 NM 113

    OR OR

    OCH3H3 CO

    CH3 CH3

    OCH3

    OCH3

    C

    C

    CH2 OH

    OCH3

    OCH3

    OH

    H

    H

    OR

    OCH3

    C

    C

    CH2 OH

    O

    OH

    OCH3

    H

    H

    OR

    OCH3

    H2 C

    O

    OCH3

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Ref: Minami et al, 2003J Wood Sci 49:158-165.

  • 8/12/2019 Biomasa Bioetanol SC

    9/61

    Decomposition of Cellulose inDecomposition of Cellulose in

    Supercritical MethanolSupercritical Methanol

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    O

    OH

    OHHO

    HO O

    OH

    OHHO O

    O O

    OH

    OHHO OH

    n-1

    O

    OH

    OHHO

    HO O

    OH

    OHHO O

    O O

    OH

    OHHO OCH3

    0 3

    O

    OH

    OHHO

    HO

    OC H3

    O

    OH

    OHHO

    HOOC H3

    O

    OH

    OH

    OH

    O

    Cellulose

    Me thy la ted O l igo m ers

    Methy l --D-g lucos ideMethy l --D-g lucos ide

    Levog lucosan

    Other Prod uc ts

    Anomer iza t ion

    Methanolysis

    Methanolysis

    Ref: Ishikawa and Saka, 2001Cellulose 8:189-195.

  • 8/12/2019 Biomasa Bioetanol SC

    10/61

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Various Alcohols Available from BiomassVarious Alcohols Available from Biomass

  • 8/12/2019 Biomasa Bioetanol SC

    11/61

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Changes in the composition of the alcoholChanges in the composition of the alcohol--insolubleinsoluble

    residue under the condition of 350residue under the condition of 350ooCC

    0 10 20 30

    0

    20

    40

    60

    80

    100

    Productcompos

    ition(wt%)

    Methanol

    Cellulose

    LigninHemicelluloses

    0 10 20 300

    20

    40

    60

    80

    100

    Treatment time (min)

    1-Butanol

    Productcom

    positon(wt%)

    0 10 20 300

    20

    40

    60

    80

    100

    1-Decanol

    Treatment time (min)

    0 10 20 30

    0

    20

    40

    60

    80

    100

    Ethanol

    0 10 20 300

    20

    40

    60

    80

    100

    1-Octanol

    Treatment time (min)

    0 10 20 30

    0

    20

    40

    60

    80

    100

    1-Propanol

    Ref: Yamazaki, Minami and Saka, 2006J Wood Sci 52:527-532.

  • 8/12/2019 Biomasa Bioetanol SC

    12/61

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Various AlcoholVarious Alcohol--Soluble Portions of woodSoluble Portions of wood

    Ref: Yamazaki, Minami and Saka, 2006J Wood Sci 52:527-532.

  • 8/12/2019 Biomasa Bioetanol SC

    13/61

    Molecular Weight Distribution of AlcoholMolecular Weight Distribution of Alcohol--SolubleSoluble

    Portions after 30 min Treatment at 350Portions after 30 min Treatment at 350ooCC

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    10 15 20 25 30 35

    2100050001270 580 MW (Polystyrene)

    Methanol

    Ethanol

    1-Propanol

    1-Butanol

    1-Octanol1-Decanol

    Elution time (min)

    Ref: Yamazaki, Minami and Saka, 2006J Wood Sci 52:527-532.

  • 8/12/2019 Biomasa Bioetanol SC

    14/61

    Residue Mixture

    Before

    After

    OctanolOctanol--Treated Sample (350Treated Sample (350 /19MPa/5Min) for Hot/19MPa/5Min) for Hot--

    Compressed Treatment at 200Compressed Treatment at 200 for 3Sfor 3S

    Precipitated

  • 8/12/2019 Biomasa Bioetanol SC

    15/61

    Biodiesel

    Organic AcidsBiomethane

    Biofuels by Supercritical Fluid TechnologiesBiofuels by Supercritical Fluid Technologies

    Bioe tha no l from Lig no c e llulosic s b y Sup e rc ritic a l Wa ter Tec hno lo g y

    Bioplastics

    Liquid Biofuel

    Biochemicals

    Bioethanol

  • 8/12/2019 Biomasa Bioetanol SC

    16/61

    Various Production Types of BioethanolVarious Production Types of Bioethanol

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Wood Cellulose,

    Hemicellulose

    Wheat, Corn Starch

    Sugarcane Molasses

    Pret

    reatment

    Saccharification

    Fermentatio

    n

    Distillation

    Bioethano

    l

  • 8/12/2019 Biomasa Bioetanol SC

    17/61

    Chemical Composition of LignocelluloseChemical Composition of Lignocellulose

    Glucose

    Xylo se

    Arabinose

    Rhamnose

    G a la c tose

    Mannose

    Fuc o se

    Glucose

    Ethanol

    Ethanol

    Ethanol

    6C (Hexo se )

    5C (Pe nto se )

    6C (Hexo se )

    By Gene t ic a l Eng ine e ring

    Ba c te ria Zym o no na s m ob ilis

    Co lo n b a c te ria (Esc he ric hia c o li)

    Yea st(Sa c c ha rom yc e s c e re visia e )

    Lig no c e llu lo se Cellulose, C rysta lline 40 50

    Hem ic e llulo se s, Am o rp hou s 20 30

    Lig n in, A rom a t ic 20 30

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

  • 8/12/2019 Biomasa Bioetanol SC

    18/61

    The Separation Scheme of LignocellulosicsThe Separation Scheme of Lignocellulosics

    Treated in Supercritical WaterTreated in Supercritical Water

    Treated Sample

    Lignocellulosics

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Ref: Saka and Ehara, 2002

    International Symposium on HighlyEfficient Use of Energy and Reduction ofits Environmental Impact :17-26.

  • 8/12/2019 Biomasa Bioetanol SC

    19/61

    WaterWater--Soluble PortionSoluble Portion

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

  • 8/12/2019 Biomasa Bioetanol SC

    20/61

    HPLCHPLC CChromatograms ofhromatograms of WWaterater--SSolubleoluble PPortions fromortions from

    CCellulose asellulose as TTreated inreated in SSupercriticalupercritical WWater (380ater (380 ooC, 40 MPa)C, 40 MPa)

    0 5 10 15 20 25

    Retention time (min)

    Glucose

    5-HMF

    Methylglyoxal

    Erythrose

    FructoseGlycolaldehyde

    Dihydroxyacetone

    Levoglucosan

    Oligomers

    0.12 s

    0.24 s

    0.48 s

    Furfural

    Hydrolyzed

    Fragmented

    Dehydrolyzed

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Ref: Ehara and Saka, 2002Cellulose 9:301-311.

  • 8/12/2019 Biomasa Bioetanol SC

    21/61

    500 1000 1500 2000

    Water-soluble

    Cellododecaose

    1014.78

    52

    .7

    690.7

    528.0

    1177.1

    Cello-oligosaccharides

    Mass/charge

    528.0

    690.5

    852

    .6

    1015.1 1

    177.1

    1339.5

    1501.1

    1663.7

    1825.6

    1988.8

    OHO

    HO OH

    OH

    O

    OHO

    OHO

    OH

    O

    HOOH

    OH

    OH

    n - 2

    162

    Gl

    1543.5

    1705.51

    219.2

    1381.3

    894.7

    1056.6

    732.4

    570.1

    OHO

    HOOH

    OH

    O

    OHO

    OHO

    OH

    n

    O

    - 1

    162GA

    1603.3

    1279.2

    1441.2

    954.7 1

    117.1

    792.6

    616.1

    OHO

    HOOH

    OH

    O

    OHO

    OHO

    OH

    n

    O

    OH

    OH

    - 1

    162Er

    1646.4

    1321.3

    1484.4

    996.7

    1158.9

    834.76

    72.4

    162LG

    OHO

    HOOH

    OH

    O

    OHO

    OHO

    OH

    n

    OO

    OH

    HO-1

    Celloheptaose

    MALDIMALDI--TOFMS analyses of the waterTOFMS analyses of the water--soluble portionsoluble portion(Flow(Flow--type system, 380type system, 380 oo , 40 MPa, 0.24 s), 40 MPa, 0.24 s)

    Ref: Ehara and Saka, 2002Cellulose 9:301-311.

  • 8/12/2019 Biomasa Bioetanol SC

    22/61

    The Separation Scheme of LignocellulosicsThe Separation Scheme of Lignocellulosics

    Treated in Supercritical WaterTreated in Supercritical Water

    Treated Sample

    Lignocellulosics

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Ref: Saka and Ehara, 2002

    International Symposium on HighlyEfficient Use of Energy and Reduction ofits Environmental Impact :17-26.

  • 8/12/2019 Biomasa Bioetanol SC

    23/61

    SC water-soluble

    After 12 h

    Precipitates

    Dielectric constant; 10

    HydrophobicDielectric constant; 80

    Hydrophilic

    SC water Ordinary water

    Precipitates from Supercritical WaterPrecipitates from Supercritical Water--soluble Portionsoluble Portion

  • 8/12/2019 Biomasa Bioetanol SC

    24/61

    5 15 25 35 45

    2 ( )

    Intensity

    Dried Precipitates

    Cellulose

    (avicel)

    Sak as Lab oratory, Gradu ate Sc hoo l of Energy Sc ienc e, Kyoto

    XX--rayray DDiffractograms ofiffractograms of Dried PDried Precipitatesrecipitates afterafter

    SSupercriticalupercritical WWaterater TTreatment at 380reatment at 380 ooC for 0.24 sC for 0.24 s

    Cellulose II

    Cellulose I

    Ref: Ehara and Saka, 2002Cellulose 9:301-311.

  • 8/12/2019 Biomasa Bioetanol SC

    25/61

    Others

    Oligomers

    Polysaccharides(precipita

    0

    20

    40

    60

    80

    100

    0.48 s0.12 s 0.24 s

    Yield(%) Dihydroxyacetone

    Glycolaldehyde

    5-

    HydroxymethylfurfuralLevoglucosan

    Fructose

    Glucose

    MethylglyoxalErythrose

    Hydrolyzed

    Fragmented

    Dehydrated

    Chemical Composition of Cellulose TreatedChemical Composition of Cellulose Treated

    in Supercritical Water (380in Supercritical Water (380 , 40MPa), 40MPa)

    Glycolic acidLactic acid

    Formic acid

    Acetic acid

    Organic acid

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Ref: Ehara and Saka, 2002Cellulose 9:301-311.

  • 8/12/2019 Biomasa Bioetanol SC

    26/61

    OHO

    HOOH

    OH

    OO HO

    OHO

    OH

    n

    O

    OHO

    HOOH

    OH

    OO HO

    OH

    O

    OH

    n

    O

    OH

    OH

    OHO

    HOOH

    OH

    OO HO

    OHO

    OH

    n

    OO

    OH

    HO

    OHO

    HO OH

    OH

    O

    O HOOH

    O

    OH

    O

    HOOH

    OH

    OH

    n

    OHO

    HO OH

    OH

    O

    O HO OH O

    OH

    O

    HOOH

    OH

    OH

    n

    O

    HO

    HO

    OH

    OH

    OH

    CH2 OH

    HOH 2C

    HO

    OH

    O

    Organic Acids etc

    +

    +

    +

    0~10

    0~9

    0~9

    + H 20

    H20+

    >10

    Dehydration Fragmentation

    Fragmentation

    Dehydration0~9

    OH

    OH OH

    O

    OH

    OH OH

    O

    CH2OH

    C

    H

    O

    Hydrolysis

    Hydrolysis

    O

    O

    OH

    OH

    OH

    OHOH2C CHO

    CH2OH

    C

    H

    O

    CHO

    HC

    CH2OH

    OH

    CH2OH

    C

    CH2OH

    O

    HC

    C

    CH3

    O

    O

    LG

    Er

    GA Er

    GA

    FrGl

    LG5-HMF

    Er GA DA

    MG

    PA

    The Proposed Pathway of CelluloseThe Proposed Pathway of Cellulose

    Decomposition in FlowDecomposition in Flow--Type Supercritical WaterType Supercritical Water

    Ref: Ehara and Saka, 2002Cellulose 9:301-311.

  • 8/12/2019 Biomasa Bioetanol SC

    27/61

  • 8/12/2019 Biomasa Bioetanol SC

    28/61

    Oily substances

    Methanol-soluble

    Water-insoluble residue

    Methanolextraction

    Oily Substances (MethanolOily Substances (Methanol--soluble Portion)soluble Portion)

  • 8/12/2019 Biomasa Bioetanol SC

    29/61

    GCGC--MS Analysis of the Monomeric Compounds inMS Analysis of the Monomeric Compounds in

    the MeOHthe MeOH--Soluble PortionSoluble Portion

    206

    2021

    881

    921

    74

    O CHOHOH2C

    OH

    OCH3

    CH 3

    OH

    OCH3

    OH

    OCH3

    CHO

    OH

    OCH3

    CH

    CH 2

    OH

    OCH3

    CH 2

    CH 3

    OH

    OCH3

    C

    CH3

    O

    OH

    OCH3

    CH2

    COOH

    OH

    CH2

    CHO

    OCH3

    OH

    OCH3

    CH

    CH

    COOH

    OH

    OCH3

    CH 2

    CH 2

    CH 3

    OH

    OCH3

    CH 2

    CH

    CH 2

    OH

    OCH3

    CH

    CH

    CH3

    OH

    OCH3

    CH

    CH

    CHO

    CH

    CH

    CH 2

    OH

    OCH3

    OH

    OH

    C

    CH2

    OCH3

    CH3

    O

    OH

    CH2

    C

    OCH3

    CH3

    O

    Coniferyl aldehyde

    Coniferyl alcohol Acetoguaiacone

    Eugenol

    Vanillin

    Guaiacol

    Methyl guaiacol

    5-HMF

    Vinyl guaiacol

    Feruric acid

    Ethyl guaiacol

    Isoeugenol

    Propyl guaiacol

    Homovanillin

    Propioguaiacone

    Homovanillic acid

    Guaiacyl

    acetone

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Ref: Takada, Ehara and Saka, 2004J Wood Sci 50:253-259.

  • 8/12/2019 Biomasa Bioetanol SC

    30/61

    Study of Lignin Model CompoundsStudy of Lignin Model CompoundsSupercritical water (400Supercritical water (400 ooC, 115MPa)C, 115MPa)

    10 20 30

    Retention time (min)

    C

    C

    CH2 OH

    O

    OCH 3

    OH

    OCH3

    H

    HO H

    OCH3

    OH

    Biphenyl Condensed Linkage

    10 20 30

    Retention time (min)

    OH

    H3CO

    CH3

    OH

    CH3

    OCH3

    Untreated

    Treated

    -O-4 Ether LinkageGuaiacylglycerol--guaiacyl ether

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Ref: Takada, Ehara and Saka, 2004J Wood Sci 50:253-259.

    GC MS Ch f Di i C d

  • 8/12/2019 Biomasa Bioetanol SC

    31/61

    10 15 20 25 30 35 40 45 50

    Retention time [min]

    GCGC--MS Chromatogram of Dimeric CompoundsMS Chromatogram of Dimeric Compounds

    in the MeOHin the MeOH--Soluble PortionSoluble PortionDimers

    OH

    OCH3

    CH

    H2C

    OOCH3

    OH

    OCH3

    CH

    OH

    OCH3

    HC

    OH

    CH2

    H3CO

    OH

    OCH3

    CH2

    CH3 CH 3

    OH

    OCH3

    CH2

    H2C OH

    OCH3

    OH

    CH

    H3CO

    CH

    CH2OH

    OH

    OCH3

    CHO

    Biphenyl type

    Biphenyl type

    Diphenyl ethane typeStilbene type

    Phenyl coumaran

    type

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Ref: Takada, Ehara and Saka, 2004J Wood Sci 50:253-259.

    Various aromatic compounds by the GCVarious aromatic compounds by the GC MS in the methanolMS in the methanol

  • 8/12/2019 Biomasa Bioetanol SC

    32/61

    Retention time min

    SCH

    CH

    CHO

    SCH2

    C

    CH3

    O

    SC

    CH2

    CH3

    O

    SC

    CH3

    O

    SCH

    CH

    CH2 OH

    SCH

    CH

    CH3

    SCHO

    SCH2

    CH

    CH2

    SCH2

    CHO

    SCH

    CH2

    SCH2

    CH3

    SCH3

    SOHOCH3H3 CO

    Various aromatic compounds by the GCVarious aromatic compounds by the GC--MS in the methanolMS in the methanol--

    soluble portion fromsoluble portion from Japanese beechJapanese beech treatedtreated

    in supercritical waterin supercritical water

    G GCHCH

    C O O H

    GCHCH

    CHO

    GCH 2C

    CH 3

    O

    GCCH 2

    CH 3

    O

    GCCH 3

    O

    GCH 2CHO

    GCHCH

    CH 3

    GCH 2CH 3

    GCH 3

    GCHO

    OH

    OCH3

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Ref: Ehara, Takada and Saka, 2005J Wood Sci 51:256-261.

  • 8/12/2019 Biomasa Bioetanol SC

    33/61

    SC W t P f Eth l P d tiSC Water Process for Ethanol Production

  • 8/12/2019 Biomasa Bioetanol SC

    34/61

    Lignocellulosics

    Extra

    yeast Residue

    Alcoholfermentation

    Ethanol

    tank

    SC water

    Cooling water

    Enzymaticsaccharification

    Lignin-derived

    products tank

    Methanol-soluble portion

    Water-soluble portion

    Methanol extraction

    D

    istillation

    SCwater

    treatm

    ent

    380

    40 MPa

    15 , 40 MPa

    Poly-saccharides, Oligo-saccharidesGlucose, Fructose, Mannose, Xylose

    Cellulose-derived products

    Hemicellulose-derived products

    Lignin-derived

    products

    Mixed

    sugars

    400 , 40 MPa

    SC Water Process for Ethanol ProductionSC Water Process for Ethanol Production

    from Lignocellulosicsfrom Lignocellulosics

    100% 95%

    75~80%

    95%

    Separation

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Ref: Saka and Ehara, 2003Energy Res. 24:178-182.

  • 8/12/2019 Biomasa Bioetanol SC

    35/61

    AcOH Fermentation Esterification Hydrogenolysis

    Anaerobic Ethanol Fermentation by YeastAnaerobic Ethanol Fermentation by Yeast

    C6H12O6 2 CH3CH2OH + 2 CO2

    D-Glucose Ethanol Carbon Dioxide

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    C6H12O6 + H2 3 CH3CH2OH + H 2O

    D-Glucose Hydrogen Ethanol water

    Indirect Ethanol Fermentation by Acetic AcidIndirect Ethanol Fermentation by Acetic Acid

    FermentationFermentation

    NEDO D l f P B i Bi T h l i

  • 8/12/2019 Biomasa Bioetanol SC

    36/61

    Ethanol Production by Acetic Acid Fermenation withEthanol Production by Acetic Acid Fermenation withHydrogenolysis from LignocellulosicsHydrogenolysis from Lignocellulosics

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Hot-Compressed

    Water Hydrolysis

    Acetic Acid

    Fermentation

    Esterification/

    Hydrogenolysis

    Acetic Acid

    NEDO Development of Preparatory Basic Bioenergy TechnologiesNEDO Development of Preparatory Basic Bioenergy Technologies

    Ref: NEDO Pamphlet, p.20 (Oct 12,2007)

    H d d X l (H i ll l )Hardwood Xylan (Hemicellulose)

  • 8/12/2019 Biomasa Bioetanol SC

    37/61

    Hardwood Xylan (Hemicellulose)Hardwood Xylan (Hemicellulose)

    and Celluloseand Cellulose

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Microfibril

    Hydrogen bonds

    Hardwood Xylan 90%O-Acetyl-4-O-methylglucuronoxylan

    O

    HO O

    OHO

    HOO

    OH

    O

    O

    HOO

    O

    OH 3CO

    OH

    O

    HOHO

    O

    O

    OH

    O

    CH3

    O

    O

    HO

    OHOO

    HO

    OHOO

    HO

    OHOO

    OO

    OHO

    CH 3

    O

    HO

    OH( 21 )

    4-O-Methyl-D-glucuronic acid

    Cellulose

    Ref: Wood Chemistry, Kyoritsu Publisher,1968.

    B W d H d l i T t d b TB W d H d l i T t d b T St H tSt H t

  • 8/12/2019 Biomasa Bioetanol SC

    38/61

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    0 10 20 30 40 50

    140

    160

    180

    200

    220

    240

    260

    280

    0

    2

    4

    6

    8

    10

    Treatment Time (min)

    Glucuronic Acid

    Fructose

    Xylooligosaccharidesand Xylose

    Cellooligosaccharides

    and Glucose

    Acetic Acid

    Levoglucosan

    Temp.(

    oC)

    Y

    ield(basedonwood,wt%)

    Buna Wood Hydrolysis as Treated by TwoBuna Wood Hydrolysis as Treated by Two--Step HotStep Hot--

    CompressedCompressed (230(230 --270270 /10MPa/10mL/min)/10MPa/10mL/min)

  • 8/12/2019 Biomasa Bioetanol SC

    39/61

    Substrates for Acetic Acid FermentationSubstrates for Acetic Acid Fermentation

    O

    OHHO OH

    HO

    OH

    D-Glucose

    (C6)

    O

    OHHO OH

    HO

    D-Xylose(C5)

    O

    HO OH

    HO

    OHOH

    D-Mannose

    (C6)

    O

    OH

    OH

    HOH 2C

    OH

    L-Arabinose(C5)

    OOH

    OHHO OH

    OH

    D-Galactose

    (C6)

    OHO

    HO

    OH

    COOH

    OH

    Uronic acids(Acid Sugar)

    Cellooligosaccharide

    Xylooligosaccharide

    O

    (R )(S )

    (R )(R )

    C H 2O H C H 2O H

    H O

    O HO

    D-Fructose

    (C6)

    O

    OH

    HO

    HO

    OH

    OO

    HO

    OH

    O

    O

    OH

    HO

    OH

    OO

    HO

    OH

    O

    O

    OH

    HO

    OH

    OO

    HO

    OH

    OH

    OH OH OH

    OHO

    HO

    OH

    O

    O

    HO

    OH

    O

    HO

    OH

    OO

    O

    HO

    OH

    O

    HO

    OH

    OO

    O

    HO

    OH

    OH

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Acetic Acid Fermentation for sugarsAcetic Acid Fermentation for sugars

  • 8/12/2019 Biomasa Bioetanol SC

    40/61

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    (a) Glucose (b) Xylose

    (c) Fructose

    Acetic acid

    Xylose

    Fructose

    Acetic Acid Fermentation for sugarsAcetic Acid Fermentation for sugars

    Clostridium thermoaceticumClostridium thermoaceticum

    Glucuronic acid

    (d) Glucuronic acid

    Concentration(g/l)

    Fermentation time (h)

    Concentration(g/l)

    Fermentation time (h)

    Concentration(g/l)

    Fermentation time (h)

    Concentration(g/l)

    Fermentation time (h)

    Acetic acid

    Acetic acid

    Acetic acid

    Glucose

    NEDO Development of Preparatory Basic Bioenergy TechnologiesNEDO Development of Preparatory Basic Bioenergy Technologies

  • 8/12/2019 Biomasa Bioetanol SC

    41/61

    3 H2O

    O

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    3 CH3COH

    O

    Fermentation

    Esterification

    Hydrogenolysis

    Net

    3 ROH3 CH3COH

    O

    3 CH3COR

    O

    3 CH3COR

    6 H2 3 CH3CH2OH 3 ROH +

    C6H12O6+

    6 H2 3 CH3CH2OH +

    3 H2O+

    +

    +

    C6H12O6

    Ethanol Production by Acetic Acid FermenationEthanol Production by Acetic Acid Fermenation

    with Hydrogenolysis from Lignocellulosicswith Hydrogenolysis from Lignocellulosics

    NEDO Development of Preparatory Basic Bioenergy Technologiesp p y gy g

    Ref: NEDO Pamphlet, p.20 (Oct 12,2007)

    Bi f l b S iti l Fl id T h l iBi f l b S iti l Fl id T h l i

  • 8/12/2019 Biomasa Bioetanol SC

    42/61

    Biofuels by Supercritical Fluid TechnologiesBiofuels by Supercritical Fluid Technologies

    Bioplastics

    Liquid Biofuel

    Biochemicals

    Bioethanol

    Biodiesel

    Biodiesel from Oils/Fats by Supercritical

    Methanol Technology

    Organic AcidsBiomethane

    A V i f V bl Oil d A i l F

  • 8/12/2019 Biomasa Bioetanol SC

    43/61

    A Variety of Vegetable Oils and Animal FatsA Variety of Vegetable Oils and Animal Fats

    Sakas Laboratory, Graduate School of Energy Science, Kyoto

    Sunflower Rapeseed Soybean Cottonseed Olive Peanut Palm Copra Beef tallow

  • 8/12/2019 Biomasa Bioetanol SC

    44/61

    Sakas Laboratory, Graduate School of Energy Science, Kyoto

    Trio le in

    Oils/Oils/FFatsats asas FFeedstockseedstocks for Biodieselfor Biodiesel

    O le ic a c id

    Fre e fa t ty a c id m ino r c om p o ne nt (2-5%)

    Wa ste o il 25%

    Trig lyc e rid e m a jo r c om p onent

    CH2

    OCOCH2CH2CH2CH2CH2CH2CH2CH=CHCH2CH2CH2CH2CH2CH2CH2CH3|

    CH OCOCH2CH2CH2CH2CH2CH2CH2CH=CHCH2CH2CH2CH2CH2CH2CH2CH3|

    CH2OCOCH2CH2CH2CH2CH2CH2CH2CH=CHCH2CH2CH2CH2CH2CH2CH2CH3

    HOOCCH2CH2CH2CH2CH2CH2CH2CH=CHCH2CH2CH2CH2CH2CH2CH2CH3

  • 8/12/2019 Biomasa Bioetanol SC

    45/61

    C t l tC t l t ff

  • 8/12/2019 Biomasa Bioetanol SC

    46/61

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    CatalystCatalyst--freefree

    Supercritical Methanol (SC MeOH) MethodsSupercritical Methanol (SC MeOH) Methods

    One-Step SC MeOH Method :(Saka Method)Transesterification

    Two-Step SC MeOH Method :(Saka-Dadan Method)

    Hydrolysis + EsterificationRef: Kusdiana and Saka, 2004,

    Appl Biochem Biotech 115:781-791.

    Ref: Saka and Kusdiana, 2001,Fuel 80:225-231.

    OneOne--Step SC MeOH MethodStep SC MeOH Method

  • 8/12/2019 Biomasa Bioetanol SC

    47/61

    pp

    (Saka Process)(Saka Process)

    Oils/fats

    MeOH

    Biodiesel

    (BDF)

    GlycerolSC MeOH

    (350oC/20MPa)

    MeOH recovery

    Separation

    CH2 OCOR1CH OCOR2

    CH2 OCOR3+ 3CH3OH

    R3COOCH3

    R2COOCH3

    R1COOCH3

    +

    CH2 OHCH OH

    CH2 OHTriglyceride Biodiesel

    Este rific a tio n

    R4COOH + CH3OH R4COOCH3 + H2O

    Free fatty acid Biodiesel

    Tra nse ste rific a tio n

    No catalyst

    No catalyst

    Ref: Saka and Kusdiana, 2001, Fuel 80:225-231.

    TwoTwo--Step SCMeOH MethodStep SCMeOH Method

  • 8/12/2019 Biomasa Bioetanol SC

    48/61

    (Saka(Saka--Dadan Process)Dadan Process)

    Oils/fats

    Sub-C Water(270oC/7MPa)

    Glycerol

    MeOH

    BiodieselBDF

    Waterlayer

    Oil layer

    SC MeOH(270oC/7MPa)

    Waste water

    MeOH recovery

    Purification

    Step I: Hydrolysis

    Step II: Esterification

    Fa tty a c id sTrig lyc e ride

    Fa tty a c id

    +

    CH2 OCOR1|

    CH OCOR2

    |

    CH2

    OCOR3

    3H2O

    R1COOH

    R2COOH

    R3

    COOH

    CH2 OH|CH OH|

    CH2

    OH

    Biodiesel

    R4COOH CH3OH H2O++ R4COOCH3

    +

    Water

    Ref: Kusdiana and Saka, 2004, Appl Biochem Biotech 115:781-791.

    Reactions Involved in SC MeOH MethodsReactions Involved in SC MeOH Methods

  • 8/12/2019 Biomasa Bioetanol SC

    49/61

    Oils/fats

    Triglycerides Fatty acids

    Transesterification Hydrolysis

    Fatty acids

    Methyl estersOne-Step (Saka)Two-Step (Saka-Dadan)

    Esterification

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Reactions Involved in SC MeOH MethodsReactions Involved in SC MeOH Methods

    Ref: Kusdiana and Saka, 2004Appl Biochem Biotech 115:781-791.

    Direct Observation through Sapphire WindowDirect Observation through Sapphire Window

  • 8/12/2019 Biomasa Bioetanol SC

    50/61

    Direct Observation through Sapphire WindowDirect Observation through Sapphire Window

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    240 280 340

    Transesterification

    2 Phase 1 Phase

    (Low Temp) (High Temp)

    160 260 340

    280 300 340

    Hydrolysis

    2 Phase 2 Phase(Low Temp) (High Temp)

    Esterification

    1 Phase 1 Phase

    (Low Temp) (High Temp)

    Water

    Oil

    MeOH

    +FattyAcid

    MeOH

    Oil

    Ref: Kusdiana and Saka, 2004Appl Biochem Biotech 115:781-791.

    Arrhenius Plots for Transesterification,Arrhenius Plots for Transesterification,

  • 8/12/2019 Biomasa Bioetanol SC

    51/61

    1.4 1.6 1.8 2.0 2.210

    -4

    10-3

    10-2

    10-1 350 300 250 200 (

    oC)

    Reactionrateco

    nstant(1/

    sec)

    Temperature (1000/K)

    ,,

    Hydrolysis and Esterification of Rapeseed OilHydrolysis and Esterification of Rapeseed Oil

    Transesterification

    Esterification

    Hydrolysis

    Tc (MeOH)Tc (Water)

    270oC

    Sakas Laboratory, Graduate School of Energy Science, Kyoto UniversityRef: Kusdiana and Saka, 2004

    Appl Biochem Biotech 115:781-791.

    Applicable Range of Methods for Various Oils/FatsApplicable Range of Methods for Various Oils/Fats

  • 8/12/2019 Biomasa Bioetanol SC

    52/61

    1 10 1001

    10

    100

    Fattyacids(wt%

    )

    Water (wt%)

    Dark oil

    Waste oil

    Used frying oil

    Virginoil

    Acid-catalyzed

    Alkali-catalyzed

    Waste palm oil

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    SC MeOH Methods

    with different Water and Fatty Acid Contentswith different Water and Fatty Acid Contents

    Ref: Saka, 2005Japan Inst Energy 84:413-419.

  • 8/12/2019 Biomasa Bioetanol SC

    53/61

    Biodiesel Production from Oils and Fats without ProducingBiodiesel Production from Oils and Fats without Producing

    GlycerolGlycerol by Carcoxylate Estersby Carcoxylate Esters

  • 8/12/2019 Biomasa Bioetanol SC

    54/61

    Esterification

    R4COOH + CH3COOCH3 R4COOCH3 + CH3COOH

    Fatty Acid FAME(BDF)

    Interesterification

    No catalyst

    CH2 OCOR1

    CH OCOR2

    CH2 OCOR3

    + 3CH3COOCH3

    R3COOCH3

    R2COOCH3

    R1

    COOCH3+

    Triglyceride FAME(BDF)

    No catalyst

    Triacetin

    (BDF)

    CH2 OCOCH3CH OCOCH3

    CH2 OCOCH3

    Methyl Acetate

    Methyl Acetate

    Oils

    Methyl Acetate

    BDF

    (FAME+Triacetin)Supercritical Cond.

    (350oC/20MPa)

    Recycle

    Separation Purification

    Acetic Acid

    Tc=233oC

    Pc=4.69MPa Tc=233oC

    Pc=4.69MPa

    GlycerolGlycerol by Carcoxylate Estersby Carcoxylate Esters

    --OneOne--Step Supercritical Methyl Acetate MethodStep Supercritical Methyl Acetate Method--

    Sakas Laboratory, Graduate School of Energy Science, Kyoto UniversityRef: NEDO Pamphlet, p.21 (Oct 12,2007), Fuel in Press (2009)

    Fuel Properties of Model Fuel and BDF StandardsFuel Properties of Model Fuel and BDF StandardsFuel Properties of Model Fuel and BDF Standards

  • 8/12/2019 Biomasa Bioetanol SC

    55/61

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Properties Unit FAME TAModelBDFa

    Kyoto JASOb EU US

    Density(15oC)

    g/ml 0.88 1.16 0.92 0.86~0.900.86~0.90

    0.86~0.90 -

    Kinematic

    viscosity(40oC)

    mm2

    /s 4.4 7.3 4.5 3.5-5.0 3.5-5.0 3.5-5.0 1.9-6.0

    Cetanenumber

    - 86.3 < 15 64.5 51 51 51 47

    Carbon

    Residue(100%)

    wt% 0.02 0.01 0.03

    0.30

    (10%)

    0.30

    (10%

    0.30

    (10%) 0.05

    Pour point oC -16.0 -40.0 -18.0 7.5 - - -

    Cold filterpluggingpoint

    oC -16.0 13.5 -17.0 5 - - -

    Flash point(closedcup)

    oC 170.5 158.5 154.5 100 120 101 > 130

    a Methyl Oleate/Triacetin 3:1 (mol/mol)b Japan Automobile Standards Organization JASOStandard Later JISStandard JIS K2390

    Fuel Properties of Model Fuel and BDF StandardsFuel Properties of Model Fuel and BDF Standardsue ope t es o ode ue a d Sta da ds

    Fuel in Press (2009)

    Biodiesel Production by TransesterificationBiodiesel Production by Transesterification

  • 8/12/2019 Biomasa Bioetanol SC

    56/61

    Triglyceride

    (Rapeseed Oil)

    Dimethyl Carbonate

    (DMC)Upper

    BiodieselFAME

    Supercritical Dimethyl Carbonate

    Tc=274.9oC/Pc=4.6 MPa

    DMC RecycleSeparation/Purification

    Lower

    Glycerol carbonate +

    Citramalic Acid

    with Supercritical Dimethyl Carbonatewith Supercritical Dimethyl Carbonate

    Non-Catalyst350

    oC/20MPa

    :DMC= 1:42 (mol)

    Triglyceride Dimethyl

    carbonate

    Fatty acid

    methyl ester

    Glycerol

    carbonateCitramalic

    Acid

    CH2OCOR1

    CHOCOR2

    CH2OCOR3

    3 CH3OCOOCH3

    R1COOCH3

    R2COOCH3

    R3COOCH3

    CH

    CH2OH

    O

    O

    C O

    CH2

    C5H8O5

    Non-Catalyst

    Sakas Laboratory, Graduate School of Energy Science, Kyoto UniversityRef: Ilham and Ehara, 2009

    Biores Technol 100:1793-1796.

    ByBy--Products of Biodiesel Produced byProducts of Biodiesel Produced by

  • 8/12/2019 Biomasa Bioetanol SC

    57/61

    Supercritical Dimethyl CarbonateSupercritical Dimethyl Carbonate

    CH

    CH2OH

    O

    O

    C O

    CH2

    C

    CH2

    C

    C

    CH3

    O

    O

    HO

    OH

    OH

    Glycerol

    Carbonate

    Citramalic Acid Glyoxal

    Solvents for paints, dyes

    and adhesives.

    New source of polymeric

    materials.

    Cosmetic and dermatologic.

    Emulsifier

    Pharmaceutical applications. Printing.

    Textile dyeing.

    Rust and scale

    removal.

    (Cheol et al., 2003,2004; Rolf et al., 2000; Joerg et al., 1999;

    Ruey et al., 1997; Kiyoura and Kogure, 1997)

    HC

    O

    CH

    O

    Sakas Laboratory, Graduate School of Energy Science, Kyoto UniversityRef: Ilham and Ehara, 2009

    Biores Technol 100:1793-1796.

    Biofuels and Biochemicals from lignocellulosicsBiofuels and Biochemicals from lignocellulosics

  • 8/12/2019 Biomasa Bioetanol SC

    58/61

    Biomass Lignocellulosics

    Cellulose Hemicellulose-Derived

    Products

    Lignin-Derived products

    Sugars Organic Acids

    Value-Added

    Aromatic Products

    Formic Acid

    Bio-

    hydrogen

    Bio-

    methanol

    Bio-

    ethanol

    Super/Subcritical

    water

    Fatty Acid Methyl Esters

    Biodiesel

    Glycerol/Triacin

    Supercritical Methanol

    Supercritical CarboxylateEsters

    Supercritical Dimethyl

    arbonate

    Anaerobic

    Fermtn

    Alcoholic

    Fermtn

    Oils/Fats

    Methane

    by Supercritical Fluid Technologiesby Supercritical Fluid Technologies

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Acetic Acid

    Hydrogenolysis

    Ref: Saka, 2007

    Ad Tech for Chem from Wood Resp.56, CMC Publisher.

    ZeroZero--Emission Type Biorefinery for Chemicals andEmission Type Biorefinery for Chemicals and

    Bioenergy and its Utilization SystemBioenergy and its Utilization System

  • 8/12/2019 Biomasa Bioetanol SC

    59/61

    PaperWaste

    Ga rbage

    Waste

    Oils/Fats

    Bioethanol

    Biomethane

    Biodiesel

    SludgeExcresionsKitchen Waste

    Forest Residues

    Woody WasteAgr. Waste

    Biomethanol

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    Glycerol

    Biomethanol

    Liquid FuelMTBE ETBE

    Plant

    SS

    Home Gas

    SS

    Heat Local

    Heating

    SS

    Oil Factory

    CNG Car

    Diesel Car

    Bioethanol

    Biomethane

    Bioenergy and its Utilization SystemBioenergy and its Utilization System

    BiochemicalsBioplastics

    Value-addedProducts

    Gasoline Car

    Members of SakaMembers of Sakas Laboratorys Laboratory

  • 8/12/2019 Biomasa Bioetanol SC

    60/61

    yy

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    AcknowledgementsAcknowledgements

  • 8/12/2019 Biomasa Bioetanol SC

    61/61

    Tha nk you fo r your k ind a tte ntio n!

    Shiro SAKA

    Kyoto University

    Graduate School of Energy Science

    Kyoto, JAPAN

    Phone/Fax:075-753-4738

    E-mail:[email protected]

    Homepage:http://www.ecs.energy.kyoto-u.ac.jp/

    Sakas Laboratory, Graduate School of Energy Science, Kyoto University

    AcknowledgementsAcknowledgements