bio catalyst

Upload: gokulmishra

Post on 03-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Bio Catalyst

    1/25

    "Biocatalyst" redirects here. For the use of natural catalysts in organic chemistry,

    seeBiocatalysis.

    Humanglyoxalase I.Twozincions that are needed for the enzyme to catalyze its reaction are shown as purple

    spheres, and anenzyme inhibitorcalled S-hexylglutathione is shown as aspace-filling model,filling the two active

    sites.

    Enzymes/nzamz/are large biologicalmoleculesresponsible for the thousands ofmetabolic

    processesthat sustain life.[1][2]They are highly selectivecatalysts,greatly accelerating both the

    rate and specificity of metabolic reactions, from the digestion of food to the synthesis ofDNA.

    Most enzymes areproteins,although somecatalytic RNA moleculeshave been identified.

    Enzymes adopt a specificthree-dimensional structure,and may employ organic (e.g.biotin)andinorganic (e.g.magnesiumion)cofactorsto assist in catalysis.

    In enzymatic reactions, the molecules at the beginning of the process, calledsubstrates,are

    converted into different molecules, calledproducts.Almost all chemical reactions in abiological

    cellneed enzymes in order to occur at rates sufficient for life. Since enzymes are selective for

    their substrates and speed up only a few reactions from among many possibilities, the set of

    enzymes made in a cell determines whichmetabolic pathwaysoccur in that cell.

    Like all catalysts, enzymes work by lowering theactivation energy(Ea) for a reaction, thus

    dramatically increasing therate of the reaction.As a result, products are formed faster and

    reactions reach their equilibrium state more rapidly. Most enzyme reaction rates are millions of

    times faster than those of comparable un-catalyzed reactions. As with all catalysts, enzymes are

    not consumed by the reactions they catalyze, nor do they alter theequilibriumof these

    reactions. However, enzymes do differ from most other catalysts in that they are highly specific

    for their substrates. Enzymes are known to catalyze about 4,000 biochemical reactions.[3]A

    fewRNAmolecules calledribozymesalso catalyze reactions, with an important example being

    http://en.wikipedia.org/wiki/Biocatalysishttp://en.wikipedia.org/wiki/Biocatalysishttp://en.wikipedia.org/wiki/Biocatalysishttp://en.wikipedia.org/wiki/Glyoxalase_Ihttp://en.wikipedia.org/wiki/Glyoxalase_Ihttp://en.wikipedia.org/wiki/Glyoxalase_Ihttp://en.wikipedia.org/wiki/Zinchttp://en.wikipedia.org/wiki/Zinchttp://en.wikipedia.org/wiki/Zinchttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Space-filling_modelhttp://en.wikipedia.org/wiki/Space-filling_modelhttp://en.wikipedia.org/wiki/Space-filling_modelhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Moleculehttp://en.wikipedia.org/wiki/Moleculehttp://en.wikipedia.org/wiki/Moleculehttp://en.wikipedia.org/wiki/Metabolismhttp://en.wikipedia.org/wiki/Metabolismhttp://en.wikipedia.org/wiki/Metabolismhttp://en.wikipedia.org/wiki/Metabolismhttp://en.wikipedia.org/wiki/Enzyme#cite_note-1http://en.wikipedia.org/wiki/Enzyme#cite_note-1http://en.wikipedia.org/wiki/Enzyme#cite_note-1http://en.wikipedia.org/wiki/Catalysishttp://en.wikipedia.org/wiki/Catalysishttp://en.wikipedia.org/wiki/Catalysishttp://en.wikipedia.org/wiki/DNAhttp://en.wikipedia.org/wiki/DNAhttp://en.wikipedia.org/wiki/DNAhttp://en.wikipedia.org/wiki/Proteinshttp://en.wikipedia.org/wiki/Proteinshttp://en.wikipedia.org/wiki/Proteinshttp://en.wikipedia.org/wiki/Ribozymehttp://en.wikipedia.org/wiki/Ribozymehttp://en.wikipedia.org/wiki/Ribozymehttp://en.wikipedia.org/wiki/Protein_structurehttp://en.wikipedia.org/wiki/Protein_structurehttp://en.wikipedia.org/wiki/Protein_structurehttp://en.wikipedia.org/wiki/Biotinhttp://en.wikipedia.org/wiki/Biotinhttp://en.wikipedia.org/wiki/Biotinhttp://en.wikipedia.org/wiki/Magnesiumhttp://en.wikipedia.org/wiki/Magnesiumhttp://en.wikipedia.org/wiki/Ionhttp://en.wikipedia.org/wiki/Ionhttp://en.wikipedia.org/wiki/Ionhttp://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Substrate_(biochemistry)http://en.wikipedia.org/wiki/Substrate_(biochemistry)http://en.wikipedia.org/wiki/Product_(biology)http://en.wikipedia.org/wiki/Product_(biology)http://en.wikipedia.org/wiki/Product_(biology)http://en.wikipedia.org/wiki/Cell_(biology)http://en.wikipedia.org/wiki/Cell_(biology)http://en.wikipedia.org/wiki/Cell_(biology)http://en.wikipedia.org/wiki/Cell_(biology)http://en.wikipedia.org/wiki/Metabolic_pathwayhttp://en.wikipedia.org/wiki/Metabolic_pathwayhttp://en.wikipedia.org/wiki/Metabolic_pathwayhttp://en.wikipedia.org/wiki/Activation_energyhttp://en.wikipedia.org/wiki/Activation_energyhttp://en.wikipedia.org/wiki/Activation_energyhttp://en.wikipedia.org/wiki/Reaction_ratehttp://en.wikipedia.org/wiki/Reaction_ratehttp://en.wikipedia.org/wiki/Reaction_ratehttp://en.wikipedia.org/wiki/Chemical_equilibriumhttp://en.wikipedia.org/wiki/Chemical_equilibriumhttp://en.wikipedia.org/wiki/Chemical_equilibriumhttp://en.wikipedia.org/wiki/Enzyme#cite_note-3http://en.wikipedia.org/wiki/Enzyme#cite_note-3http://en.wikipedia.org/wiki/Enzyme#cite_note-3http://en.wikipedia.org/wiki/RNAhttp://en.wikipedia.org/wiki/RNAhttp://en.wikipedia.org/wiki/RNAhttp://en.wikipedia.org/wiki/Ribozymehttp://en.wikipedia.org/wiki/Ribozymehttp://en.wikipedia.org/wiki/Ribozymehttp://en.wikipedia.org/wiki/File:GLO1_Homo_sapiens_small_fast.gifhttp://en.wikipedia.org/wiki/File:GLO1_Homo_sapiens_small_fast.gifhttp://en.wikipedia.org/wiki/File:GLO1_Homo_sapiens_small_fast.gifhttp://en.wikipedia.org/wiki/File:GLO1_Homo_sapiens_small_fast.gifhttp://en.wikipedia.org/wiki/Ribozymehttp://en.wikipedia.org/wiki/RNAhttp://en.wikipedia.org/wiki/Enzyme#cite_note-3http://en.wikipedia.org/wiki/Chemical_equilibriumhttp://en.wikipedia.org/wiki/Reaction_ratehttp://en.wikipedia.org/wiki/Activation_energyhttp://en.wikipedia.org/wiki/Metabolic_pathwayhttp://en.wikipedia.org/wiki/Cell_(biology)http://en.wikipedia.org/wiki/Cell_(biology)http://en.wikipedia.org/wiki/Product_(biology)http://en.wikipedia.org/wiki/Substrate_(biochemistry)http://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Ionhttp://en.wikipedia.org/wiki/Magnesiumhttp://en.wikipedia.org/wiki/Biotinhttp://en.wikipedia.org/wiki/Protein_structurehttp://en.wikipedia.org/wiki/Ribozymehttp://en.wikipedia.org/wiki/Proteinshttp://en.wikipedia.org/wiki/DNAhttp://en.wikipedia.org/wiki/Catalysishttp://en.wikipedia.org/wiki/Enzyme#cite_note-1http://en.wikipedia.org/wiki/Enzyme#cite_note-1http://en.wikipedia.org/wiki/Metabolismhttp://en.wikipedia.org/wiki/Metabolismhttp://en.wikipedia.org/wiki/Moleculehttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_English#Keyhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Help:IPA_for_Englishhttp://en.wikipedia.org/wiki/Space-filling_modelhttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Zinchttp://en.wikipedia.org/wiki/Glyoxalase_Ihttp://en.wikipedia.org/wiki/Biocatalysis
  • 8/13/2019 Bio Catalyst

    2/25

    some parts of theribosome.[4][5]Synthetic molecules calledartificial enzymesalso display

    enzyme-like catalysis.[6]

    Enzyme activity can be affected by other molecules.Inhibitorsare molecules that decrease

    enzyme activity;activatorsare molecules that increase activity. Manydrugsandpoisonsare

    enzyme inhibitors. Activity is also affected bytemperature,pressure,chemical environment(e.g.,pH), and theconcentrationof substrate. Some enzymes are used commercially, for

    example, in the synthesis ofantibiotics.In addition, some household products use enzymes to

    speed up biochemical reactions (e.g., enzymes in biologicalwashing powdersbreak down

    protein orfatstains on clothes; enzymes inmeat tenderizersbreak down proteins into smaller

    molecules, making the meat easier to chew).

    Contents

    [hide]

    1 Etymology and history

    2 Structures and mechanisms

    o 2.1 Specificity

    2.1.1 "Lock and key" model

    o 2.2 Mechanisms

    2.2.1 Transition state stabilization

    2.2.2 Dynamics and function

    o 2.3 Allosteric modulation

    3 Cofactors and coenzymes

    o 3.1 Cofactors

    o 3.2 Coenzymes

    4 Thermodynamics

    5 Kinetics

    6 Inhibition

    7 Biological function

    8 Control of activity

    9 Involvement in disease

    10 Naming conventions

    11 Industrial applications

    12 See also

    13 References

    14 Further reading

    http://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Enzyme#cite_note-4http://en.wikipedia.org/wiki/Enzyme#cite_note-4http://en.wikipedia.org/wiki/Enzyme#cite_note-4http://en.wikipedia.org/wiki/Artificial_enzymehttp://en.wikipedia.org/wiki/Artificial_enzymehttp://en.wikipedia.org/wiki/Artificial_enzymehttp://en.wikipedia.org/wiki/Enzyme#cite_note-6http://en.wikipedia.org/wiki/Enzyme#cite_note-6http://en.wikipedia.org/wiki/Enzyme#cite_note-6http://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme_activatorhttp://en.wikipedia.org/wiki/Enzyme_activatorhttp://en.wikipedia.org/wiki/Enzyme_activatorhttp://en.wikipedia.org/wiki/Drughttp://en.wikipedia.org/wiki/Drughttp://en.wikipedia.org/wiki/Drughttp://en.wikipedia.org/wiki/Poisonhttp://en.wikipedia.org/wiki/Poisonhttp://en.wikipedia.org/wiki/Poisonhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/PHhttp://en.wikipedia.org/wiki/PHhttp://en.wikipedia.org/wiki/PHhttp://en.wikipedia.org/wiki/Concentrationhttp://en.wikipedia.org/wiki/Concentrationhttp://en.wikipedia.org/wiki/Concentrationhttp://en.wikipedia.org/wiki/Antibiotichttp://en.wikipedia.org/wiki/Antibiotichttp://en.wikipedia.org/wiki/Antibiotichttp://en.wikipedia.org/wiki/Washing_powderhttp://en.wikipedia.org/wiki/Washing_powderhttp://en.wikipedia.org/wiki/Washing_powderhttp://en.wikipedia.org/wiki/Fathttp://en.wikipedia.org/wiki/Fathttp://en.wikipedia.org/wiki/Fathttp://en.wikipedia.org/wiki/Papainhttp://en.wikipedia.org/wiki/Papainhttp://en.wikipedia.org/wiki/Papainhttp://en.wikipedia.org/wiki/Enzymehttp://en.wikipedia.org/wiki/Enzymehttp://en.wikipedia.org/wiki/Enzymehttp://en.wikipedia.org/wiki/Enzyme#Etymology_and_historyhttp://en.wikipedia.org/wiki/Enzyme#Etymology_and_historyhttp://en.wikipedia.org/wiki/Enzyme#Structures_and_mechanismshttp://en.wikipedia.org/wiki/Enzyme#Structures_and_mechanismshttp://en.wikipedia.org/wiki/Enzyme#Specificityhttp://en.wikipedia.org/wiki/Enzyme#Specificityhttp://en.wikipedia.org/wiki/Enzyme#.22Lock_and_key.22_modelhttp://en.wikipedia.org/wiki/Enzyme#.22Lock_and_key.22_modelhttp://en.wikipedia.org/wiki/Enzyme#Mechanismshttp://en.wikipedia.org/wiki/Enzyme#Mechanismshttp://en.wikipedia.org/wiki/Enzyme#Transition_state_stabilizationhttp://en.wikipedia.org/wiki/Enzyme#Transition_state_stabilizationhttp://en.wikipedia.org/wiki/Enzyme#Dynamics_and_functionhttp://en.wikipedia.org/wiki/Enzyme#Dynamics_and_functionhttp://en.wikipedia.org/wiki/Enzyme#Allosteric_modulationhttp://en.wikipedia.org/wiki/Enzyme#Allosteric_modulationhttp://en.wikipedia.org/wiki/Enzyme#Cofactors_and_coenzymeshttp://en.wikipedia.org/wiki/Enzyme#Cofactors_and_coenzymeshttp://en.wikipedia.org/wiki/Enzyme#Cofactorshttp://en.wikipedia.org/wiki/Enzyme#Cofactorshttp://en.wikipedia.org/wiki/Enzyme#Coenzymeshttp://en.wikipedia.org/wiki/Enzyme#Coenzymeshttp://en.wikipedia.org/wiki/Enzyme#Thermodynamicshttp://en.wikipedia.org/wiki/Enzyme#Thermodynamicshttp://en.wikipedia.org/wiki/Enzyme#Kineticshttp://en.wikipedia.org/wiki/Enzyme#Kineticshttp://en.wikipedia.org/wiki/Enzyme#Inhibitionhttp://en.wikipedia.org/wiki/Enzyme#Inhibitionhttp://en.wikipedia.org/wiki/Enzyme#Biological_functionhttp://en.wikipedia.org/wiki/Enzyme#Biological_functionhttp://en.wikipedia.org/wiki/Enzyme#Control_of_activityhttp://en.wikipedia.org/wiki/Enzyme#Control_of_activityhttp://en.wikipedia.org/wiki/Enzyme#Involvement_in_diseasehttp://en.wikipedia.org/wiki/Enzyme#Involvement_in_diseasehttp://en.wikipedia.org/wiki/Enzyme#Naming_conventionshttp://en.wikipedia.org/wiki/Enzyme#Naming_conventionshttp://en.wikipedia.org/wiki/Enzyme#Industrial_applicationshttp://en.wikipedia.org/wiki/Enzyme#Industrial_applicationshttp://en.wikipedia.org/wiki/Enzyme#See_alsohttp://en.wikipedia.org/wiki/Enzyme#See_alsohttp://en.wikipedia.org/wiki/Enzyme#Referenceshttp://en.wikipedia.org/wiki/Enzyme#Referenceshttp://en.wikipedia.org/wiki/Enzyme#Further_readinghttp://en.wikipedia.org/wiki/Enzyme#Further_readinghttp://en.wikipedia.org/wiki/Enzyme#Further_readinghttp://en.wikipedia.org/wiki/Enzyme#Referenceshttp://en.wikipedia.org/wiki/Enzyme#See_alsohttp://en.wikipedia.org/wiki/Enzyme#Industrial_applicationshttp://en.wikipedia.org/wiki/Enzyme#Naming_conventionshttp://en.wikipedia.org/wiki/Enzyme#Involvement_in_diseasehttp://en.wikipedia.org/wiki/Enzyme#Control_of_activityhttp://en.wikipedia.org/wiki/Enzyme#Biological_functionhttp://en.wikipedia.org/wiki/Enzyme#Inhibitionhttp://en.wikipedia.org/wiki/Enzyme#Kineticshttp://en.wikipedia.org/wiki/Enzyme#Thermodynamicshttp://en.wikipedia.org/wiki/Enzyme#Coenzymeshttp://en.wikipedia.org/wiki/Enzyme#Cofactorshttp://en.wikipedia.org/wiki/Enzyme#Cofactors_and_coenzymeshttp://en.wikipedia.org/wiki/Enzyme#Allosteric_modulationhttp://en.wikipedia.org/wiki/Enzyme#Dynamics_and_functionhttp://en.wikipedia.org/wiki/Enzyme#Transition_state_stabilizationhttp://en.wikipedia.org/wiki/Enzyme#Mechanismshttp://en.wikipedia.org/wiki/Enzyme#.22Lock_and_key.22_modelhttp://en.wikipedia.org/wiki/Enzyme#Specificityhttp://en.wikipedia.org/wiki/Enzyme#Structures_and_mechanismshttp://en.wikipedia.org/wiki/Enzyme#Etymology_and_historyhttp://en.wikipedia.org/wiki/Enzymehttp://en.wikipedia.org/wiki/Papainhttp://en.wikipedia.org/wiki/Fathttp://en.wikipedia.org/wiki/Washing_powderhttp://en.wikipedia.org/wiki/Antibiotichttp://en.wikipedia.org/wiki/Concentrationhttp://en.wikipedia.org/wiki/PHhttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Poisonhttp://en.wikipedia.org/wiki/Drughttp://en.wikipedia.org/wiki/Enzyme_activatorhttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme#cite_note-6http://en.wikipedia.org/wiki/Artificial_enzymehttp://en.wikipedia.org/wiki/Enzyme#cite_note-4http://en.wikipedia.org/wiki/Enzyme#cite_note-4http://en.wikipedia.org/wiki/Ribosome
  • 8/13/2019 Bio Catalyst

    3/25

    15 External links

    Etymology and history

    Eduard Buchner

    As early as the late 17th and early 18th centuries, the digestion ofmeatby stomach

    secretions[7]and the conversion ofstarchtosugarsby plant extracts andsalivawere known.

    However, the mechanism by which this occurred had not been identified.[8]

    In 1833, French chemistAnselme Payendiscovered the first enzyme,diastase.A few decades

    later, when studying thefermentationof sugar toalcoholbyyeast,Louis Pasteurcame to the

    conclusion that this fermentation was catalyzed by a vital force contained within the yeast cells

    called "ferments", which were thought to function only within living organisms. He wrote that

    "alcoholic fermentation is an act correlated with the life and organization of the yeast cells, not

    with the death or putrefaction of the cells."[9]

    In 1877,GermanphysiologistWilhelm Khne(18371900) first used the termenzyme,which

    comes fromGreek, "in leaven", to describe this process.[10]The word enzymewas used

    later to refer to nonliving substances such aspepsin,and the word fermentwas used to refer to

    chemical activity produced by living organisms.

    In 1897,Eduard Buchnersubmitted his first paper on the ability of yeast extracts that lacked any

    living yeast cells to ferment sugar. In a series of experiments at theUniversity of Berlin,he

    found that the sugar was fermented even when there were no living yeast cells in the

    mixture.[11]He named the enzyme that brought about the fermentation of sucrose

    "zymase".[12]In 1907, he received theNobel Prize in Chemistry"for his biochemical research

    and his discovery of cell-free fermentation". Following Buchner's example, enzymes are usually

    named according to the reaction they carry out. Typically, to generate the name of an enzyme,

    http://en.wikipedia.org/wiki/Enzyme#External_linkshttp://en.wikipedia.org/wiki/Enzyme#External_linkshttp://en.wikipedia.org/wiki/Eduard_Buchnerhttp://en.wikipedia.org/wiki/Eduard_Buchnerhttp://en.wikipedia.org/wiki/Meathttp://en.wikipedia.org/wiki/Meathttp://en.wikipedia.org/wiki/Meathttp://en.wikipedia.org/wiki/Enzyme#cite_note-Reaumur1752-7http://en.wikipedia.org/wiki/Enzyme#cite_note-Reaumur1752-7http://en.wikipedia.org/wiki/Starchhttp://en.wikipedia.org/wiki/Starchhttp://en.wikipedia.org/wiki/Starchhttp://en.wikipedia.org/wiki/Sugarhttp://en.wikipedia.org/wiki/Sugarhttp://en.wikipedia.org/wiki/Sugarhttp://en.wikipedia.org/wiki/Salivahttp://en.wikipedia.org/wiki/Salivahttp://en.wikipedia.org/wiki/Salivahttp://en.wikipedia.org/wiki/Enzyme#cite_note-8http://en.wikipedia.org/wiki/Enzyme#cite_note-8http://en.wikipedia.org/wiki/Enzyme#cite_note-8http://en.wikipedia.org/wiki/Anselme_Payenhttp://en.wikipedia.org/wiki/Anselme_Payenhttp://en.wikipedia.org/wiki/Anselme_Payenhttp://en.wikipedia.org/wiki/Diastasehttp://en.wikipedia.org/wiki/Diastasehttp://en.wikipedia.org/wiki/Diastasehttp://en.wikipedia.org/wiki/Fermentation_(food)http://en.wikipedia.org/wiki/Fermentation_(food)http://en.wikipedia.org/wiki/Fermentation_(food)http://en.wikipedia.org/wiki/Alcoholhttp://en.wikipedia.org/wiki/Alcoholhttp://en.wikipedia.org/wiki/Alcoholhttp://en.wikipedia.org/wiki/Yeasthttp://en.wikipedia.org/wiki/Yeasthttp://en.wikipedia.org/wiki/Yeasthttp://en.wikipedia.org/wiki/Louis_Pasteurhttp://en.wikipedia.org/wiki/Louis_Pasteurhttp://en.wikipedia.org/wiki/Louis_Pasteurhttp://en.wikipedia.org/wiki/Vitalismhttp://en.wikipedia.org/wiki/Vitalismhttp://en.wikipedia.org/wiki/Vitalismhttp://en.wikipedia.org/wiki/Enzyme#cite_note-9http://en.wikipedia.org/wiki/Enzyme#cite_note-9http://en.wikipedia.org/wiki/Enzyme#cite_note-9http://en.wikipedia.org/wiki/Germanyhttp://en.wikipedia.org/wiki/Germanyhttp://en.wikipedia.org/wiki/Germanyhttp://en.wikipedia.org/wiki/Wilhelm_K%C3%BChnehttp://en.wikipedia.org/wiki/Wilhelm_K%C3%BChnehttp://en.wikipedia.org/wiki/Wilhelm_K%C3%BChnehttp://en.wiktionary.org/wiki/enzymehttp://en.wiktionary.org/wiki/enzymehttp://en.wiktionary.org/wiki/enzymehttp://en.wikipedia.org/wiki/Greek_languagehttp://en.wikipedia.org/wiki/Greek_languagehttp://en.wikipedia.org/wiki/Greek_languagehttp://en.wikipedia.org/wiki/Enzyme#cite_note-10http://en.wikipedia.org/wiki/Enzyme#cite_note-10http://en.wikipedia.org/wiki/Enzyme#cite_note-10http://en.wikipedia.org/wiki/Pepsinhttp://en.wikipedia.org/wiki/Pepsinhttp://en.wikipedia.org/wiki/Pepsinhttp://en.wikipedia.org/wiki/Eduard_Buchnerhttp://en.wikipedia.org/wiki/Eduard_Buchnerhttp://en.wikipedia.org/wiki/Eduard_Buchnerhttp://en.wikipedia.org/wiki/Humboldt_University_of_Berlinhttp://en.wikipedia.org/wiki/Humboldt_University_of_Berlinhttp://en.wikipedia.org/wiki/Humboldt_University_of_Berlinhttp://en.wikipedia.org/wiki/Enzyme#cite_note-11http://en.wikipedia.org/wiki/Enzyme#cite_note-11http://en.wikipedia.org/wiki/Enzyme#cite_note-11http://en.wikipedia.org/wiki/Zymasehttp://en.wikipedia.org/wiki/Zymasehttp://en.wikipedia.org/wiki/Zymasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-12http://en.wikipedia.org/wiki/Enzyme#cite_note-12http://en.wikipedia.org/wiki/Enzyme#cite_note-12http://en.wikipedia.org/wiki/Nobel_Prize_in_Chemistryhttp://en.wikipedia.org/wiki/Nobel_Prize_in_Chemistryhttp://en.wikipedia.org/wiki/Nobel_Prize_in_Chemistryhttp://en.wikipedia.org/wiki/File:Eduardbuchner.jpghttp://en.wikipedia.org/wiki/File:Eduardbuchner.jpghttp://en.wikipedia.org/wiki/File:Eduardbuchner.jpghttp://en.wikipedia.org/wiki/File:Eduardbuchner.jpghttp://en.wikipedia.org/wiki/Nobel_Prize_in_Chemistryhttp://en.wikipedia.org/wiki/Enzyme#cite_note-12http://en.wikipedia.org/wiki/Zymasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-11http://en.wikipedia.org/wiki/Humboldt_University_of_Berlinhttp://en.wikipedia.org/wiki/Eduard_Buchnerhttp://en.wikipedia.org/wiki/Pepsinhttp://en.wikipedia.org/wiki/Enzyme#cite_note-10http://en.wikipedia.org/wiki/Greek_languagehttp://en.wiktionary.org/wiki/enzymehttp://en.wikipedia.org/wiki/Wilhelm_K%C3%BChnehttp://en.wikipedia.org/wiki/Germanyhttp://en.wikipedia.org/wiki/Enzyme#cite_note-9http://en.wikipedia.org/wiki/Vitalismhttp://en.wikipedia.org/wiki/Louis_Pasteurhttp://en.wikipedia.org/wiki/Yeasthttp://en.wikipedia.org/wiki/Alcoholhttp://en.wikipedia.org/wiki/Fermentation_(food)http://en.wikipedia.org/wiki/Diastasehttp://en.wikipedia.org/wiki/Anselme_Payenhttp://en.wikipedia.org/wiki/Enzyme#cite_note-8http://en.wikipedia.org/wiki/Salivahttp://en.wikipedia.org/wiki/Sugarhttp://en.wikipedia.org/wiki/Starchhttp://en.wikipedia.org/wiki/Enzyme#cite_note-Reaumur1752-7http://en.wikipedia.org/wiki/Meathttp://en.wikipedia.org/wiki/Eduard_Buchnerhttp://en.wikipedia.org/wiki/Enzyme#External_links
  • 8/13/2019 Bio Catalyst

    4/25

    the suffix-aseis added to the name of itssubstrate(e.g.,lactaseis the enzyme that

    cleaveslactose)or the type of reaction (e.g.,DNA polymeraseforms DNA polymers).[13]

    Having shown that enzymes could function outside a living cell, the next step was to determine

    their biochemical nature. Many early workers noted that enzymatic activity was associated with

    proteins, but several scientists (such as Nobel laureateRichard Willsttter)argued that proteinswere merely carriers for the true enzymes and that proteinsper sewere incapable of

    catalysis.[14]However, in 1926,James B. Sumnershowed that the enzymeureasewas a pure

    protein and crystallized it; Sumner did likewise for the enzymecatalasein 1937. The conclusion

    that pure proteins can be enzymes was definitively proved byNorthropandStanley,who

    worked on the digestive enzymes pepsin (1930), trypsin and chymotrypsin. These three

    scientists were awarded the 1946 Nobel Prize in Chemistry.[15]

    This discovery that enzymes could be crystallized eventually allowed their structures to be

    solved byx-ray crystallography.This was first done forlysozyme,an enzyme found in tears,

    saliva andegg whitesthat digests the coating of some bacteria; the structure was solved by agroup led byDavid Chilton Phillipsand published in 1965.[16]This high-resolution structure of

    lysozyme marked the beginning of the field ofstructural biologyand the effort to understand

    how enzymes work at an atomic level of detail.

    Structures and mechanisms

    See also:Enzyme catalysis

    Ribbon diagramshowinghuman carbonic anhydrase II.The grey sphere is thezinccofactor in the active site.

    Diagram drawn fromPDB 1MOO.

    Enzymes are in generalglobular proteinsand range from just 62 amino acid residues in size, for

    themonomerof4-oxalocrotonate tautomerase,[17]to over 2,500 residues in the animalfatty acid

    http://en.wikipedia.org/wiki/-asehttp://en.wikipedia.org/wiki/-asehttp://en.wikipedia.org/wiki/-asehttp://en.wikipedia.org/wiki/Substrate_(biochemistry)http://en.wikipedia.org/wiki/Substrate_(biochemistry)http://en.wikipedia.org/wiki/Lactasehttp://en.wikipedia.org/wiki/Lactasehttp://en.wikipedia.org/wiki/Lactasehttp://en.wikipedia.org/wiki/Lactosehttp://en.wikipedia.org/wiki/Lactosehttp://en.wikipedia.org/wiki/Lactosehttp://en.wikipedia.org/wiki/DNA_polymerasehttp://en.wikipedia.org/wiki/DNA_polymerasehttp://en.wikipedia.org/wiki/DNA_polymerasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-13http://en.wikipedia.org/wiki/Enzyme#cite_note-13http://en.wikipedia.org/wiki/Enzyme#cite_note-13http://en.wikipedia.org/wiki/Richard_Willst%C3%A4tterhttp://en.wikipedia.org/wiki/Richard_Willst%C3%A4tterhttp://en.wikipedia.org/wiki/Richard_Willst%C3%A4tterhttp://en.wikipedia.org/wiki/Enzyme#cite_note-14http://en.wikipedia.org/wiki/Enzyme#cite_note-14http://en.wikipedia.org/wiki/Enzyme#cite_note-14http://en.wikipedia.org/wiki/James_B._Sumnerhttp://en.wikipedia.org/wiki/James_B._Sumnerhttp://en.wikipedia.org/wiki/James_B._Sumnerhttp://en.wikipedia.org/wiki/Ureasehttp://en.wikipedia.org/wiki/Ureasehttp://en.wikipedia.org/wiki/Ureasehttp://en.wikipedia.org/wiki/Catalasehttp://en.wikipedia.org/wiki/Catalasehttp://en.wikipedia.org/wiki/John_Howard_Northrophttp://en.wikipedia.org/wiki/John_Howard_Northrophttp://en.wikipedia.org/wiki/John_Howard_Northrophttp://en.wikipedia.org/wiki/Wendell_Meredith_Stanleyhttp://en.wikipedia.org/wiki/Wendell_Meredith_Stanleyhttp://en.wikipedia.org/wiki/Wendell_Meredith_Stanleyhttp://en.wikipedia.org/wiki/Enzyme#cite_note-15http://en.wikipedia.org/wiki/Enzyme#cite_note-15http://en.wikipedia.org/wiki/Enzyme#cite_note-15http://en.wikipedia.org/wiki/X-ray_crystallographyhttp://en.wikipedia.org/wiki/X-ray_crystallographyhttp://en.wikipedia.org/wiki/X-ray_crystallographyhttp://en.wikipedia.org/wiki/Lysozymehttp://en.wikipedia.org/wiki/Lysozymehttp://en.wikipedia.org/wiki/Lysozymehttp://en.wikipedia.org/wiki/Egg_whitehttp://en.wikipedia.org/wiki/Egg_whitehttp://en.wikipedia.org/wiki/Egg_whitehttp://en.wikipedia.org/wiki/David_Chilton_Phillipshttp://en.wikipedia.org/wiki/David_Chilton_Phillipshttp://en.wikipedia.org/wiki/David_Chilton_Phillipshttp://en.wikipedia.org/wiki/Enzyme#cite_note-16http://en.wikipedia.org/wiki/Enzyme#cite_note-16http://en.wikipedia.org/wiki/Enzyme#cite_note-16http://en.wikipedia.org/wiki/Structural_biologyhttp://en.wikipedia.org/wiki/Structural_biologyhttp://en.wikipedia.org/wiki/Structural_biologyhttp://en.wikipedia.org/wiki/Enzyme_catalysishttp://en.wikipedia.org/wiki/Enzyme_catalysishttp://en.wikipedia.org/wiki/Enzyme_catalysishttp://en.wikipedia.org/wiki/Ribbon_diagramhttp://en.wikipedia.org/wiki/Ribbon_diagramhttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Zinchttp://en.wikipedia.org/wiki/Zinchttp://en.wikipedia.org/wiki/Zinchttp://www.rcsb.org/pdb/explore.do?structureId=1MOOhttp://www.rcsb.org/pdb/explore.do?structureId=1MOOhttp://www.rcsb.org/pdb/explore.do?structureId=1MOOhttp://en.wikipedia.org/wiki/Globular_proteinhttp://en.wikipedia.org/wiki/Globular_proteinhttp://en.wikipedia.org/wiki/Globular_proteinhttp://en.wikipedia.org/wiki/Monomerhttp://en.wikipedia.org/wiki/Monomerhttp://en.wikipedia.org/wiki/Monomerhttp://en.wikipedia.org/wiki/4-Oxalocrotonate_tautomerasehttp://en.wikipedia.org/wiki/4-Oxalocrotonate_tautomerasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-17http://en.wikipedia.org/wiki/Enzyme#cite_note-17http://en.wikipedia.org/wiki/Enzyme#cite_note-17http://en.wikipedia.org/wiki/Fatty_acid_synthasehttp://en.wikipedia.org/wiki/Fatty_acid_synthasehttp://en.wikipedia.org/wiki/File:Carbonic_anhydrase.pnghttp://en.wikipedia.org/wiki/File:Carbonic_anhydrase.pnghttp://en.wikipedia.org/wiki/File:Carbonic_anhydrase.pnghttp://en.wikipedia.org/wiki/File:Carbonic_anhydrase.pnghttp://en.wikipedia.org/wiki/Fatty_acid_synthasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-17http://en.wikipedia.org/wiki/4-Oxalocrotonate_tautomerasehttp://en.wikipedia.org/wiki/Monomerhttp://en.wikipedia.org/wiki/Globular_proteinhttp://www.rcsb.org/pdb/explore.do?structureId=1MOOhttp://en.wikipedia.org/wiki/Zinchttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Ribbon_diagramhttp://en.wikipedia.org/wiki/Enzyme_catalysishttp://en.wikipedia.org/wiki/Structural_biologyhttp://en.wikipedia.org/wiki/Enzyme#cite_note-16http://en.wikipedia.org/wiki/David_Chilton_Phillipshttp://en.wikipedia.org/wiki/Egg_whitehttp://en.wikipedia.org/wiki/Lysozymehttp://en.wikipedia.org/wiki/X-ray_crystallographyhttp://en.wikipedia.org/wiki/Enzyme#cite_note-15http://en.wikipedia.org/wiki/Wendell_Meredith_Stanleyhttp://en.wikipedia.org/wiki/John_Howard_Northrophttp://en.wikipedia.org/wiki/Catalasehttp://en.wikipedia.org/wiki/Ureasehttp://en.wikipedia.org/wiki/James_B._Sumnerhttp://en.wikipedia.org/wiki/Enzyme#cite_note-14http://en.wikipedia.org/wiki/Richard_Willst%C3%A4tterhttp://en.wikipedia.org/wiki/Enzyme#cite_note-13http://en.wikipedia.org/wiki/DNA_polymerasehttp://en.wikipedia.org/wiki/Lactosehttp://en.wikipedia.org/wiki/Lactasehttp://en.wikipedia.org/wiki/Substrate_(biochemistry)http://en.wikipedia.org/wiki/-ase
  • 8/13/2019 Bio Catalyst

    5/25

    synthase.[18]A small number of RNA-based biological catalysts exist, with the most common

    being theribosome;these are referred to as either RNA-enzymes orribozymes.The activities of

    enzymes are determined by theirthree-dimensional structure.[19]However, although structure

    does determine function, predicting a novel enzyme's activity just from its structure is a very

    difficult problem that has not yet been solved.[20]

    Most enzymes are much larger than the substrates they act on, and only a small portion of the

    enzyme (around 24amino acids)is directly involved in catalysis.[21]The region that contains

    these catalytic residues, binds the substrate, and then carries out the reaction is known as

    theactive site.Enzymes can also contain sites that bindcofactors,which are needed for

    catalysis. Some enzymes also have binding sites for small molecules, which are often direct

    orindirectproducts or substrates of the reaction catalyzed. This binding can serve to increase

    or decrease the enzyme's activity, providing a means forfeedbackregulation.

    Like all proteins, enzymes are long, linear chains of amino acids that foldto produce athree-

    dimensional product.Each unique amino acid sequence produces a specific structure, whichhas unique properties. Individual protein chains may sometimes group together to form a protein

    complex.Most enzymes can bedenaturedthat is, unfolded and inactivatedby heating or

    chemical denaturants, which disrupt thethree-dimensional structureof the protein. Depending

    on the enzyme, denaturation may be reversible or irreversible.

    Structures of enzymes with substrates or substrate analogs during a reaction may be obtained

    usingTime resolved crystallographymethods.

    Specificity

    Enzymes are usually very specific as to which reactions they catalyze and thesubstratesthat

    are involved in these reactions. Complementary shape, charge

    andhydrophilic/hydrophobiccharacteristics of enzymes and substrates are responsible for this

    specificity. Enzymes can also show impressive levels

    ofstereospecificity,regioselectivityandchemoselectivity.[22]

    Some of the enzymes showing the highest specificity and accuracy are involved in the copying

    andexpressionof thegenome.These enzymes have "proof-reading" mechanisms. Here, an

    enzyme such asDNA polymerasecatalyzes a reaction in a first step and then checks that the

    product is correct in a second step.[23]This two-step process results in average error rates of

    less than 1 error in 100 million reactions in high-fidelitymammalianpolymerases.[24]Similar

    proofreading mechanisms are also found inRNA polymerase,[25]aminoacyl tRNA

    synthetases[26]andribosomes.[27]

    Whereas some enzymes have broad-specificity, as they can act on a relatively broad range of

    different physiologically relevant substrates, many enzymes possess small side activities which

    arose fortuitously (i.e.neutrally), which may be the starting point for the evolutionary selection of

    a new function; this phenomenon is known asenzyme promiscuity.[28]

    http://en.wikipedia.org/wiki/Fatty_acid_synthasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-18http://en.wikipedia.org/wiki/Enzyme#cite_note-18http://en.wikipedia.org/wiki/Enzyme#cite_note-18http://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Ribozymehttp://en.wikipedia.org/wiki/Ribozymehttp://en.wikipedia.org/wiki/Ribozymehttp://en.wikipedia.org/wiki/Quaternary_structurehttp://en.wikipedia.org/wiki/Quaternary_structurehttp://en.wikipedia.org/wiki/Enzyme#cite_note-19http://en.wikipedia.org/wiki/Enzyme#cite_note-19http://en.wikipedia.org/wiki/Enzyme#cite_note-19http://en.wikipedia.org/wiki/Enzyme#cite_note-20http://en.wikipedia.org/wiki/Enzyme#cite_note-20http://en.wikipedia.org/wiki/Enzyme#cite_note-20http://en.wikipedia.org/wiki/Amino_acidhttp://en.wikipedia.org/wiki/Amino_acidhttp://en.wikipedia.org/wiki/Amino_acidhttp://en.wikipedia.org/wiki/Enzyme#cite_note-21http://en.wikipedia.org/wiki/Enzyme#cite_note-21http://en.wikipedia.org/wiki/Enzyme#cite_note-21http://en.wikipedia.org/wiki/Active_sitehttp://en.wikipedia.org/wiki/Active_sitehttp://en.wikipedia.org/wiki/Active_sitehttp://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Enzyme#Metabolic_pathwayshttp://en.wikipedia.org/wiki/Enzyme#Metabolic_pathwayshttp://en.wikipedia.org/wiki/Enzyme#Metabolic_pathwayshttp://en.wikipedia.org/wiki/Feedbackhttp://en.wikipedia.org/wiki/Feedbackhttp://en.wikipedia.org/wiki/Feedbackhttp://en.wikipedia.org/wiki/Protein_foldinghttp://en.wikipedia.org/wiki/Protein_foldinghttp://en.wikipedia.org/wiki/Protein_foldinghttp://en.wikipedia.org/wiki/Tertiary_structurehttp://en.wikipedia.org/wiki/Tertiary_structurehttp://en.wikipedia.org/wiki/Tertiary_structurehttp://en.wikipedia.org/wiki/Tertiary_structurehttp://en.wikipedia.org/wiki/Protein_complexhttp://en.wikipedia.org/wiki/Protein_complexhttp://en.wikipedia.org/wiki/Protein_complexhttp://en.wikipedia.org/wiki/Protein_complexhttp://en.wikipedia.org/wiki/Denaturation_(biochemistry)http://en.wikipedia.org/wiki/Denaturation_(biochemistry)http://en.wikipedia.org/wiki/Tertiary_structurehttp://en.wikipedia.org/wiki/Tertiary_structurehttp://en.wikipedia.org/wiki/Tertiary_structurehttp://en.wikipedia.org/wiki/Time_resolved_crystallographyhttp://en.wikipedia.org/wiki/Time_resolved_crystallographyhttp://en.wikipedia.org/wiki/Substrate_(biochemistry)http://en.wikipedia.org/wiki/Substrate_(biochemistry)http://en.wikipedia.org/wiki/Substrate_(biochemistry)http://en.wikipedia.org/wiki/Hydrophilichttp://en.wikipedia.org/wiki/Hydrophilichttp://en.wikipedia.org/wiki/Hydrophobichttp://en.wikipedia.org/wiki/Hydrophobichttp://en.wikipedia.org/wiki/Hydrophobichttp://en.wikipedia.org/wiki/Stereospecificityhttp://en.wikipedia.org/wiki/Stereospecificityhttp://en.wikipedia.org/wiki/Stereospecificityhttp://en.wikipedia.org/wiki/Regioselectivityhttp://en.wikipedia.org/wiki/Regioselectivityhttp://en.wikipedia.org/wiki/Regioselectivityhttp://en.wikipedia.org/wiki/Chemoselectivityhttp://en.wikipedia.org/wiki/Chemoselectivityhttp://en.wikipedia.org/wiki/Enzyme#cite_note-22http://en.wikipedia.org/wiki/Enzyme#cite_note-22http://en.wikipedia.org/wiki/Enzyme#cite_note-22http://en.wikipedia.org/wiki/Gene_expressionhttp://en.wikipedia.org/wiki/Gene_expressionhttp://en.wikipedia.org/wiki/Gene_expressionhttp://en.wikipedia.org/wiki/Genomehttp://en.wikipedia.org/wiki/Genomehttp://en.wikipedia.org/wiki/Genomehttp://en.wikipedia.org/wiki/DNA_polymerasehttp://en.wikipedia.org/wiki/DNA_polymerasehttp://en.wikipedia.org/wiki/DNA_polymerasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-23http://en.wikipedia.org/wiki/Enzyme#cite_note-23http://en.wikipedia.org/wiki/Enzyme#cite_note-23http://en.wikipedia.org/wiki/Mammalhttp://en.wikipedia.org/wiki/Mammalhttp://en.wikipedia.org/wiki/Mammalhttp://en.wikipedia.org/wiki/Enzyme#cite_note-24http://en.wikipedia.org/wiki/Enzyme#cite_note-24http://en.wikipedia.org/wiki/Enzyme#cite_note-24http://en.wikipedia.org/wiki/RNA_polymerasehttp://en.wikipedia.org/wiki/RNA_polymerasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-25http://en.wikipedia.org/wiki/Enzyme#cite_note-25http://en.wikipedia.org/wiki/Enzyme#cite_note-25http://en.wikipedia.org/wiki/Aminoacyl_tRNA_synthetasehttp://en.wikipedia.org/wiki/Aminoacyl_tRNA_synthetasehttp://en.wikipedia.org/wiki/Aminoacyl_tRNA_synthetasehttp://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Enzyme#cite_note-27http://en.wikipedia.org/wiki/Enzyme#cite_note-27http://en.wikipedia.org/wiki/Enzyme#cite_note-27http://en.wikipedia.org/wiki/Neutral_evolutionhttp://en.wikipedia.org/wiki/Neutral_evolutionhttp://en.wikipedia.org/wiki/Neutral_evolutionhttp://en.wikipedia.org/wiki/Enzyme_promiscuityhttp://en.wikipedia.org/wiki/Enzyme_promiscuityhttp://en.wikipedia.org/wiki/Enzyme#cite_note-Tawfik10-28http://en.wikipedia.org/wiki/Enzyme#cite_note-Tawfik10-28http://en.wikipedia.org/wiki/Enzyme#cite_note-Tawfik10-28http://en.wikipedia.org/wiki/Enzyme#cite_note-Tawfik10-28http://en.wikipedia.org/wiki/Enzyme_promiscuityhttp://en.wikipedia.org/wiki/Neutral_evolutionhttp://en.wikipedia.org/wiki/Enzyme#cite_note-27http://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Aminoacyl_tRNA_synthetasehttp://en.wikipedia.org/wiki/Aminoacyl_tRNA_synthetasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-25http://en.wikipedia.org/wiki/Enzyme#cite_note-25http://en.wikipedia.org/wiki/RNA_polymerasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-24http://en.wikipedia.org/wiki/Mammalhttp://en.wikipedia.org/wiki/Enzyme#cite_note-23http://en.wikipedia.org/wiki/DNA_polymerasehttp://en.wikipedia.org/wiki/Genomehttp://en.wikipedia.org/wiki/Gene_expressionhttp://en.wikipedia.org/wiki/Enzyme#cite_note-22http://en.wikipedia.org/wiki/Chemoselectivityhttp://en.wikipedia.org/wiki/Regioselectivityhttp://en.wikipedia.org/wiki/Stereospecificityhttp://en.wikipedia.org/wiki/Hydrophobichttp://en.wikipedia.org/wiki/Hydrophilichttp://en.wikipedia.org/wiki/Substrate_(biochemistry)http://en.wikipedia.org/wiki/Time_resolved_crystallographyhttp://en.wikipedia.org/wiki/Tertiary_structurehttp://en.wikipedia.org/wiki/Denaturation_(biochemistry)http://en.wikipedia.org/wiki/Protein_complexhttp://en.wikipedia.org/wiki/Protein_complexhttp://en.wikipedia.org/wiki/Tertiary_structurehttp://en.wikipedia.org/wiki/Tertiary_structurehttp://en.wikipedia.org/wiki/Protein_foldinghttp://en.wikipedia.org/wiki/Feedbackhttp://en.wikipedia.org/wiki/Enzyme#Metabolic_pathwayshttp://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Active_sitehttp://en.wikipedia.org/wiki/Enzyme#cite_note-21http://en.wikipedia.org/wiki/Amino_acidhttp://en.wikipedia.org/wiki/Enzyme#cite_note-20http://en.wikipedia.org/wiki/Enzyme#cite_note-19http://en.wikipedia.org/wiki/Quaternary_structurehttp://en.wikipedia.org/wiki/Ribozymehttp://en.wikipedia.org/wiki/Ribosomehttp://en.wikipedia.org/wiki/Enzyme#cite_note-18http://en.wikipedia.org/wiki/Fatty_acid_synthase
  • 8/13/2019 Bio Catalyst

    6/25

    "Lock and key" model

    Enzymes are very specific, and it was suggested by theNobel laureateorganic chemistEmil

    Fischerin 1894 that this was because both the enzyme and the substrate possess specific

    complementary geometric shapes that fit exactly into one another.[29]This is often referred to as

    "the lock and key" model. However, while this model explains enzyme specificity, it fails toexplain the stabilization of the transition state that enzymes achieve.

    Diagrams to show the induced fit hypothesis of enzyme action

    In 1958,Daniel Koshlandsuggested a modification to the lock and key model: since enzymes

    are rather flexible structures, the active site is continuously reshaped by interactions with the

    substrate as the substrate interacts with the enzyme.[30]As a result, the substrate does not

    simply bind to a rigid active site; the amino acidside-chainsthat make up the active site are

    molded into the precise positions that enable the enzyme to perform its catalytic function. In

    some cases, such as glycosidases, the substratemoleculealso changes shape slightly as it

    enters the active site.[31]The active site continues to change until the substrate is completely

    bound, at which point the final shape and charge is determined.[32]Induced fit may enhance the

    fidelity of molecular recognition in the presence of competition and noise via the conformational

    proofreadingmechanism.[33]

    Based on Fischer's lock-and-key model and Koshlands induced fit theory, theChous distorted

    key theory for peptide drugswas proposed[34]to develop peptide drugs

    againstHIV/AIDSandSARS.[35][36][37]

    Mechanisms

    Enzymes can act in several ways, all of which lower G

    (Gibbs energy):

    [38]

    Lowering theactivation energyby creating an environment in which the transition state is

    stabilized (e.g. straining the shape of a substrateby binding the transition-state

    conformation of the substrate/product molecules, the enzyme distorts the bound

    substrate(s) into their transition state form, thereby reducing the amount of energy required

    to complete the transition).

    http://en.wikipedia.org/wiki/Nobel_laureatehttp://en.wikipedia.org/wiki/Nobel_laureatehttp://en.wikipedia.org/wiki/Nobel_laureatehttp://en.wikipedia.org/wiki/Hermann_Emil_Fischerhttp://en.wikipedia.org/wiki/Hermann_Emil_Fischerhttp://en.wikipedia.org/wiki/Hermann_Emil_Fischerhttp://en.wikipedia.org/wiki/Hermann_Emil_Fischerhttp://en.wikipedia.org/wiki/Enzyme#cite_note-29http://en.wikipedia.org/wiki/Enzyme#cite_note-29http://en.wikipedia.org/wiki/Enzyme#cite_note-29http://en.wikipedia.org/wiki/Daniel_E._Koshland,_Jr.http://en.wikipedia.org/wiki/Daniel_E._Koshland,_Jr.http://en.wikipedia.org/wiki/Daniel_E._Koshland,_Jr.http://en.wikipedia.org/wiki/Enzyme#cite_note-30http://en.wikipedia.org/wiki/Enzyme#cite_note-30http://en.wikipedia.org/wiki/Enzyme#cite_note-30http://en.wikipedia.org/wiki/Side-chainhttp://en.wikipedia.org/wiki/Side-chainhttp://en.wikipedia.org/wiki/Moleculehttp://en.wikipedia.org/wiki/Moleculehttp://en.wikipedia.org/wiki/Moleculehttp://en.wikipedia.org/wiki/Enzyme#cite_note-31http://en.wikipedia.org/wiki/Enzyme#cite_note-31http://en.wikipedia.org/wiki/Enzyme#cite_note-31http://en.wikipedia.org/wiki/Enzyme#cite_note-32http://en.wikipedia.org/wiki/Enzyme#cite_note-32http://en.wikipedia.org/wiki/Enzyme#cite_note-32http://en.wikipedia.org/wiki/Conformational_proofreadinghttp://en.wikipedia.org/wiki/Conformational_proofreadinghttp://en.wikipedia.org/wiki/Conformational_proofreadinghttp://en.wikipedia.org/wiki/Conformational_proofreadinghttp://en.wikipedia.org/wiki/Enzyme#cite_note-33http://en.wikipedia.org/wiki/Enzyme#cite_note-33http://en.wikipedia.org/wiki/Enzyme#cite_note-33http://en.wikipedia.org/wiki/Chou%E2%80%99s_distorted_key_theory_for_peptide_drugshttp://en.wikipedia.org/wiki/Chou%E2%80%99s_distorted_key_theory_for_peptide_drugshttp://en.wikipedia.org/wiki/Chou%E2%80%99s_distorted_key_theory_for_peptide_drugshttp://en.wikipedia.org/wiki/Chou%E2%80%99s_distorted_key_theory_for_peptide_drugshttp://en.wikipedia.org/wiki/Enzyme#cite_note-Chou01-34http://en.wikipedia.org/wiki/Enzyme#cite_note-Chou01-34http://en.wikipedia.org/wiki/Enzyme#cite_note-Chou01-34http://en.wikipedia.org/wiki/HIV/AIDShttp://en.wikipedia.org/wiki/HIV/AIDShttp://en.wikipedia.org/wiki/HIV/AIDShttp://en.wikipedia.org/wiki/SARShttp://en.wikipedia.org/wiki/SARShttp://en.wikipedia.org/wiki/SARShttp://en.wikipedia.org/wiki/Enzyme#cite_note-Gan01-35http://en.wikipedia.org/wiki/Enzyme#cite_note-Gan01-35http://en.wikipedia.org/wiki/Enzyme#cite_note-Du01-36http://en.wikipedia.org/wiki/Enzyme#cite_note-Du01-36http://en.wikipedia.org/wiki/Enzyme#cite_note-Du02-37http://en.wikipedia.org/wiki/Enzyme#cite_note-Du02-37http://en.wikipedia.org/wiki/Enzyme#cite_note-Du02-37http://en.wikipedia.org/wiki/Enzyme#cite_note-38http://en.wikipedia.org/wiki/Enzyme#cite_note-38http://en.wikipedia.org/wiki/Enzyme#cite_note-38http://en.wikipedia.org/wiki/Activation_energyhttp://en.wikipedia.org/wiki/Activation_energyhttp://en.wikipedia.org/wiki/Activation_energyhttp://en.wikipedia.org/wiki/File:Induced_fit_diagram.svghttp://en.wikipedia.org/wiki/File:Induced_fit_diagram.svghttp://en.wikipedia.org/wiki/File:Induced_fit_diagram.svghttp://en.wikipedia.org/wiki/File:Induced_fit_diagram.svghttp://en.wikipedia.org/wiki/Activation_energyhttp://en.wikipedia.org/wiki/Enzyme#cite_note-38http://en.wikipedia.org/wiki/Enzyme#cite_note-Du02-37http://en.wikipedia.org/wiki/Enzyme#cite_note-Du01-36http://en.wikipedia.org/wiki/Enzyme#cite_note-Gan01-35http://en.wikipedia.org/wiki/SARShttp://en.wikipedia.org/wiki/HIV/AIDShttp://en.wikipedia.org/wiki/Enzyme#cite_note-Chou01-34http://en.wikipedia.org/wiki/Chou%E2%80%99s_distorted_key_theory_for_peptide_drugshttp://en.wikipedia.org/wiki/Chou%E2%80%99s_distorted_key_theory_for_peptide_drugshttp://en.wikipedia.org/wiki/Enzyme#cite_note-33http://en.wikipedia.org/wiki/Conformational_proofreadinghttp://en.wikipedia.org/wiki/Conformational_proofreadinghttp://en.wikipedia.org/wiki/Enzyme#cite_note-32http://en.wikipedia.org/wiki/Enzyme#cite_note-31http://en.wikipedia.org/wiki/Moleculehttp://en.wikipedia.org/wiki/Side-chainhttp://en.wikipedia.org/wiki/Enzyme#cite_note-30http://en.wikipedia.org/wiki/Daniel_E._Koshland,_Jr.http://en.wikipedia.org/wiki/Enzyme#cite_note-29http://en.wikipedia.org/wiki/Hermann_Emil_Fischerhttp://en.wikipedia.org/wiki/Hermann_Emil_Fischerhttp://en.wikipedia.org/wiki/Nobel_laureate
  • 8/13/2019 Bio Catalyst

    7/25

    Lowering the energy of the transition state, but without distorting the substrate, by creating

    an environment with the opposite charge distribution to that of the transition state.

    Providing an alternative pathway. For example, temporarily reacting with the substrate to

    form an intermediate ES complex, which would be impossible in the absence of the enzyme.

    Reducing the reaction entropy change by bringing substrates together in the correctorientation to react. Considering Halone overlooks this effect.

    Increases in temperatures speed up reactions. Thus, temperature increases help the

    enzyme function and develop the end product even faster. However, if heated too much, the

    enzyme's shape deteriorates and the enzyme becomes denatured. Some enzymes like

    thermolabile enzymes work best at low temperatures.

    The function of a protein is dependent on its structure so that if the structure is disrupted, so

    is its function.

    It is interesting that thisentropiceffect involves destabilization of the ground state,[39]and its

    contribution to catalysis is relatively small.

    [40]

    Transition state stabilization

    The understanding of the origin of the reduction of Grequires one to find out how the

    enzymes can stabilize its transition state more than the transition state of the uncatalyzed

    reaction. It seems that the most effective way for reaching large stabilization is the use of

    electrostatic effects, in particular, when having a relatively fixed polar environment that is

    oriented toward the charge distribution of the transition state.[41]Such an environment does not

    exist in the uncatalyzed reaction in water.

    Dynamics and function

    See also:Protein dynamics

    The internal dynamics of enzymes has been suggested to be linked with their mechanism of

    catalysis.[42][43][44]Internal dynamics are the movement of parts of the enzyme's structure, such

    as individual amino acid residues, a group of amino acids, or even an entireprotein domain.

    These movements occur at various time-scales ranging fromfemtosecondsto seconds.

    Networks of protein residues throughout an enzyme's structure can contribute to catalysis

    through dynamic motions.[45][46][47][48]This is simply seen in thekinetic schemeof the combined

    process, enzymatic activity and dynamics; this scheme can have several

    independentMichaelis-Menten-like reaction pathways that are connected through fluctuation

    rates.[49][50][51]

    Protein motions are vital to many enzymes, but whether small and fast vibrations, or larger and

    slower conformational movements are more important depends on the type of reaction involved.

    However, although these movements are important in binding and releasing substrates and

    products, it is not clear if protein movements help to accelerate the chemical steps in enzymatic

    http://en.wikipedia.org/wiki/Entropichttp://en.wikipedia.org/wiki/Entropichttp://en.wikipedia.org/wiki/Entropichttp://en.wikipedia.org/wiki/Enzyme#cite_note-39http://en.wikipedia.org/wiki/Enzyme#cite_note-39http://en.wikipedia.org/wiki/Enzyme#cite_note-39http://en.wikipedia.org/wiki/Enzyme#cite_note-40http://en.wikipedia.org/wiki/Enzyme#cite_note-40http://en.wikipedia.org/wiki/Enzyme#cite_note-40http://en.wikipedia.org/wiki/Enzyme#cite_note-41http://en.wikipedia.org/wiki/Enzyme#cite_note-41http://en.wikipedia.org/wiki/Enzyme#cite_note-41http://en.wikipedia.org/wiki/Protein_dynamicshttp://en.wikipedia.org/wiki/Protein_dynamicshttp://en.wikipedia.org/wiki/Protein_dynamicshttp://en.wikipedia.org/wiki/Enzyme#cite_note-42http://en.wikipedia.org/wiki/Enzyme#cite_note-42http://en.wikipedia.org/wiki/Enzyme#cite_note-44http://en.wikipedia.org/wiki/Enzyme#cite_note-44http://en.wikipedia.org/wiki/Protein_domainhttp://en.wikipedia.org/wiki/Protein_domainhttp://en.wikipedia.org/wiki/Femtosecondshttp://en.wikipedia.org/wiki/Femtosecondshttp://en.wikipedia.org/wiki/Femtosecondshttp://en.wikipedia.org/wiki/Enzyme#cite_note-45http://en.wikipedia.org/wiki/Enzyme#cite_note-45http://en.wikipedia.org/wiki/Enzyme#cite_note-47http://en.wikipedia.org/wiki/Enzyme#cite_note-47http://en.wikipedia.org/wiki/Kinetic_schemehttp://en.wikipedia.org/wiki/Kinetic_schemehttp://en.wikipedia.org/wiki/Kinetic_schemehttp://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Enzyme#cite_note-OF_2005-49http://en.wikipedia.org/wiki/Enzyme#cite_note-OF_2005-49http://en.wikipedia.org/wiki/Enzyme#cite_note-Lu_1998-51http://en.wikipedia.org/wiki/Enzyme#cite_note-Lu_1998-51http://en.wikipedia.org/wiki/Enzyme#cite_note-Lu_1998-51http://en.wikipedia.org/wiki/Enzyme#cite_note-OF_2005-49http://en.wikipedia.org/wiki/Enzyme#cite_note-OF_2005-49http://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Kinetic_schemehttp://en.wikipedia.org/wiki/Enzyme#cite_note-47http://en.wikipedia.org/wiki/Enzyme#cite_note-47http://en.wikipedia.org/wiki/Enzyme#cite_note-45http://en.wikipedia.org/wiki/Enzyme#cite_note-45http://en.wikipedia.org/wiki/Femtosecondshttp://en.wikipedia.org/wiki/Protein_domainhttp://en.wikipedia.org/wiki/Enzyme#cite_note-44http://en.wikipedia.org/wiki/Enzyme#cite_note-42http://en.wikipedia.org/wiki/Enzyme#cite_note-42http://en.wikipedia.org/wiki/Protein_dynamicshttp://en.wikipedia.org/wiki/Enzyme#cite_note-41http://en.wikipedia.org/wiki/Enzyme#cite_note-40http://en.wikipedia.org/wiki/Enzyme#cite_note-39http://en.wikipedia.org/wiki/Entropic
  • 8/13/2019 Bio Catalyst

    8/25

    reactions.[52]These new insights also have implications in understanding allosteric effects and

    developing new medicines.

    Allosteric modulation

    Allosteric transition of an enzyme between R and T states, stabilized by an agonist, an inhibitor and a substrate

    (theMWC model)

    Main article:Allosteric regulation

    Allosteric sites are sites on the enzyme that bind to molecules in the cellular environment. The

    sites form weak, noncovalent bonds with these molecules, causing a change in the

    conformation of the enzyme. This change in conformation translates to the active site, which

    then affects the reaction rate of the enzyme.[53]Allosteric interactions can both inhibit and

    activate enzymes and are a common way that enzymes are controlled in the body.[54]

    Cofactors and coenzymes

    Main articles:Cofactor (biochemistry)andCoenzyme

    Cofactors

    Some enzymes do not need any additional components to show full activity. However, others

    require non-protein molecules called cofactors to be bound for activity.[55]Cofactors can be

    eitherinorganic(e.g.,metal ionsandiron-sulfur clusters)ororganic

    compounds(e.g.,flavinandheme). Organic cofactors can be eitherprosthetic groups,which are

    tightly bound to an enzyme, orcoenzymes,which are released from the enzyme's active site

    during the reaction. Coenzymes includeNADH,NADPHandadenosine triphosphate.These

    molecules transfer chemical groups between enzymes.[56]

    An example of an enzyme that contains a cofactor iscarbonic anhydrase,and is shown in

    theribbon diagramabove with a zinc cofactor bound as part of its active site.[57]These tightly

    bound molecules are usually found in the active site and are involved in catalysis. For example,

    flavin and heme cofactors are often involved inredoxreactions.

    Enzymes that require a cofactor but do not have one bound are

    called apoenzymesor apoproteins. An apoenzyme together with its cofactor(s) is called

    a holoenzyme(this is the active form). Most cofactors are not covalently attached to an enzyme,

    http://en.wikipedia.org/wiki/Enzyme#cite_note-52http://en.wikipedia.org/wiki/Enzyme#cite_note-52http://en.wikipedia.org/wiki/Enzyme#cite_note-52http://en.wikipedia.org/wiki/MWC_modelhttp://en.wikipedia.org/wiki/MWC_modelhttp://en.wikipedia.org/wiki/MWC_modelhttp://en.wikipedia.org/wiki/Allosteric_regulationhttp://en.wikipedia.org/wiki/Allosteric_regulationhttp://en.wikipedia.org/wiki/Allosteric_regulationhttp://en.wikipedia.org/wiki/Enzyme#cite_note-53http://en.wikipedia.org/wiki/Enzyme#cite_note-53http://en.wikipedia.org/wiki/Enzyme#cite_note-53http://en.wikipedia.org/wiki/Enzyme#cite_note-54http://en.wikipedia.org/wiki/Enzyme#cite_note-54http://en.wikipedia.org/wiki/Enzyme#cite_note-54http://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Coenzymehttp://en.wikipedia.org/wiki/Coenzymehttp://en.wikipedia.org/wiki/Coenzymehttp://en.wikipedia.org/wiki/Enzyme#cite_note-55http://en.wikipedia.org/wiki/Enzyme#cite_note-55http://en.wikipedia.org/wiki/Enzyme#cite_note-55http://en.wikipedia.org/wiki/Inorganichttp://en.wikipedia.org/wiki/Inorganichttp://en.wikipedia.org/wiki/Inorganichttp://en.wikipedia.org/wiki/Metal_Ions_in_Life_Scienceshttp://en.wikipedia.org/wiki/Metal_Ions_in_Life_Scienceshttp://en.wikipedia.org/wiki/Metal_Ions_in_Life_Scienceshttp://en.wikipedia.org/wiki/Iron-sulfur_clusterhttp://en.wikipedia.org/wiki/Iron-sulfur_clusterhttp://en.wikipedia.org/wiki/Iron-sulfur_clusterhttp://en.wikipedia.org/wiki/Organic_moleculeshttp://en.wikipedia.org/wiki/Organic_moleculeshttp://en.wikipedia.org/wiki/Organic_moleculeshttp://en.wikipedia.org/wiki/Organic_moleculeshttp://en.wikipedia.org/wiki/Flavin_grouphttp://en.wikipedia.org/wiki/Flavin_grouphttp://en.wikipedia.org/wiki/Flavin_grouphttp://en.wikipedia.org/wiki/Hemehttp://en.wikipedia.org/wiki/Hemehttp://en.wikipedia.org/wiki/Hemehttp://en.wikipedia.org/wiki/Prosthetic_groupshttp://en.wikipedia.org/wiki/Prosthetic_groupshttp://en.wikipedia.org/wiki/Prosthetic_groupshttp://en.wikipedia.org/wiki/Coenzymehttp://en.wikipedia.org/wiki/Coenzymehttp://en.wikipedia.org/wiki/Coenzymehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotidehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotidehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotidehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide_phosphatehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide_phosphatehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide_phosphatehttp://en.wikipedia.org/wiki/Adenosine_triphosphatehttp://en.wikipedia.org/wiki/Adenosine_triphosphatehttp://en.wikipedia.org/wiki/Adenosine_triphosphatehttp://en.wikipedia.org/wiki/Enzyme#cite_note-56http://en.wikipedia.org/wiki/Enzyme#cite_note-56http://en.wikipedia.org/wiki/Enzyme#cite_note-56http://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Ribbon_diagramhttp://en.wikipedia.org/wiki/Ribbon_diagramhttp://en.wikipedia.org/wiki/Ribbon_diagramhttp://en.wikipedia.org/wiki/Enzyme#cite_note-57http://en.wikipedia.org/wiki/Enzyme#cite_note-57http://en.wikipedia.org/wiki/Enzyme#cite_note-57http://en.wikipedia.org/wiki/Redoxhttp://en.wikipedia.org/wiki/Redoxhttp://en.wikipedia.org/wiki/Redoxhttp://en.wikipedia.org/wiki/File:Enzyme_allostery_en.svghttp://en.wikipedia.org/wiki/File:Enzyme_allostery_en.svghttp://en.wikipedia.org/wiki/File:Enzyme_allostery_en.svghttp://en.wikipedia.org/wiki/File:Enzyme_allostery_en.svghttp://en.wikipedia.org/wiki/Redoxhttp://en.wikipedia.org/wiki/Enzyme#cite_note-57http://en.wikipedia.org/wiki/Ribbon_diagramhttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-56http://en.wikipedia.org/wiki/Adenosine_triphosphatehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide_phosphatehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotidehttp://en.wikipedia.org/wiki/Coenzymehttp://en.wikipedia.org/wiki/Prosthetic_groupshttp://en.wikipedia.org/wiki/Hemehttp://en.wikipedia.org/wiki/Flavin_grouphttp://en.wikipedia.org/wiki/Organic_moleculeshttp://en.wikipedia.org/wiki/Organic_moleculeshttp://en.wikipedia.org/wiki/Iron-sulfur_clusterhttp://en.wikipedia.org/wiki/Metal_Ions_in_Life_Scienceshttp://en.wikipedia.org/wiki/Inorganichttp://en.wikipedia.org/wiki/Enzyme#cite_note-55http://en.wikipedia.org/wiki/Coenzymehttp://en.wikipedia.org/wiki/Cofactor_(biochemistry)http://en.wikipedia.org/wiki/Enzyme#cite_note-54http://en.wikipedia.org/wiki/Enzyme#cite_note-53http://en.wikipedia.org/wiki/Allosteric_regulationhttp://en.wikipedia.org/wiki/MWC_modelhttp://en.wikipedia.org/wiki/Enzyme#cite_note-52
  • 8/13/2019 Bio Catalyst

    9/25

    but are very tightly bound. However, organic prosthetic groups can be covalently bound

    (e.g.,biotinin the enzymepyruvate carboxylase). The term "holoenzyme" can also be applied to

    enzymes that contain multiple protein subunits, such as theDNA polymerases;here the

    holoenzyme is the complete complex containing all the subunits needed for activity.

    Coenzymes

    Space-filling modelof the coenzyme NADH

    Coenzymes are small organic molecules that can be loosely or tightly bound to an enzyme.

    Tightly bound coenzymes can be called prosthetic groups. Coenzymes transport chemical

    groups from one enzyme to another.[58]Some of these chemicals such

    asriboflavin,thiamineandfolic acidarevitamins(compounds that cannot be synthesized by the

    body and must be acquired from the diet). The chemical groups carried include thehydrideion

    (H-) carried byNAD or NADP+,the phosphate group carried byadenosine triphosphate,the

    acetyl group carried bycoenzyme A,formyl, methenyl or methyl groups carried byfolic acidand

    the methyl group carried byS-adenosylmethionine.

    Since coenzymes are chemically changed as a consequence of enzyme action, it is useful to

    consider coenzymes to be a special class of substrates, or second substrates, which are

    common to many different enzymes. For example, about 700 enzymes are known to use the

    coenzyme NADH.[59]

    Coenzymes are usually continuously regenerated and their concentrations maintained at a

    steady level inside the cell: for example, NADPH is regenerated through thepentose phosphate

    pathwayand S-adenosylmethionine bymethionine adenosyltransferase.This continuous

    regeneration means that even small amounts of coenzymes are used very intensively. For

    example, the human body turns over its own weight in ATP each day.[60]

    Thermodynamics

    http://en.wikipedia.org/wiki/Biotinhttp://en.wikipedia.org/wiki/Biotinhttp://en.wikipedia.org/wiki/Biotinhttp://en.wikipedia.org/wiki/Pyruvate_carboxylasehttp://en.wikipedia.org/wiki/Pyruvate_carboxylasehttp://en.wikipedia.org/wiki/Pyruvate_carboxylasehttp://en.wikipedia.org/wiki/DNA_polymerasehttp://en.wikipedia.org/wiki/DNA_polymerasehttp://en.wikipedia.org/wiki/DNA_polymerasehttp://en.wikipedia.org/wiki/Molecular_graphics#Space-filling_modelshttp://en.wikipedia.org/wiki/Molecular_graphics#Space-filling_modelshttp://en.wikipedia.org/wiki/Enzyme#cite_note-58http://en.wikipedia.org/wiki/Enzyme#cite_note-58http://en.wikipedia.org/wiki/Enzyme#cite_note-58http://en.wikipedia.org/wiki/Riboflavinhttp://en.wikipedia.org/wiki/Riboflavinhttp://en.wikipedia.org/wiki/Riboflavinhttp://en.wikipedia.org/wiki/Thiaminehttp://en.wikipedia.org/wiki/Thiaminehttp://en.wikipedia.org/wiki/Thiaminehttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Vitaminshttp://en.wikipedia.org/wiki/Vitaminshttp://en.wikipedia.org/wiki/Vitaminshttp://en.wikipedia.org/wiki/Hydridehttp://en.wikipedia.org/wiki/Hydridehttp://en.wikipedia.org/wiki/Hydridehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotidehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotidehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotidehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotidehttp://en.wikipedia.org/wiki/Adenosine_triphosphatehttp://en.wikipedia.org/wiki/Adenosine_triphosphatehttp://en.wikipedia.org/wiki/Adenosine_triphosphatehttp://en.wikipedia.org/wiki/Coenzyme_Ahttp://en.wikipedia.org/wiki/Coenzyme_Ahttp://en.wikipedia.org/wiki/Coenzyme_Ahttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/S-adenosylmethioninehttp://en.wikipedia.org/wiki/S-adenosylmethioninehttp://en.wikipedia.org/wiki/S-adenosylmethioninehttp://en.wikipedia.org/wiki/Enzyme#cite_note-59http://en.wikipedia.org/wiki/Enzyme#cite_note-59http://en.wikipedia.org/wiki/Enzyme#cite_note-59http://en.wikipedia.org/wiki/Pentose_phosphate_pathwayhttp://en.wikipedia.org/wiki/Pentose_phosphate_pathwayhttp://en.wikipedia.org/wiki/Pentose_phosphate_pathwayhttp://en.wikipedia.org/wiki/Pentose_phosphate_pathwayhttp://en.wikipedia.org/wiki/Methionine_adenosyltransferasehttp://en.wikipedia.org/wiki/Methionine_adenosyltransferasehttp://en.wikipedia.org/wiki/Methionine_adenosyltransferasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-60http://en.wikipedia.org/wiki/Enzyme#cite_note-60http://en.wikipedia.org/wiki/Enzyme#cite_note-60http://en.wikipedia.org/wiki/File:NADH-3D-vdW.pnghttp://en.wikipedia.org/wiki/File:NADH-3D-vdW.pnghttp://en.wikipedia.org/wiki/File:NADH-3D-vdW.pnghttp://en.wikipedia.org/wiki/File:NADH-3D-vdW.pnghttp://en.wikipedia.org/wiki/Enzyme#cite_note-60http://en.wikipedia.org/wiki/Methionine_adenosyltransferasehttp://en.wikipedia.org/wiki/Pentose_phosphate_pathwayhttp://en.wikipedia.org/wiki/Pentose_phosphate_pathwayhttp://en.wikipedia.org/wiki/Enzyme#cite_note-59http://en.wikipedia.org/wiki/S-adenosylmethioninehttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Coenzyme_Ahttp://en.wikipedia.org/wiki/Adenosine_triphosphatehttp://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotidehttp://en.wikipedia.org/wiki/Hydridehttp://en.wikipedia.org/wiki/Vitaminshttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Thiaminehttp://en.wikipedia.org/wiki/Riboflavinhttp://en.wikipedia.org/wiki/Enzyme#cite_note-58http://en.wikipedia.org/wiki/Molecular_graphics#Space-filling_modelshttp://en.wikipedia.org/wiki/DNA_polymerasehttp://en.wikipedia.org/wiki/Pyruvate_carboxylasehttp://en.wikipedia.org/wiki/Biotin
  • 8/13/2019 Bio Catalyst

    10/25

    The energies of the stages of achemical reaction.Substrates need a lot of potential energy to reach atransition

    state,which then decays into products. The enzyme stabilizes the transition state, reducing the energy needed to

    form products.

    Main articles:Activation energy,Thermodynamic equilibrium,andChemical equilibrium

    As all catalysts, enzymes do not alter the position of the chemical equilibrium of the reaction.

    Usually, in the presence of an enzyme, the reaction runs in the same direction as it would

    without the enzyme, just more quickly. However, in the absence of the enzyme, other possible

    uncatalyzed, "spontaneous" reactions might lead to different products, because in those

    conditions this different product is formed faster.

    Furthermore, enzymes can couple two or more reactions, so that a thermodynamically favorable

    reaction can be used to "drive" a thermodynamically unfavorable one. For example, the

    hydrolysis ofATPis often used to drive other chemical reactions.[61]

    Enzymes catalyze the forward and backward reactions equally. They do not alter the equilibrium

    itself, but only the speed at which it is reached. For example,carbonic anhydrasecatalyzes its

    reaction in either direction depending on the concentration of its reactants.

    (intissues;high CO2concentration)

    (inlungs;low CO2concentration)

    Nevertheless, if the equilibrium is greatly displaced in one direction, that is, in a

    veryexergonicreaction, the reaction is in effect irreversible. Under these conditions, the

    enzyme will, in fact, catalyze the reaction only in the thermodynamically allowed

    direction.

    Kinetics

    Main article:Enzyme kinetics

    http://en.wikipedia.org/wiki/Chemical_reactionhttp://en.wikipedia.org/wiki/Chemical_reactionhttp://en.wikipedia.org/wiki/Chemical_reactionhttp://en.wikipedia.org/wiki/Transition_statehttp://en.wikipedia.org/wiki/Transition_statehttp://en.wikipedia.org/wiki/Transition_statehttp://en.wikipedia.org/wiki/Transition_statehttp://en.wikipedia.org/wiki/Activation_energyhttp://en.wikipedia.org/wiki/Activation_energyhttp://en.wikipedia.org/wiki/Activation_energyhttp://en.wikipedia.org/wiki/Thermodynamic_equilibriumhttp://en.wikipedia.org/wiki/Thermodynamic_equilibriumhttp://en.wikipedia.org/wiki/Thermodynamic_equilibriumhttp://en.wikipedia.org/wiki/Chemical_equilibriumhttp://en.wikipedia.org/wiki/Chemical_equilibriumhttp://en.wikipedia.org/wiki/Chemical_equilibriumhttp://en.wikipedia.org/wiki/Adenosine_triphosphatehttp://en.wikipedia.org/wiki/Adenosine_triphosphatehttp://en.wikipedia.org/wiki/Adenosine_triphosphatehttp://en.wikipedia.org/wiki/Enzyme#cite_note-Nicholls-61http://en.wikipedia.org/wiki/Enzyme#cite_note-Nicholls-61http://en.wikipedia.org/wiki/Enzyme#cite_note-Nicholls-61http://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Biological_tissuehttp://en.wikipedia.org/wiki/Biological_tissuehttp://en.wikipedia.org/wiki/Biological_tissuehttp://en.wikipedia.org/wiki/Lunghttp://en.wikipedia.org/wiki/Lunghttp://en.wikipedia.org/wiki/Lunghttp://en.wikipedia.org/wiki/Exergonichttp://en.wikipedia.org/wiki/Exergonichttp://en.wikipedia.org/wiki/Exergonichttp://en.wikipedia.org/wiki/Enzyme_kineticshttp://en.wikipedia.org/wiki/Enzyme_kineticshttp://en.wikipedia.org/wiki/Enzyme_kineticshttp://en.wikipedia.org/wiki/File:Carbonic_anhydrase_reaction_in_tissue.svghttp://en.wikipedia.org/wiki/File:Carbonic_anhydrase_reaction_in_tissue.svghttp://en.wikipedia.org/wiki/File:Carbonic_anhydrase_reaction_in_tissue.svghttp://en.wikipedia.org/wiki/File:Carbonic_anhydrase_reaction_in_tissue.svghttp://en.wikipedia.org/wiki/File:Carbonic_anhydrase_reaction_in_tissue.svghttp://en.wikipedia.org/wiki/File:Carbonic_anhydrase_reaction_in_tissue.svghttp://en.wikipedia.org/wiki/File:Carbonic_anhydrase_reaction_in_tissue.svghttp://en.wikipedia.org/wiki/File:Carbonic_anhydrase_reaction_in_tissue.svghttp://en.wikipedia.org/wiki/Enzyme_kineticshttp://en.wikipedia.org/wiki/Exergonichttp://en.wikipedia.org/wiki/Lunghttp://en.wikipedia.org/wiki/Biological_tissuehttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-Nicholls-61http://en.wikipedia.org/wiki/Adenosine_triphosphatehttp://en.wikipedia.org/wiki/Chemical_equilibriumhttp://en.wikipedia.org/wiki/Thermodynamic_equilibriumhttp://en.wikipedia.org/wiki/Activation_energyhttp://en.wikipedia.org/wiki/Transition_statehttp://en.wikipedia.org/wiki/Transition_statehttp://en.wikipedia.org/wiki/Chemical_reaction
  • 8/13/2019 Bio Catalyst

    11/25

    Mechanism for a single substrate enzyme catalyzed reaction. The enzyme (E) binds a substrate (S) and

    produces a product (P).

    Enzyme kinetics is the investigation of how enzymes bind substrates and turn them into

    products. The rate data used in kinetic analyses are commonly obtained fromenzyme

    assays,where since the 90s, the dynamics of many enzymes are studied on the level

    ofindividual molecules.

    In 1902Victor Henriproposed a quantitative theory of enzyme kinetics,

    [62]

    but hisexperimental data were not useful because the significance of the hydrogen ion

    concentration was not yet appreciated. AfterPeter Lauritz Srensenhad defined the

    logarithmic pH-scale and introduced the concept of buffering in 1909[63]the German

    chemistLeonor Michaelisand his Canadian postdocMaud Leonora Mentenrepeated

    Henri's experiments and confirmed his equation, which is referred to asHenri-Michaelis-

    Menten kinetics(termed alsoMichaelis-Menten kinetics).[64]Their work was further

    developed byG. E. BriggsandJ. B. S. Haldane,who derived kinetic equations that are

    still widely considered today a starting point in solving enzymatic activity.[65]

    The major contribution of Henri was to think of enzyme reactions in two stages. In the

    first, the substrate binds reversibly to the enzyme, forming the enzyme-substrate

    complex. This is sometimes called the Michaelis complex. The enzyme then catalyzes

    the chemical step in the reaction and releases the product. Note that the

    simpleMichaelis Menten mechanismfor the enzymatic activity is considered today a

    basic idea, where many examples show that the enzymatic activity involves structural

    dynamics. This is incorporated in the enzymatic mechanism while introducing several

    Michaelis Menten pathways that are connected with fluctuating

    rates.[49][50][51]Nevertheless, there is a mathematical relation connecting the behavior

    obtained from the basic Michaelis Menten mechanism (that was indeed proved correct

    in many experiments) with the generalized Michaelis Menten mechanisms involvingdynamics and activity;[66]this means that the measured activity of enzymes on the level

    of many enzymes may be explained with the simple Michaelis-Menten equation, yet, the

    actual activity of enzymes is richer and involves structural dynamics.

    http://en.wikipedia.org/wiki/Enzyme_assayhttp://en.wikipedia.org/wiki/Enzyme_assayhttp://en.wikipedia.org/wiki/Enzyme_assayhttp://en.wikipedia.org/wiki/Enzyme_assayhttp://en.wikipedia.org/wiki/Single-molecule_experimenthttp://en.wikipedia.org/wiki/Single-molecule_experimenthttp://en.wikipedia.org/wiki/Single-molecule_experimenthttp://en.wikipedia.org/wiki/Victor_Henrihttp://en.wikipedia.org/wiki/Victor_Henrihttp://en.wikipedia.org/wiki/Victor_Henrihttp://en.wikipedia.org/wiki/Enzyme#cite_note-62http://en.wikipedia.org/wiki/Enzyme#cite_note-62http://en.wikipedia.org/wiki/Enzyme#cite_note-62http://en.wikipedia.org/wiki/S._P._L._S%C3%B8rensenhttp://en.wikipedia.org/wiki/S._P._L._S%C3%B8rensenhttp://en.wikipedia.org/wiki/S._P._L._S%C3%B8rensenhttp://en.wikipedia.org/wiki/Enzyme#cite_note-63http://en.wikipedia.org/wiki/Enzyme#cite_note-63http://en.wikipedia.org/wiki/Enzyme#cite_note-63http://en.wikipedia.org/wiki/Leonor_Michaelishttp://en.wikipedia.org/wiki/Leonor_Michaelishttp://en.wikipedia.org/wiki/Leonor_Michaelishttp://en.wikipedia.org/wiki/Maud_Leonora_Mentenhttp://en.wikipedia.org/wiki/Maud_Leonora_Mentenhttp://en.wikipedia.org/wiki/Maud_Leonora_Mentenhttp://en.wikipedia.org/wiki/Henri-Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Henri-Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Henri-Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Henri-Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Enzyme#cite_note-64http://en.wikipedia.org/wiki/Enzyme#cite_note-64http://en.wikipedia.org/wiki/Enzyme#cite_note-64http://en.wikipedia.org/wiki/George_Edward_Briggshttp://en.wikipedia.org/wiki/George_Edward_Briggshttp://en.wikipedia.org/wiki/George_Edward_Briggshttp://en.wikipedia.org/wiki/J._B._S._Haldanehttp://en.wikipedia.org/wiki/J._B._S._Haldanehttp://en.wikipedia.org/wiki/J._B._S._Haldanehttp://en.wikipedia.org/wiki/Enzyme#cite_note-65http://en.wikipedia.org/wiki/Enzyme#cite_note-65http://en.wikipedia.org/wiki/Enzyme#cite_note-65http://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Enzyme#cite_note-OF_2005-49http://en.wikipedia.org/wiki/Enzyme#cite_note-OF_2005-49http://en.wikipedia.org/wiki/Enzyme#cite_note-Lu_1998-51http://en.wikipedia.org/wiki/Enzyme#cite_note-Lu_1998-51http://en.wikipedia.org/wiki/Enzyme#cite_note-XX_2006-66http://en.wikipedia.org/wiki/Enzyme#cite_note-XX_2006-66http://en.wikipedia.org/wiki/Enzyme#cite_note-XX_2006-66http://en.wikipedia.org/wiki/File:Simple_mechanism.svghttp://en.wikipedia.org/wiki/File:Simple_mechanism.svghttp://en.wikipedia.org/wiki/File:Simple_mechanism.svghttp://en.wikipedia.org/wiki/File:Simple_mechanism.svghttp://en.wikipedia.org/wiki/Enzyme#cite_note-XX_2006-66http://en.wikipedia.org/wiki/Enzyme#cite_note-Lu_1998-51http://en.wikipedia.org/wiki/Enzyme#cite_note-OF_2005-49http://en.wikipedia.org/wiki/Enzyme#cite_note-OF_2005-49http://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Enzyme#cite_note-65http://en.wikipedia.org/wiki/J._B._S._Haldanehttp://en.wikipedia.org/wiki/George_Edward_Briggshttp://en.wikipedia.org/wiki/Enzyme#cite_note-64http://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Henri-Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Henri-Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Maud_Leonora_Mentenhttp://en.wikipedia.org/wiki/Leonor_Michaelishttp://en.wikipedia.org/wiki/Enzyme#cite_note-63http://en.wikipedia.org/wiki/S._P._L._S%C3%B8rensenhttp://en.wikipedia.org/wiki/Enzyme#cite_note-62http://en.wikipedia.org/wiki/Victor_Henrihttp://en.wikipedia.org/wiki/Single-molecule_experimenthttp://en.wikipedia.org/wiki/Enzyme_assayhttp://en.wikipedia.org/wiki/Enzyme_assay
  • 8/13/2019 Bio Catalyst

    12/25

    Saturation curve for an enzyme reaction showing the relation between the substrate concentration (S)

    and rate (v)

    Enzymes can catalyze up to several million reactions per second. For example, theuncatalyzed decarboxylation oforotidine 5'-monophosphatehas a half life of 78 million

    years. However, when the enzymeorotidine 5'-phosphate decarboxylaseis added, the

    same process takes just 25 milliseconds.[67]Enzyme rates depend on solution

    conditions and substrate concentration. Conditions that denature the protein abolish

    enzyme activity, such as high temperatures, extremes of pH or high salt concentrations,

    while raising substrate concentration tends to increase activity when [S] is low. To find

    the maximum speed of an enzymatic reaction, the substrate concentration is increased

    until a constant rate of product formation is seen. This is shown in the saturation curve

    on the right. Saturation happens because, as substrate concentration increases, more

    and more of the free enzyme is converted into the substrate-bound ES form. At the

    maximum reaction rate (Vmax) of the enzyme, all the enzyme active sites are bound to

    substrate, and the amount of ES complex is the same as the total amount of enzyme.

    However, Vmaxis only one kinetic constant of enzymes. The amount of substrate needed

    to achieve a given rate of reaction is also important. This is given by theMichaelis-

    Menten constant(Km), which is the substrate concentration required for an enzyme to

    reach one-half its maximum reaction rate; generally, each enzyme has a

    characteristic Kmfor a given substrate. Another useful constant is kcat, which is the rate

    of product formation handled by one active site and is generally given in units of inverse

    seconds.

    The efficiency of an enzyme can be expressed in terms of kcat/Km. This is also called the

    specificity constant and incorporates therate constantsfor all steps in the reaction.

    Because the specificity constant reflects both affinity and catalytic ability, it is useful for

    comparing different enzymes against each other, or the same enzyme with different

    substrates. The theoretical maximum for the specificity constant is called the diffusion

    limit and is about 108to 109(M1s1). At this point every collision of the enzyme with its

    http://en.wikipedia.org/wiki/Orotidine_5%27-monophosphatehttp://en.wikipedia.org/wiki/Orotidine_5%27-monophosphatehttp://en.wikipedia.org/wiki/Orotidine_5%27-monophosphatehttp://en.wikipedia.org/wiki/Orotidine_5%27-phosphate_decarboxylasehttp://en.wikipedia.org/wiki/Orotidine_5%27-phosphate_decarboxylasehttp://en.wikipedia.org/wiki/Orotidine_5%27-phosphate_decarboxylasehttp://en.wikipedia.org/wiki/Enzyme#cite_note-67http://en.wikipedia.org/wiki/Enzyme#cite_note-67http://en.wikipedia.org/wiki/Enzyme#cite_note-67http://en.wikipedia.org/wiki/Michaelis-Menten_constanthttp://en.wikipedia.org/wiki/Michaelis-Menten_constanthttp://en.wikipedia.org/wiki/Michaelis-Menten_constanthttp://en.wikipedia.org/wiki/Michaelis-Menten_constanthttp://en.wikipedia.org/wiki/Rate_constanthttp://en.wikipedia.org/wiki/Rate_constanthttp://en.wikipedia.org/wiki/Rate_constanthttp://en.wikipedia.org/wiki/File:Michaelis-Menten_saturation_curve_of_an_enzyme_reaction.svghttp://en.wikipedia.org/wiki/File:Michaelis-Menten_saturation_curve_of_an_enzyme_reaction.svghttp://en.wikipedia.org/wiki/File:Michaelis-Menten_saturation_curve_of_an_enzyme_reaction.svghttp://en.wikipedia.org/wiki/File:Michaelis-Menten_saturation_curve_of_an_enzyme_reaction.svghttp://en.wikipedia.org/wiki/Rate_constanthttp://en.wikipedia.org/wiki/Michaelis-Menten_constanthttp://en.wikipedia.org/wiki/Michaelis-Menten_constanthttp://en.wikipedia.org/wiki/Enzyme#cite_note-67http://en.wikipedia.org/wiki/Orotidine_5%27-phosphate_decarboxylasehttp://en.wikipedia.org/wiki/Orotidine_5%27-monophosphate
  • 8/13/2019 Bio Catalyst

    13/25

    substrate will result in catalysis, and the rate of product formation is not limited by the

    reaction rate but by the diffusion rate. Enzymes with this property are called catalytically

    perfector kinetically perfect. Example of such enzymes aretriose-phosphate

    isomerase,carbonic anhydrase,acetylcholinesterase,catalase,fumarase, -lactamase,

    andsuperoxide dismutase.

    Michaelis-Menten kinetics relies on thelaw of mass action,which is derived from the

    assumptions of freediffusionand thermodynamically driven random collision. However,

    many biochemical or cellular processes deviate significantly from these conditions,

    because ofmacromolecular crowding,phase-separation of the

    enzyme/substrate/product, or one or two-dimensional molecular movement.[68]In these

    situations, afractalMichaelis-Menten kineticsmay be applied.[69][70][71][72]

    Some enzymes operate with kinetics, which are faster than diffusion rates, which would

    seem to be impossible. Several mechanisms have been invoked to explain this

    phenomenon. Some proteins are believed to accelerate catalysis by drawing theirsubstrate in and pre-orienting them by using dipolar electric fields. Other models invoke

    a quantum-mechanicaltunnelingexplanation, whereby a proton or an electron can

    tunnel through activation barriers, although for proton tunneling this model remains

    somewhat controversial.[73][74]Quantum tunneling for protons has been observed

    intryptamine.[75]This suggests that enzyme catalysis may be more accurately

    characterized as "through the barrier" rather than the traditional model, which requires

    substrates to go "over" a lowered energy barrier.

    Inhibition

    http://en.wikipedia.org/wiki/Catalytically_perfect_enzymehttp://en.wikipedia.org/wiki/Catalytically_perfect_enzymehttp://en.wikipedia.org/wiki/Catalytically_perfect_enzymehttp://en.wikipedia.org/wiki/Catalytically_perfect_enzymehttp://en.wikipedia.org/wiki/Triosephosphateisomerasehttp://en.wikipedia.org/wiki/Triosephosphateisomerasehttp://en.wikipedia.org/wiki/Triosephosphateisomerasehttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Acetylcholinesterasehttp://en.wikipedia.org/wiki/Acetylcholinesterasehttp://en.wikipedia.org/wiki/Acetylcholinesterasehttp://en.wikipedia.org/wiki/Catalasehttp://en.wikipedia.org/wiki/Catalasehttp://en.wikipedia.org/wiki/Catalasehttp://en.wikipedia.org/wiki/Superoxide_dismutasehttp://en.wikipedia.org/wiki/Superoxide_dismutasehttp://en.wikipedia.org/wiki/Superoxide_dismutasehttp://en.wikipedia.org/wiki/Law_of_mass_actionhttp://en.wikipedia.org/wiki/Law_of_mass_actionhttp://en.wikipedia.org/wiki/Law_of_mass_actionhttp://en.wikipedia.org/wiki/Diffusionhttp://en.wikipedia.org/wiki/Diffusionhttp://en.wikipedia.org/wiki/Diffusionhttp://en.wikipedia.org/wiki/Macromolecular_crowdinghttp://en.wikipedia.org/wiki/Macromolecular_crowdinghttp://en.wikipedia.org/wiki/Macromolecular_crowdinghttp://en.wikipedia.org/wiki/Enzyme#cite_note-68http://en.wikipedia.org/wiki/Enzyme#cite_note-68http://en.wikipedia.org/wiki/Enzyme#cite_note-68http://en.wikipedia.org/wiki/Fractalhttp://en.wikipedia.org/wiki/Fractalhttp://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Enzyme#cite_note-69http://en.wikipedia.org/wiki/Enzyme#cite_note-69http://en.wikipedia.org/wiki/Enzyme#cite_note-71http://en.wikipedia.org/wiki/Enzyme#cite_note-71http://en.wikipedia.org/wiki/Quantum_tunnelinghttp://en.wikipedia.org/wiki/Quantum_tunnelinghttp://en.wikipedia.org/wiki/Quantum_tunnelinghttp://en.wikipedia.org/wiki/Enzyme#cite_note-73http://en.wikipedia.org/wiki/Enzyme#cite_note-73http://en.wikipedia.org/wiki/Tryptaminehttp://en.wikipedia.org/wiki/Tryptaminehttp://en.wikipedia.org/wiki/Enzyme#cite_note-75http://en.wikipedia.org/wiki/Enzyme#cite_note-75http://en.wikipedia.org/wiki/Enzyme#cite_note-75http://en.wikipedia.org/wiki/File:Competitive_inhibition.svghttp://en.wikipedia.org/wiki/File:Competitive_inhibition.svghttp://en.wikipedia.org/wiki/File:Competitive_inhibition.svghttp://en.wikipedia.org/wiki/File:Competitive_inhibition.svghttp://en.wikipedia.org/wiki/Enzyme#cite_note-75http://en.wikipedia.org/wiki/Tryptaminehttp://en.wikipedia.org/wiki/Enzyme#cite_note-73http://en.wikipedia.org/wiki/Enzyme#cite_note-73http://en.wikipedia.org/wiki/Quantum_tunnelinghttp://en.wikipedia.org/wiki/Enzyme#cite_note-71http://en.wikipedia.org/wiki/Enzyme#cite_note-71http://en.wikipedia.org/wiki/Enzyme#cite_note-69http://en.wikipedia.org/wiki/Enzyme#cite_note-69http://en.wikipedia.org/wiki/Michaelis-Menten_kineticshttp://en.wikipedia.org/wiki/Fractalhttp://en.wikipedia.org/wiki/Enzyme#cite_note-68http://en.wikipedia.org/wiki/Macromolecular_crowdinghttp://en.wikipedia.org/wiki/Diffusionhttp://en.wikipedia.org/wiki/Law_of_mass_actionhttp://en.wikipedia.org/wiki/Superoxide_dismutasehttp://en.wikipedia.org/wiki/Catalasehttp://en.wikipedia.org/wiki/Acetylcholinesterasehttp://en.wikipedia.org/wiki/Carbonic_anhydrasehttp://en.wikipedia.org/wiki/Triosephosphateisomerasehttp://en.wikipedia.org/wiki/Triosephosphateisomerasehttp://en.wikipedia.org/wiki/Catalytically_perfect_enzymehttp://en.wikipedia.org/wiki/Catalytically_perfect_enzyme
  • 8/13/2019 Bio Catalyst

    14/25

    Competitive inhibitors bind reversibly to the enzyme, preventing the binding of substrate. On the other

    hand, binding of substrate prevents binding of the inhibitor. Substrate and inhibitor compete for the

    enzyme.

    Types of inhibition. This classification was introduced byW.W. Cleland.[76]

    Main article:Enzyme inhibitor

    Enzyme reaction rates can be decreased by various types ofenzyme inhibitors.

    Competitive inhibition

    In competitive inhibition, the inhibitor and substrate compete for the enzyme (i.e., they

    can not bind at the same time).[77]Often competitive inhibitors strongly resemble the real

    substrate of the enzyme. For example,methotrexateis a competitive inhibitor of the

    enzymedihydrofolate reductase,which catalyzes the reduction

    ofdihydrofolatetotetrahydrofolate.The similarity between the structures of folic acid and

    http://en.wikipedia.org/wiki/W.W._Clelandhttp://en.wikipedia.org/wiki/W.W._Clelandhttp://en.wikipedia.org/wiki/Enzyme#cite_note-76http://en.wikipedia.org/wiki/Enzyme#cite_note-76http://en.wikipedia.org/wiki/Enzyme#cite_note-76http://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme#cite_note-77http://en.wikipedia.org/wiki/Enzyme#cite_note-77http://en.wikipedia.org/wiki/Methotrexatehttp://en.wikipedia.org/wiki/Methotrexatehttp://en.wikipedia.org/wiki/Methotrexatehttp://en.wikipedia.org/wiki/Dihydrofolate_reductasehttp://en.wikipedia.org/wiki/Dihydrofolate_reductasehttp://en.wikipedia.org/wiki/Dihydrofolate_reductasehttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/File:Types_of_inhibition_en.svghttp://en.wikipedia.org/wiki/File:Types_of_inhibition_en.svghttp://en.wikipedia.org/wiki/File:Types_of_inhibition_en.svghttp://en.wikipedia.org/wiki/File:Types_of_inhibition_en.svghttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Folic_acidhttp://en.wikipedia.org/wiki/Dihydrofolate_reductasehttp://en.wikipedia.org/wiki/Methotrexatehttp://en.wikipedia.org/wiki/Enzyme#cite_note-77http://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme_inhibitorhttp://en.wikipedia.org/wiki/Enzyme#cite_note-76http://en.wikipedia.org/wiki/W.W._Cleland
  • 8/13/2019 Bio Catalyst

    15/25

    this drug are shown in the figure to the rightbottom. In some cases, the inhibitor can

    bind to a site other than the binding-site of the usual substrate and exert anallosteric

    effectto change the shape of the usual binding-site. For example,strychnineacts as an

    allosteric inhibitor of the glycine receptor in the mammalian spinal cord and brain stem.

    Glycine is a major post-synaptic inhibitory neurotransmitter with a specific receptor site.

    Strychnine binds to an alternate site that reduces the affinity of the glycine receptor for

    glycine, resulting in convulsions due to lessened inhibition by the glycine.[78]In

    competitive inhibition the maximal rate of the reaction is not changed, but higher

    substrate concentrations are required to reach a given maximum rate, increasing the

    apparent Km.

    Uncompetitive inhibition

    In uncompetitive inhibition, the inhibitor cannot bind to the free enzyme, only to the ES-

    complex. The EIS-complex thus formed is enzymatically inactive. This type of inhibition

    is rare, but may occur in multimeric enzymes.

    Non-competitive inhibition

    Non-competitive inhibitors can bind to the enzyme at the binding site at the sam