bioenergy – opportunities and challenges in smart energy ...€¦ · bioenergy – opportunities...

10
Bioenergy – opportunities and challenges in smart energy transition Mikko Jalas, Aalto University, [email protected] Hanna-Liisa Kangas and Eeva Primmer, Finnish Environment Institute SYKE Biomass based energy production has been endorsed as a key means to build sustainable energy systems. While some technologies have already for a long time been in wide use, technology development is rapidly expanding the opportunities of using biomass in new applications. Availability and sources of organic, renewable material varies in different countries and regions. In countries such as Finland, forest biomass is paramount and largely available as residues of other industrial processes of the forest industry. However, in countries with less forest cover agricultural residues are significant. In densely populated areas, organic waste flows including municipal solid waste and sewage sludge are also significant sources of biomass. The role of forests as carbon sinks places forest biomass currently in a disputed position. Biomass in power generation In 2012, International Renewable Energy Association IRENA established grid connected power production capacity to be as following (see figure 1). Increased interest in using biomass in energy production implies several technology developments. IRENA (2012) estimates the maturity of grid connected bioenergy technologies as in figure 2. In figure 3, future investments trends are approximated regionally. Figure 1: Global grid connected biomass capacity in 2010 by feedstock and country/region (Irena 2012)

Upload: others

Post on 08-May-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bioenergy – opportunities and challenges in smart energy ...€¦ · Bioenergy – opportunities and challenges in smart energy transition Mikko Jalas, Aalto University, mikko.jalas@aalto.fi

   

Bioenergy – opportunities and challenges in smart energy transition

Mikko Jalas, Aalto University, [email protected] Hanna-Liisa Kangas and Eeva Primmer, Finnish Environment Institute SYKE

Biomass based energy production has been

endorsed as a key means to build sustainable energy systems. While some technologies have already for a long time been in wide use, technology development is rapidly expanding the opportunities of using biomass in new applications.

Availability and sources of organic, renewable material varies in different countries and regions. In countries such as Finland, forest biomass is paramount and largely available as residues of other industrial processes of the forest industry. However, in countries with less forest cover agricultural residues are significant. In densely populated areas, organic waste flows including municipal solid waste and sewage

sludge are also significant sources of biomass. The role of forests as carbon sinks places forest biomass currently in a disputed position.

Biomass in power generation

In 2012, International Renewable Energy Association IRENA established grid connected power production capacity to be as following (see figure 1). Increased interest in using biomass in energy production implies several technology developments. IRENA (2012) estimates the maturity of grid connected bioenergy technologies as in figure 2. In figure 3, future investments trends are approximated regionally.

Figure  1:  Global  grid  connected  biomass  capacity  in  2010  by  feedstock  and  country/region  (Irena  2012)  

Page 2: Bioenergy – opportunities and challenges in smart energy ...€¦ · Bioenergy – opportunities and challenges in smart energy transition Mikko Jalas, Aalto University, mikko.jalas@aalto.fi

   

 

Figure  2:  Biomass  power  generation  technology  maturity  status  (IRENA2012)    

 

Figure  3:  Projected  biomass  and  waste  installed  capacity  for  power  generation  and  annual  investment  (IRENA  2012)  

Despite technical advancement,

international outlook for bioenergy applications is uncertain. Le Feuvre (2016) envisions in an IEA publication the role of bioenergy to fill production gaps of other renewable energy sources such as solar and wind. The need for flexibility of production reduces capacity utilization and poses feasibility challenges. Required technical

modifications imply investments in existing plants and technology development. Le Feuvre (2016) regards the price of feedstock to be crucial, doubts global trade for feedstock such as pellets and anticipates local production which is based on local side and waste streams. On the other hand, lower capacity utilization rate requires simple, less capital intensive technology which may

Page 3: Bioenergy – opportunities and challenges in smart energy ...€¦ · Bioenergy – opportunities and challenges in smart energy transition Mikko Jalas, Aalto University, mikko.jalas@aalto.fi

   

further inhibit CHP production at the expense of separated heat production.

Transport fuels

The technology outlook and price development for biofuels by IRENA (2013) is as in figure 4. Compared to this figure, hydrotreated vegetable oil seems to have

increasing commercial grounds already in 2016 (for example Neste Oil).

Emerging biofuel technologies are frequently labelled as second generation biofuels. Their major advantage is that lignocellulosic feedstocks are more broadly available and do not require pasture or arable land (IRENA 2013). Estimates of the future costs of biofuels are as in figure 5.

 

Figure  4:  Maturity  of  different  biofuel  pathways  (IRENA  2013)  

 

Figure  5:  Summary  of  conventional  and  advanced  biofuel  production  costs  2012  and  2020.  (IRENA  2013)  

Page 4: Bioenergy – opportunities and challenges in smart energy ...€¦ · Bioenergy – opportunities and challenges in smart energy transition Mikko Jalas, Aalto University, mikko.jalas@aalto.fi

   

Bioenergy in Finland

Forest bioenergy production has grown fast in Finland during this millennium. Biomass is used in power generation, in CHP production, as heat-only plants in district heating networks and in the heating systems of individual buildings. The share of wood fuels of the total energy consumption in Finland in 2014 was 25.2 %, making them the most important fuel type in Finland (Statistics Finland 2016). In 2012, forest biomass contributed to 92TWh of energy production most of which was produced from forest industry residues (56TWh). As a single investments, the new pulp factory at Äänekoski is going to produce 1,4TWh power in excess to the own energy demand of the plant. The use of wood chips has increased rapidly, multiplying ten times in 15 years, and accounting for 15TWh currently. The use of wood fuels (mostly solid wood) for the heating of residential buildings and farms in also significant (18TWh).

The national energy and climate strategy issued in 2013 predicts significant increases in the use of forests. Synthetic methane should replace 10% of natural gas by 2025;

woodchip should increasingly substitute for peat and account for 25 TWh in the production of heat and power in 2020. The standing government has additionally stated that 40% of transportation fuels should be renewable by 2030 and that the quantity of imported oil should be cut to half.

The National energy and climate roadmap 2050 (published in 2014) anticipates that the targets set by EU and nationally cannot be met only with the side and waste streams of the forest industry. Rather, energy uses of forest biomass begin after 2030 to compete for raw material with the pulp-making processes. This competition is made more severe by the new investments in the pulp industry, including Äänekoski project under construction (annually 6,5 m.m3) and Finnpulp and new Kemijärvi mill in planning (together 8,9m.m3). The National energy and climate roadmap 2050 estimates the availability for forest biomass in Finland as in figure 6. In addition, agricultural biomasses are anticipated to make a significant 11-21TWh potential contribution to biomass supply.

Figure  6:  The  use  of  wood  resources  in  2008-­‐2012  and  the  technically  and  economically  sustainable  harvest  potential  (National  Energy  and  Climate  Roadmap  2050)

Page 5: Bioenergy – opportunities and challenges in smart energy ...€¦ · Bioenergy – opportunities and challenges in smart energy transition Mikko Jalas, Aalto University, mikko.jalas@aalto.fi

   

Technological transition in the bioenergy sector

Other developments in energy production impact the biomass based energy production. Pöyry (2016) indicates that the low electricity prices and intermittent production will cut the profitability of CHP production and the new investments in such capacity. Separate production of heat and heat pumps in district heating systems are increasingly feasible.

According to Pöyry (2016) pyrolysis oil is the most feasible production method of bio-oils in Finland. Current Fortum plant in Joensuu production capacity corresponds to appr. 210 GWh annual production. District heating plants are better suited to use pyrolysis oil than smaller household units.

Micro-CHP technology is expected to commercialize rapidly in a global scale. This technology is available for residential and SME scales, and offers 25% efficiency in converting primary energy carriers such as natural gas into electricity.1 The gasification of wood chips allows the same technology to be used for solid biomass such as woodchips (e.g. volter.fi). In Finland, gasification technology is expected to be suitable for SME size energy consumers but not for households. Capacity estimate for 2020 is only 54 MW (Gaia/Pesola et al 2014). However, biogas production and a gas driven vehicle fleet may improve the feasibility of micro-CHP also in Finland.

Risks; feedstock availability and carbon sink services

The close range bioenergy targets of the national climate and energy strategies will be met by using residual forest biomass, namely harvest residues, stumps and small-sized wood from early thinnings. However, it is

                                                                                                                         1  http://www.code2-­‐project.eu/wp-­‐content/uploads/D2.5-­‐2014-­‐12-­‐micro-­‐CHP-­‐potential-­‐analysis_final.pdf  

worth noting that these targets are already close to the economic-technical potential of the residues.

The availability of suitable wood for different needs will be a key question for forest and climate policy in Finland in the future. The demand for pulpwood and wood for energy is expected to increase significantly. According to scenario analyses by the national authority Natural Resource Institute, forest growth will increase substantially in Finland in the coming decades and meet the growing demand. However, it is worth noting that these Natural Resource Institute scenarios assume that climate change will itself enhance growth rather significantly; and the sensitivity of the conclusions to this assumption has not been analysed thoroughly. It is likely that the soil will start lose carbon in the scenarios of high harvest levels.

Production of forest bioenergy meets the sustainable forest management criteria that Finnish forestry applies. However, the fact that harvesting biomass for energy production decreases the carbon sink capacity of the forest is not accounted for. These indirect land-use-related emissions per unit of energy produced are low for bioenergy produced from harvest residues and high for bioenergy produced from living trees.

In the discussions about sustainability criteria for bioenergy in the EU, Finland is not in favour of developing product specific criteria. Rather, Finland prefers reliance on the overall sustainability of forest management and forestry and the existing governance arrangements, appealing to avoidance of additional bureaucratic burden. Some forest bioenergy may also have difficulties in meeting possible future emission reduction requirements in Finland and elsewhere in Europe (Repo et al. 2014).

Finland’s forests are significant carbon stocks and important for sequestering carbon,

Page 6: Bioenergy – opportunities and challenges in smart energy ...€¦ · Bioenergy – opportunities and challenges in smart energy transition Mikko Jalas, Aalto University, mikko.jalas@aalto.fi

   

also in European terms. Forests play a crucial role in controlling the increase in the atmospheric carbon dioxide. Globally, the carbon sink of forests sequesters annually about a fourth of all anthropogenic carbon dioxide emissions. Boreal and temperate forests together represent about a half of the global forest carbon sink. Forests act as carbon sinks when carbon additions to the pools exceed removals. Forest management controls the carbon budget of boreal forests. Actions enhancing growth and tree biomass volume have a positive effect on the balance, whereas high levels of harvesting have a negative effect. Forest carbon sinks may increase in spite of increasing harvest levels, if tree growth accelerates even more. In Finland, trees and soil have been acting as substantial carbon sinks during the most of the past 100 years (Liski et al. 2006). This favourable development has been a side-product of forest policy maximizing growth and increasing the growing stock of trees.

References

Finnish Forest Research Institute 2014. Finnish Statistical Yearbook of forestry 2014. Vammalan Kirjapaino Oy, Sastamala 2014.

Gaia (2014). Sähkön pientuotannon kilpailukyvyn ja Kokonaistaloudellisten hyötyjen analyysi LOPPURAPORTTI 3.10.2014

IRENA (2012). RENEWABLE ENERGY TECHNOLOGIES: COST ANALYSIS SERIES: Biomass for Power Generation. International Renewable Energy Agency IRENA woRkINg pApER Issue 1/5. Available at: https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-BIOMASS.pdf

IRENA (2013). ROAD TRANSPORT: THE COSTOF RENEWABLE SOLUTIONS. Preliminary report. Available at

http://www.irena.org/DocumentDownloads/Publications/Road_Transport.pdf

Le Feuvre (2016) Medium-term bioenergy market considerations – challenges and opportunities. IEA Renewable Energy Division. Available at http://www.ieabioenergy.com/wp-content/uploads/2016/05/P04-Medium-term-bioenergy-market-considerations-challenges-and-opportunities-Le-Feuvre.pdf

Liski, J., Lehtonen, A., Palosuo, T., Peltoniemi, M., Eggers, T., Muukkonen, P. & Mäkipää, R. 2006. Carbon accumulation in Finland's forests 1922-2004 – an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Annals of Forest Science 63(7): 687-697.

Pöyry (2015): Biotalousinvestointien puuraaka-ainehuollon varmistaminen. http://mmm.fi/documents/1410837/1801204/MMM_Poyry_Julk_Biotalousinvestoinnit.pdf/0b581a2b-f5ff-4a66-96dd-8b83c688496c

Pöyry (2016). EU:n 2030 ilmasto- ja energiapolitiikan linjausten toteutusvaihtoehdot ja niiden vaikutukset Suomen kilpailukykyyn eri sektoreilla. Vaiheen 2 väliraportti - Vaikutusten arviointi Suomen kannalta ja Suomen oman potentiaalin ja tavoitteiden toteutuminen sähkö- ja lämpösektorilla.

Repo, A., Böttcher, H., Kindermann, G. & Liski, J. 2014. Sustainability of forest bioenergy in Europe: land-use-related carbon dioxide emissions of forest harvest residues. Global Change Biology Bioenergy. doi:10.1111/gcbb.12179

Statistics Finland. 2016. Total energy consumption fell in 2014. http://www.stat.fi/til/ehk/2014/ehk_2014_2015-12-14_tie_001_en.html

Tiina Koljonen, ym (2012). Suomalainen tulevaisuuden energialiiketoiminta –skenaariot ja strategiat SALKKU-hankkeen yhteenvetoraportti

 

Page 7: Bioenergy – opportunities and challenges in smart energy ...€¦ · Bioenergy – opportunities and challenges in smart energy transition Mikko Jalas, Aalto University, mikko.jalas@aalto.fi

SET-asiantuntijakyselyn 1. kierroksen tuloksia...

Energian- ja sähkönkulutuksen kehitys vuoteen 2030 mennessä

Delfoi-kyselyn ensimmäinen kierros alkoi arvioilla energiankulutuksen kehityksestä 2030 mennessä. Kysymykset olivat sektorikohtaisia, mutta antavat kuvaa myös kokonaiskysynnän muutoksesta. Vastaajat arvelivat monien sektorien energiatarpeen vähenevän, ja ainoastaan palvelualan ja ICT palveluiden energiatarpeen kasvavan. Sähkönkulutuksen arveltiin kasvavan merkittävästi liikenteessä ja ICT-palveluissa.

Primäärienergiankulutus Suomessa vuonna 2030:

Sähkönkulutus Suomessa vuonna 2030:

Energiankäytön muutoksia koskevia arvioita on perusteltu eri tavoin. Yleisemmällä tasolla perusteltiin alhaisen talouskasvun ja teknologian kehityksen johtavan siihen, että kokonaisenergiankulutus ei ainakaan lisäänny. Energia-intensiivisen teollisuuden kulutuksen oletettiin myöskin pysyvän enintään samana ja usein jopa laskevan.

"Uskon että julkisten rakennusten lukumäärä vähenee ja koko kasvaa, jolloin energiatehokkuustoimet purevat. Myös julkisten palvelujen sijoittaminen muiden palvelujen yhteyteen vähentää energian kulutusta. Asuinrakennusten kulutus pienenee sekä energiatehokkuustoimien että rakennemuutoksen kautta: yhä useampi asuu kaupungissa/taajamassa kerrostalossa. Energiaintensiivisen teollisuuden odotan kokonaisuutena pysyvän samana ja energiatehokkuus vähentää kulutusta siellä. [...] Palvelut kasvavat ja maatalous pysyy samana tai kasvaa hiukan, koneellistuu mutta myös muuttuu energiatehokkaammaksi. ICT palvelut kasvavat niin paljon, ettei energiatehokkuus pure niiden primäärienergian kulutukseen. Katsoin OECD:n pitkän aikavälin euromaiden kasvuennusteen ja se on n. 2% vuodessa, sekin voi olla vähän optimistinen. Ei tarvita kovin kummoista energiaintensiteetin vähenemistä, että se kumoaa tuon vaatimattoman kasvun."

Page 8: Bioenergy – opportunities and challenges in smart energy ...€¦ · Bioenergy – opportunities and challenges in smart energy transition Mikko Jalas, Aalto University, mikko.jalas@aalto.fi

Eri energiateknologioiden merkitys vuonna 2030 Suomen energiajärjestelmässä

Ensimmäisellä kierroksella kysyimme myös vastaajien näkemyksiä teknologioiden käyttöönottoon Suomessa ja niiden vientimahdollisuuksiin. Teknologioista kaikkein merkittävimpinä tai selvimpinä tulokkaina pidettiin lämpöpumppuja, tuulivoimaa ja automatisoitua kysyntäjoustojärjestelmää. Myös aurinkosähkön ennakoitiin syrjäyttävän muita tuotantomuotoja.

Eri teknologioiden merkitys Suomen energiajärjestelmässä vuonna 2030:

Teknologioiden vientipotentiaali vuonna 2030:

Ensimmäisen kierroksen teknologiakohtaisia tuloksia ja huomioita esitellään kunkin teeman ensimmäisellä sivulla.!

Page 9: Bioenergy – opportunities and challenges in smart energy ...€¦ · Bioenergy – opportunities and challenges in smart energy transition Mikko Jalas, Aalto University, mikko.jalas@aalto.fi

SET WP1 Delphi R2 diagrams 4/8

D: Biomassapohjainen energiajärjestelmä

!""#$,&!)$!

,+%,&!"*$!

%,+.,&!%($!

.,+C,&!)'$!

/")$C,&!",$!

G"#9&)42**2#.#1'1%H&20$)02'')*023##0)$1#23)4565!

*$! 78)*$6595*$

1#23):;<:5!)$!

=(*3)*$6#228*$

1#23):;<:5!%($!

>8"?(*$1#23):;<:5!

'+$!

02)45)*$1#23)4565!"*$!

G"#9&)42**2'#41%(&05*#67873#

0)$(""#*388*$$1#23)456)5!

'$!

78)*$6595*$$1#23):;<:5!

%*$!F#23):;<$(*$$")<55*:;*;:!

#,$!

D)"H8)"#68:$1#:<5+$N)(18<<8*$38*<<8!

""$!

L68:$3(268**##:$$1#:<5N)(18<<8*!

&$!

D$&I1'#J&);),<2&*01'#1'1%H&2/+,01&I1'##41%(&05*3#

&$! %&$! '&$! *&$! (&$! "&&$!

!"#$%&'#()')(&'6##%0$.00$'0$0*1#&.&*/00(.&'%&.0.&&$'<#)7&((&/),5&#(#66&'.")40#66&8'

!"#$%&'#()')(&'6+77#.3%(0$'0$0*1#&.&*/00(.&'%&.0.&&$'<#)7&((&/),5&#(#66&'.")40#66&8'

!"#$%&'#()')(&'(+,%-$.").&$$)(.&'/0*"(.""'<#)7&((&/),5&#(##$'.")40#(##$8'

"&$!

)&$!

#&$!

+&$!

,&$!

C-$F1C!&$! A,$F1C!

($!

O-$F1C!%'$!

P,$F1C!*'$!

Q-$F1C!'$!

=$)*&@2&'1'#,2(($$(1%054+#67873#

Page 10: Bioenergy – opportunities and challenges in smart energy ...€¦ · Bioenergy – opportunities and challenges in smart energy transition Mikko Jalas, Aalto University, mikko.jalas@aalto.fi

Biomassa

Kuinka paljon Metsäenergian käyttö kasvaa sekä sähkön- että lämmöntuotannossa, mutta myös liikenteessä. Pohjalla täytyy kuitenkin olla metsien kestävä käyttö, ja esim. liikennepolttoaineiden raaka-aineina metsäteollisuuden sivutuotteet/jätteet (ei runkopuu itsessään). Myös kannot on jätettävä rauhaan metsämaan tasapainon säilymiseksi (esim. mykoritsat). Metsiemme ikärakenne mahdollistaa, ja metsien kasvun kannalta on suositeltavaa, että käyttö joitain vuosikymmeniä voi vielä kasvaakin. Tämä on erityisesti hyvä mahdollisuus tukea fossiilisten polttoaineiden käytön lopettamisessa. Samalla polttoon perustumattomat energiantuotantoratkaisut voivat kehittyä ja kasvaa niin, että bioenergian roolikin voi mahdollisesti vähentyä lähestyttäessä 2050.

En pidä todennäköisenä, että metsäbiomassa olisi merkittävässä roolissa tulevaisuudessa enkä usko, että sen osuus nousee energiantuotannossa, koska markkinoille tulee tehokkaampia ja CO2 taseeltaan parempia vaihtoehtoja, mikä hidastaa metsäbiomassan kasvua.

Poliittinen ilmasto on hyvää vauhtia menossa suuntaan, jossa biopolttoaine rinnastetaan turpeeseen. Suomen ilmastossa käsittämätöntä.

Miten Varsinkin lämmöntuotannossa jatkuvasti merkittävämpi rooli, kun fossiilisten polttoaineiden käyttö on lopetettava. Pitäisi kuitenkin päästä tilanteeseen, jossa metsäbiomassalla tuotetaan nimenomaan säätövoimaa eikä perusvoimaa, kuten nykyään. Puun polttaminen energiaksi ei ole optimaalista niin ilmaston, arvonlisäyksen kuin biodiversiteetinkään kannalta.

Uusiutuvaa energiaa tarvitaan sekä sähkön että lämmön (ja jäähdytyksen) tuotantoon vuoden jokaisena päivänä sekä pitkän matkan ja raskaaseen liikenteeseen sekä ainakin lyhyellä aikavälillä (2015-2030) myös henkilöautoliikenteeseen. Pelkästään tieliikenne kuluttaa vuosittain lähes 50 TWh energiaa, eli metsäbiomassaa kuluisi liikenteen tarpeisiin joka vuosi noin 25 milj m3. Onko meillä todella niin paljon metsiä, että tämä määrä löytyisi autojen tankkiin joka vuosi? Biokaasutekniikka on kuitenkin parhaimmillaan yksinkertaista ja myös kustannuksiltaan kohtuuhintaista. Myös syötteitä olisi monia erilaisia saatavilla, mm. peltobiomassa ja merilevät. Biokaasun verotus/biokaasun liikennekäyttöä voisi helpottaa ja halventaa, jolloin biokaasusta tulisi liikennekäytössäkin kiinnostavampaa. Kilpaileva raaka-ainekäyttö, jalostava teollisuus priorisoitava. Metsäpohjaista energiantuotantoa ei tule subventoida, mutta esimerkiksi muusta kuin puusta tuotettua biokaasua tulisi edistää, kasvupotentiaalia. Biokaasu on se suunta, jota pitäisi edistää, ei hakkeen polttaminen.