biology 340 comparative embryology lecture 11 dr. stuart sumida

77
Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida Overview of Embryology of the Vertebrate Skull Emphasis on Amniota

Upload: lilka

Post on 10-Feb-2016

90 views

Category:

Documents


0 download

DESCRIPTION

Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida. Overview of Embryology of the Vertebrate Skull Emphasis on Amniota. Initial introduction to components parts of a vertebrate head. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Biology 340Comparative EmbryologyLecture 11Dr. Stuart Sumida

Overview of Embryology of the Vertebrate Skull

Emphasis on Amniota

Page 2: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Initial introduction to components parts of a vertebrate head.

Page 3: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

This lecture will revolve around the early embryology of the vertebrate skull. One of the landmark achievments in this was the summary of that topic – based initially the developing embryonic shark head – by Edwin S. Goodrich. Thus it has come to be known as the “Goodrich Diagram”.

We will draw our own version of it before we go on to a slide review.

Page 4: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

If you’re working with the PowerPoint files, save space in your notes to draw here.

Page 5: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 6: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 7: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

The developing skull has three component origins:

•Condrocranium (base of skull / braincase)

•Dermatocranium (flat bones of skull)

•Splanchnocranium (bones derived from gill arch elements)

Page 8: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 9: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 10: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Mode of Germ Layer Formation Origin

Condrocranium Endochondral Mesoderm & Neural Crest

Dermatocranium Intramembranous Mesoderm &

Neural Crest

Splanchnocranium Endochondral Neural Crest

Page 11: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

CHONDROCRANIUM: Bones of the base of the skull.

•Most major cranial nerves escape the skull through these.•Endochondral•Neural Crest rostrally; Mesodermal caudally•Include: ethmoid, sphenoid (part), occipital (part) right and left temporal (parts).

Page 12: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Chondrocranium precursors

Dorsal view

Page 13: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Initial component parts of the vertebrate braincase.

Page 14: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 15: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Ethmoid

Sphenoid

Temporal(otic region)

Occipital(base)

Page 16: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

How the parts of the braincase grow together.

Page 17: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 18: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 19: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Flat bones of skull: DERMATOCRANIUM (These and others.)

Page 20: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 21: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 22: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

The junction between neural crest and mesodermal contributions to the dermatocranium has changed through vertebrate evolution.

Generally in region of frontal-parietal complex.

Page 23: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

The junction between neural crest and mesodermal contributions to the dermatocranium has changed through vertebrate evolution.

Generally in region of frontal-parietal complex

Page 24: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 25: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Red: MesodermBlue: Neural crest

Page 26: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Gill slit bones: become SPLANCHNOCRANIUM

Page 27: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 28: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 29: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Contribution of somite-derived musculature and gill-slit associated musculature in the vertebrate head.

Page 30: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Contribution of somite-derived musculature and gill-slit associated musculature in the vertebrate head.

Page 31: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Biology 323Human Anatomy for Biology MajorsWeek 10; Lecture 1; TuesdayDr. Stuart S. Sumida

Cranial Nerves and Other Soft Tissues of the Skull

Page 32: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Start withBRAIN STUFF…

Page 33: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

The Brain and Cranial Nerves

Page 34: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

FOREBRAIN

MIDBRAIN

HINDBRAIN

Page 35: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 36: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Forebrain:Cerebrum – Perception, movement of somatopleure, sensoro-motor integration, emotion, memory, learning.Diencephalon – Homeostasis, behavioral drives inhypothalamus; sensory relay and modification in thalamus;melatonin secretion in pineal gland.

Midbrain (Mesencephalon)Control of eye movement.

HindbrainCerebellum and Pons – control of movement,proprioreceptive input; relays visual and auditory reflexes inpons.Medulla Oblongata – Involuntry functions: blood pressure,sleep, breathing, vomiting.

Page 37: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

See in Part 3 of your Laboratory Protocols....

Page 38: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

• Special Sense organs = nose, eyes and ears, begin as small outcrops of ectoderm called placodes

Page 39: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

Placode 1 = nosePlacode 2 = eye

Placode 3 = ear

Page 40: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

• In the nose, the ectoderm become nerve cells that send their fibres through the cribriform plate of the ethmoid, back to the brain

• This is Cranial Nerve I = the Olfactory Nerve

Page 41: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

• The second placode becomes the lens of the eye.

• It sinks below the surface of the skin, and an outgrowth of the brain wraps around it.

• The outgrowth is the retina, and the stalk connecting it is Cranial Nerve II = The Optic Nerve

Page 42: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Eye starts out as photosensitive lobe of brain underlying surface of skin.

Lobe eventually becomes two-layered cup = retina.

Connected to brain by “stalk” that is the OPITC NERVE (cranial nerve II).

Lens from ectodermal placode.

Marginal cells of retina become specialized as MUSCLE CELLS that regulate opening of pupil:•Sphinctor pupillae (parasympathetically regulated)•Dilator pupillae (sympathetically regulated)

Page 43: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 44: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 45: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

DevelopingRetina

DevelopingLens

Page 46: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Ventral Root Cranial Nerves

Somite Associated

Page 47: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

• Head somites can be divided into 2 sets. Pre-otic and post-otic

Page 48: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

• The sklerotomes of the post otic somites form the floor of the brain case

Page 49: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

….and their myotomes develop into muscles of the tongue

Page 50: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

The myotomes of the pre-otic somites form the muscles that move the eyeballs.

Page 51: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

Each is supplied by a different cranial nerve:

Page 52: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

Cranial Nerve III = Occulomotor Nerve

Page 53: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

Cranial Nerve IV =Trochlear Nerve

Page 54: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

Cranial Nerve VI = Abducens Nerve

Page 55: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

EYEBALL MOVING MUSCLES:

Rectus Muscles•Superior rectus - III•Inferior rectus - III•Lateral rectus - VI•Medial rectus - III

Oblique muscles•Superior oblique - IV•Inferior oblique - III

Lavator palpebrae superioris - III

Page 56: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 57: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida
Page 58: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Dorsal Root Cranial Nerves

Gill Slit Associated

Page 59: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

Gill Arch Derivatives

Page 60: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

Mandibular arch

Page 61: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Cranial Nerve V: The Trigeminal Nerve (3 branches)

V1 Opthalmic , V2 Maxillary, V3 Mandibular

Page 62: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

Hyoid arch

Page 63: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Cranial Nerve VII: Facial nerve

Page 64: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

• The Inner ear starts out as a lens, but turns into a fluid filled sac

• Receptor organs of hearing and balance.

• Cranial Nerve VIII = Auditory or Vestibulocochlear Nerve

Page 65: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Otic VesicleCranial Nerve VIIIVestibulocochlear Nerve(Evolutionary branch of VII)

Page 66: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Early Development of the Ear

Page 67: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

Next arch

Page 68: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Cranial nerve IX: Glossopharyngeal Nerve

Page 69: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Development

Remaining arches

Page 70: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Cranial nerve X:The Vagus Nerve

Page 71: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Is there a “#0” nerve?

The Nervus Terminalis (Nerve Zero) has been suggested as a primitive vertebrate structure serving the vomeraonasal organ.

Page 72: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

I OlfactoryII OpticIII OcculomotorIV TrochlearV TrigeminalVI AbducensVII FacialVIII Vestibulochochlar

IX Glossopharyngeal

X VagusXI AccessoryXII Hypoglossal

Page 73: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Motor, sensory, or both

Page 74: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

I O SensoryII O SensoryIII O Mainly motorIV T Mainly motorV T BothVI A Mainly motorVII F BothVIII A SensoryIX G BothX V BothXI A Mainly motorXII H Mainly motor

Page 75: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

For YEARS developmental biologists tried to figure out the correspondence between specific head somites and specific pharyngeal gill slits.

Eventually, it was thought that somites and gill slits were such fundamentally different types of primary organizing segmentation that one could not be ties to the other.

However, in the mid 1990s on, the study of structures of the brain called BRAIN NEUROMERES – serial swellings of the dorsla hollow nerve cord - showed that:

1) Certain somites of the head – were associated with certain neuromeres, thus certain ventral root cranial neves were associated with certain neurmeres.

2) Certain gill slits were also associated with certain neuromeres.3) Thus, although somites and gill slits are not causally related to

one another, they do follow an even more primal head segmentation, that of the neuromeres of the brain.

Page 76: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

FOREBRAIN

MIDBRAIN

HINDBRAIN

Recall….

Page 77: Biology 340 Comparative Embryology Lecture 11 Dr. Stuart Sumida

Head Somites & Visceral Arch &Associated AssociatedCranial Nerve Cranial Nerve

IV

V

VI VII, VIII

VI IX

XII X,XI

NEUROMERE

Occipital Somites

Is III perhaps associated with V1?