bioimageinformatics spring2012 lecture02 v7€¦ · 5 understanding image formation axonal...

46
1 Bioimage Informatics Lecture 2, Spring 2012 Fundamentals of Light Microscopy Lecture 2 January 18, 2012

Upload: others

Post on 26-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

1

Bioimage InformaticsLecture 2, Spring 2012

Fundamentals of Light Microscopy

Lecture 2 January 18, 2012

Page 2: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

2

http://celebrating200years.noaa.gov/magazine/tct/tct_side1.html

Page 3: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

3

Outline

• Importance of understanding and optimizing image formation

• Some basic optics facts

• Light microscope structure

• Contrast generation in microscopy

• Practical considerations of microscopy

Page 4: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

4

• Importance of understanding and optimizing image formation

• Some basic optics facts

• Light microscope structure

• Contrast generation in microscopy

• Practical considerations of microscopy

Page 5: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

5

Understanding Image Formation

axonal transport of APP vesicles

0 50 100 1501.575

1.58

1.585

1.59

1.595

1.6

1.605x 10-3 Speckle intensity average

0 50 100 1501

1.05

1.1

1.15

1.2

1.25

1.3

1.35x 10-4 Speckle intensity standard deviation

http://micro.magnet.fsu.edu/primer/java/fluorescence/photobleaching/index.html

• Photobleaching results in gradual decreasing of image signal intensities over time under repetitive exposure.

Page 6: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

6

Optimizing Image Formation

• Bioimage data collection and data analysis must be collaborative processes.

Images that are improperly collected cannot be analyzed.E.g. violation of Nyquist sampling

Optimization of image collection can significantly simplify data analysis.This requires concurrent design of imaging and data analysis.

Page 7: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

axonal transport of human APP-YFP vesicles; 0.1 sec/frame 10 m

Optic lobe Ventral ganglion Segmental nerves

Region 10Region 0 Region 30Region 20

Example: Imaging Axonal Cargo Transport

Saxton lab, UC Santa Cruz

Page 8: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

8

Relation between Image Collection and Image Analysis

• Bioimage data collection and data analysis must be collaborative processes.

Image processing and computer vision can significantly reducechallenges in image collection.

This is one of the purposes of this class.

Page 9: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

9

Example: Image Alignment/Registration• Alignment of mitotic spindle images

• Introduction to the mitotic spindle

Page 10: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

10

Raw

Cropped Aligned

Demo I: Image Alignment

Page 11: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

Demo II: Image Alignment

11

http://www.cs.cmu.edu/~kangli/code/Image_Stabilizer.html

Page 12: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

12

Summary• Image collection and image analysis should be collaborative processes.

• Correct collection of image data is essential to subsequent data analysis.

• Computational image analysis can help overcome some of the challenges in image collection.

• Understanding image formation is essential to image analysis.

• Proper design of image collection can significantly simplify subsequence.

Page 13: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

13

• Importance of understanding and optimizing image formation

• Some basic optics facts

• Light microscope structure

• Contrast generation in microscopy

• Practical considerations of microscopy

Page 14: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

14

Reflection & Refraction

• Law of reflection

• Law of refraction(Snell's law)

i r

t

i r

sin sini i t tn n

in

tn

Page 15: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

15

Refractive Index

• Absolute refractive index of a material

velocity of electromagnetic wave in vacuumvelocity of electromagnetic wave in the material

- Air 1.000293

• Refractive index (also called relative refractive index)- Water 1.333- Glass ~1.50- Immersion oil 1.51

212

1

nnn

Page 16: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

16

Minimizing Distortion by Matching Refractive Indices

http://www.microscopyu.com/articles/optics/waterimmersionobjectives.html

Page 17: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

17

Spectrum of Visible Light

Color Wavelengthviolet 380–450 nmblue 450–495 nmgreen 495–570 nmyellow 570–590 nmorange 590–620 nmred 620–750 nm

http://en.wikipedia.org/wiki/Visible_spectrumhttp://science.hq.nasa.gov/kids/imagers/ems/visible.html

Page 18: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

18

Photon Energy• Energy of a photon: Planck's

law

• Shorter waves have higher energy.

cE hv h

h: Planck's constant; 6.62610-34J·sv: frequency of light; : wavelength of lightc: speed of light

energy of a photon = 3.973 10-19J at 500nm

Page 19: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

19

Why Use Light Microscopy?• Microscopy makes it possible to

visualize cell structure and dynamics.

• Light microscopy permits live imaging of cellular processes.

• Electron microscopy provides higher resolution but requires samples to be fixed.

Page 20: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

20

• Importance of understanding and optimizing image formation

• Some basic optics facts

• Light microscope structure

• Contrast generation in microscopy

• Practical considerations of microscopy

Page 21: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

21

Origination of Light Microscopes• Light microscope was invented more than three hundred years ago.

(Micrographia, Robert Hooke, 1665)

http://micro.magnet.fsu.edu/index.html Molecular expressions: microscopy world

Page 22: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

22

Two Microscope Configurations

Upright Invertedhttp://www.olympusamerica.com/seg_section/seg_home.asp

• Modern microscopes are computer-controlled .

• Modern microscopes can be configured to be highly automated.

Page 23: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

23

• Major microscope manufacturers

Some Reference Information

• Basic microscope structures and performance from different suppliers are very similar.

Page 24: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

24

Some Reference Information

http://www.olympusmicro.com/

http://micro.magnet.fsu.edu/index.html Molecular expressions: microscopy world

http://www.microscopyu.com/

Michael W. DavidsonFlorida State University

http://zeiss-campus.magnet.fsu.edu/index.html

Page 25: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

25

External Structure of Modern Microscopes

Upright Inverted

Page 26: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

26

Internal Structure of Modern Microscopes

Upright Invertedhttp://www.olympusmicro.com/Episcopic: reflected; Diascopic: transmitted

Page 27: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

27

Light Path Components (I)

• Illumination source

• Illumination filters

• Condenser

• Specimen stage

Page 28: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

28

Light Path Components (II)

• Objective lens

• Image filter

• Image sensor

• Eyepiece

Page 29: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

29

• Importance of understanding and optimizing image formation

• Some basic optics facts

• Light microscope structure

• Contrast generation in microscopy

• Practical considerations of microscopy

Page 30: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

30

(A) Bright-field(B) Phase(C) DIC(D) Dark-field

Contrast Generation in Light Microscopy• Two fundamental roles of any microscope

- To provide adequate contrast- To provide adequate resolution.

• Contrast generation– Transmitted light illumination vs reflected light illumination– Bright-field vs dark-field– Phase contrast– Fluorescent microscopy

Page 31: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

31

Reflected Light vs Transmitted Light

http://www.olympusmicro.com/primer/java/lightpaths/ix70fluorescence/ix70.html

Page 32: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

32

Bright-field vs Dark-field (I)• Under bright-field contrast, the specimen appears dark

against a bright background.

• Dark-field contrast is particularly useful when imaging thin filaments or small particles.

Page 33: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

33

Bright-field vs Dark-field (II)• Under dark-field contrast, by

using a special condenser, only the light scattered by the specimen can enter the objective lens.

Page 34: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

34

Phase Contrast & DIC (I)• Phase contrast is very useful in

imaging transparent specimens, which do not change light magnitude.

• Contrast is generated due to the different refractive indices of the sample and the background.

• Phase contrast can generate artifacts.

- Halos by boundary- Artificial shadows

• DIC significantly reduces halos and shadows.

Page 35: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

35

Phase Contrast & DIC (II)

Phase

DIC

Page 36: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

36

What is wrong with ALL the cell images?

Page 37: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

37

Green Fluorescence Protein

Jellyfish: Aequorea victoria

http://gfp.conncoll.edu/GFP-1.htm

Page 38: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

38

Fluorescence Microscopy (I)

Page 39: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

39

Fluorescence Microscopy (II)

Blue: chromosomeGreen: microtubulesRed: kinetochores

Fluorophores are available at many different colors

Page 40: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

40

Widefield vs Confocal Microscopy

http://www.olympusfluoview.com/theory/confocalintro.html

Page 41: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

41

Total Internal Reflection Microscopy (I)

i r

r i

sin nsin n

θi

θr

• Typical thickness of the evanescent layer is less than 200nm

• Often used for imaging- membrane related cellular processes

- single molecules

ni

nr

Page 42: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

42

Total Internal Reflection Microscopy (II)

• TIRF is often used for imaging- membrane related cellular processes- single molecules

Page 43: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

43

Fluorescence Microscopy Summary

• High specificity: - Chemical fluorophores- Fluorescent proteins

• High sensitivity: up to single molecules.

Page 44: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

44

• Importance of understanding and optimizing image formation

• Some basic optics facts

• Light microscope structure

• Contrast generation in microscopy

• Practical considerations of microscopy

Page 45: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

45

Practical Considerations

• Photobleaching- Fluorophores gradually lose their ability of light emission.

- This results in a sustained decrease in image intensity.

• Phototoxicity- Constant illumination generates free radicals that cause cell death.

- This places a fundamental limit on how many frame of images can be collected.

Page 46: BioimageInformatics Spring2012 Lecture02 v7€¦ · 5 Understanding Image Formation axonal transport of APP vesicles 0 50 100 150 1.575 1.58 1.585 1.59 1.595 1.6 1.605 x 10-3 Speckle

46

Questions?