bibliography - shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] bass m, van...

23
Bibliography [1] Bell A G: Selenium and photophone. Proceedings of The Electrician (1880) 214-215; 220- 221. [2] Maiman T H: Stimulated optical radiation in ruby. Nature 187 (1960) 493-494. [3] Kao K C and Hockham G A: Dielectric-fiber surface waveguides for optical frequencies. Proceedings of IEE 113 (1966) 1151-1158. [4] Kapron F P, Keck D B and Maurer R D: Radiation losses in glass optical waveguides. App. Phys. Lett. 17 (1970) 423-425. [5] Kanamori H, Yokota H, Tanaka G, Watanabe M, Ishiguro Y, Yoshida I, Kakii T, Itoh S, Asana Y and Tanaka S: Transmission characteristics and reliability of pure-silica-core single mode fibers. J. Lightwave Technol. LT-4 (1986) 1144- 1150. [6] Poole S B, Payne D N, Mears R J, Fermann M E and Laming R E: Fabrication and characterization of low-loss optical fibers containing rare earth ions. J. Lightwave Technol. LT-4 (1986) 870-876. [7] Suzuki K, Kubota K, and Nakazawa M: 1 Tb/s (40 Gb/s×25 channel) DWDM quasi-DM soliton transmission over 1500 km using dispersion-managed single- mode fiber and conventional C-band EDFAs. Proceedings of OSA (2001) 1-3. 153

Upload: others

Post on 17-May-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

Bibliography

[1] Bell A G: Selenium and photophone. Proceedings of The Electrician (1880)

214-215; 220- 221.

[2] Maiman T H: Stimulated optical radiation in ruby. Nature 187 (1960) 493-494.

[3] Kao K C and Hockham G A: Dielectric-fiber surface waveguides for optical

frequencies. Proceedings of IEE 113 (1966) 1151-1158.

[4] Kapron F P, Keck D B and Maurer R D: Radiation losses in glass optical

waveguides. App. Phys. Lett. 17 (1970) 423-425.

[5] Kanamori H, Yokota H, Tanaka G, Watanabe M, Ishiguro Y, Yoshida I, Kakii

T, Itoh S, Asana Y and Tanaka S: Transmission characteristics and reliability

of pure-silica-core single mode fibers. J. Lightwave Technol. LT-4 (1986) 1144-

1150.

[6] Poole S B, Payne D N, Mears R J, Fermann M E and Laming R E: Fabrication

and characterization of low-loss optical fibers containing rare earth ions. J.

Lightwave Technol. LT-4 (1986) 870-876.

[7] Suzuki K, Kubota K, and Nakazawa M: 1 Tb/s (40 Gb/s×25 channel) DWDM

quasi-DM soliton transmission over 1500 km using dispersion-managed single-

mode fiber and conventional C-band EDFAs. Proceedings of OSA (2001) 1-3.

153

Page 2: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[8] Sano A, Masuda H, Kisaka Y, Aisawa S, Yoshida E, Miyamoto Y, Koga M,

Hagimoto K, Yamada T, Furuta T and Fukuyama H: 14-Tb/s (140×111-Gb/s

PDM/WDM) CSRZ-DQPSK transmission over 160 km using 7-THz bandwidth

extended L-band EDFAs’. Proceedings of ECOC 6 (2006) 1-2.

[9] Nagayama K, Kakui M, Matsui M, Saitoh T and Chigusa Y: Ultra-low loss

(0.1484 dB/km) pure silica core fiber and extension of transmission distance.

Electron. Lett. 38 (2002) 1168-1169.

[10] Agrawal G P: Nonlinear fiber optics. Academic Press, San Diego 2009.

[11] Boyd R B: Nonlinear optics. Academic Press, San Diego 2008.

[12] Ainslie B J and Day C R: A review of single-mode fibers with modified disper-

sion characteristics. J. Lightwave Technol. LT-4, (1986) 967-979.

[13] Koroteev N I and Zheltikov A M: Chirp control in third harmonic generation

due to cross-phase modulation. Appl. Phys. B 67 (1998) 53-57.

[14] Le Blanc S P and Sauerbrey R: Spectral, temporal, and spatial characteristics of

plasma-induced spectral blue shifting and its application to femtosecond pulse

measurement. J. Opt. Soc. Am. B 13 (1996) 72-88.

[15] Wang J, Sun X and Zhang M: Effect of group velocity dispersion on stimulated

Raman crosstalk in multichannel transmission systems. IEEE Photon. Technol.

Lett. 10 (1998) 540-542.

[16] Ippen E P and Stolen R H: Stimulated Brillouin scattering in optical fibers.

Appl. Phys. Lett. 21 (1972) 539-541.

[17] Hasegawa A and Tappert F: Transmission of stationary nonlinear optical pulses

in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23

(1973) 142-144.

154

Page 3: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[18] Hasegawa A and Tappert F: Transmission of stationary nonlinear optical pulses

in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23 (1973)

171-172.

[19] Mollenauer L F, Stolen R H and Gordon J P: Experimental observation of

picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45

(1980) 1095-1098.

[20] Mitschke F M and Mollenauer L F: Discovery of the soliton self-frequency shift.

Opt. Lett. 11 (1986) 659-661.

[21] Kivshar Yu S and Afanasjev V V: Dark optical solitons with reverse-sign am-

plitude. Phys. Rev. A 44 (1991) R1446-R1449.

[22] Blow K J and Doran N J: Bandwidth limits of nonlinear (soliton) optical com-

munication systems. Electron. Lett. 19 (1983) 429-430.

[23] Kivshar Yu S and Luther-Davies B: Dark optical solitons: Physics and appli-

cations. Phys. Rep. 298 (1998) 81-197.

[24] Remoissenet M: Waves called solitons: Concepts and experiments. Springer-

Verlag, New York 1994.

[25] Russell J S: Report on waves. 14tℎ Meet. British Assoc. Adv. Sci., John Murray

(1844) 311-390.

[26] Airy G B: Tides and waves. Encyc. Metrop. (Fellows, London) 1845.

[27] Stokes G G: On the theory of oscillatory waves. Camb. Trans. 8 (1847) 441-473.

[28] Boussinesq J: Theorie de l′intumescence liquide appelee onde solitaire ou de

translation, se propageant dans un canal rectangulaire C.R. Acad. Sci. Paris.

72 (1671) 755-759.

155

Page 4: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[29] Rayliegh: On waves. Phil. Mag. 1 (1987) 257-279.

[30] Korteweg D J and Devries G: On the change of form of long waves advancing

in a rectangular canal, and on a new type of long stationary waves. Phil. Mag.

39 (1895) 422-443.

[31] Zabusky N J and Kruskal M D: Interaction of “solitons” in a collisionless plasma

and the recurrence of initial states. Phys. Rev. Lett. 15 (1965) 240-243.

[32] Gardner C S, Greene J M, Kruskal M D and Miura R M: Method for solving

the Korteweg-deVries equation. Phys. Rev. Lett. 19 (1967) 1095-1097.

[33] Frenkel J and Kontorova T: On the theory of plastic deformation and twinning.

Phys. Z. Sowjetunion. 1 (1939) 137-149.

[34] Perring J K and Skyrme T R H: A model unified field equation. Nucl. Phys.

31 (1962) 550-555.

[35] Toda M: Vibration of a chain with nonlinear interactions. J. Phy. Soc. Japan.

22 (1967) 431-436.

[36] Toda M: Wave propagation in anharmonic lattices. J. Phy. Soc. Japan. 23

(1967) 501-506.

[37] Landau L D and Lifshitz E M: On the theory of the dispersion of magnetic

permability in ferromagnet bodies. Phys. Z. Sowjetunion. 8 (1935) 153-169.

[38] Lakshmanan M: Continium spin system as an exactly solvable dynamic system.

Phys. Lett. A 61 (1977) 53-54.

[39] Takhtajan L A: Integration of the continium Heisenberg spin chain through the

inverse scattering method, Phys. Lett. A 64 (1977) 235-237.

156

Page 5: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[40] Borovik A E: N-soliton solutions of Landau-Lifshitz equation JETP Lett. 28

(1978) 581-584.

[41] Zakharov V E: Stability of periodic waves of finite amplitude on the surface of

deep fluid. J. App.Mech. Tech. Phys. 9 (1968) 86-94.

[42] Zakharov V E and Shabat A B: Exact theory of two-dimensional self-focusing

and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys.

JETP 34 (1972) 62-69.

[43] Hasegawa A: Observation of self-trapping instability of a plasma cyclotron wave

in a computer experiment. Phys. Rev. Lett. 24 (1970) 1165-1168.

[44] Nozaki K and Taniuti T: Envelope solitons in nonlinear acoustics. Physica D

18 (1986) 127-134.

[45] Davydov A S. Solitons in Molecular Systems. Kluwer Academic Publishers,

Norwell 1991.

[46] McCall S L and Hann E L: Self-Induced transparency by pulsed coherent light.

Phys. Rev. Lett. 18 (1967) 908-911.

[47] Maimistov A I and Sklyarov Yu M: Propagation of ultrashort optical pulses in

resonant nonlinear light guides. Sov. Phys. JETP 58 (1983) 685-687.

[48] Nakazawa M, Kimura Y, Kurokawa K and Suzuki K: Self-induced transparency

solitons in an erbium-doped fiber waveguide. Phys. Rev. A 45 (1992) R23-R26.

[49] Porsezian K and Nakkeeran K: Optical soliton propagation in an erbium doped

nonlinear light guide with higher-order dispersion. Phys. Rev. Lett. 74 (1995)

3101-3108.

157

Page 6: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[50] Porsezian K and Nakkeeran K: Coexistence of a self-induced transparency soli-

ton and a higher-order nonlinear Schrodinger soliton in an erbium doped fiber.

Opt. Commun. 123 (1996) 169-174.

[51] Lakshmanan M and Rajasekar S: Nonlinear dynamics. Springer, Newd Delhi

2005.

[52] Kodama Y and Hasegawa A: Amplification and reshaping of optical solitons in

glass fiber-II. Opt. Lett. 7 (1982) 339-341.

[53] Hasegawa A: Amplification and reshaping of optical solitons in a glass fiber-IV:

Use of the stimulated Raman process. Opt. Lett. 8 (1983) 650-652.

[54] Mollenauer L F and Smith K: Demonstration of soliton transmission over more

than 4000 km in fiber with loss periodically compensated by Raman gain. Opt.

Lett. 13 (1988) 675-677.

[55] Nakazawa M, Kimura Y and Suzuki K: Soliton amplification and transmission

with Er3+-doped fiber repeater pumped by GaInAsP laser diode. Electron. Lett.

25 (1989) 199-200.

[56] Nakazawa M, Suzuki K, Kubota H, Yamada E and Kimura Y: Dynamic optical

soliton communication. IEEE J. Quantum Electron. 26 (1990) 2095-2102.

[57] Mollenauer L F, Evangelides S G and Haus H A: Long-distance soliton propaga-

tion using lumped amplifiers and dispersion shifted fiber. J. Lightwave Technol.

9 (1991) 194-197.

[58] Blow K J and Doran N J: Average soliton dynamics and the operation of soliton

systems with lumped amplifiers. IEEE Photon. Technol. Lett. 3 (1991) 369-371.

158

Page 7: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[59] Nakazawa M, Suzuki K, Kimura Y and Kubota H: Coherent �-pulse propagation

with pulse breakup in an erbium-doped fiber waveguide amplifier. Phys. Rev.A

45 (1992) R2682-R2685.

[60] Maimistov A I, Basharov A M, Elyutin S O and Sklyarov Yu M: Present state

of self-induced transparency theory. Phys. Rep. 191 (1990) 1-108.

[61] Tseng H Y and Chi S: Coexistence of a self-induced transparency soliton and

a Bragg soliton. Phys. Rev. E 66 (2002) 056606.

[62] Akozbek N and John S: Self-induced transparency solitary waves in a doped

nonlinear photonic band gap material. Phys. Rev. E 58 (1998) 3876-3895.

[63] Ostrovskii L A: Propagation of wave packets and space-time self-focusing in a

nonlinear medium. Sov. Phys. JETP 24 (1967) 797-800.

[64] Bespalov V I and Talanov V I: Filamentary structure of light beams in nonlinear

liquids. JETP Lett. 3 (1966) 307-310.

[65] Benjamin T B and Feir J E: The disintegration of wave trains on deep water

Part 1. Theory. J. Fluid Mech. 27 (1967) 417-430.

[66] Hasegawa A and Brinkman W F: Tunable coherent IR and FIR sources utilizing

modulational instability. IEEE J. Quantum Electron. 16 (1980) 694-697.

[67] Karpman V I: Self-modulation of nonlinear plane waves in dispersive media.

JETP Lett. 6 (1967) 277-280.

[68] Hasegawa A: Generation of a train of soliton pulses by induced modulational

instability in optical fibers. Opt. Lett. 9 (1984) 288-290.

[69] Tai K, Hasegawa A, and Tomita A: Observation of modulational instability in

optical fibers. Phys. Rev. Lett. 56 (1986) 135-138.

159

Page 8: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[70] Millot G, Seve E, Wabnitz S and Haelterman J M: Observation of induced

modulational polarization instabilities and pulse-train generation in the normal-

dispersion regime of a birefringent optical fiber. J. Opt. Soc. Am. B 15 (1998)

1266-1277.

[71] Soto-Crespo J M and Wright E M: Generation of pulse trains in the normal

dispersion regime of a dielectric medium with a relaxing nonlinearity. Appl.

Phys. Lett. 59 (1991) 2489-2491.

[72] Mamyshev P V, Bosshard C and Stegeman G I: Generation of a periodic array

of dark spatial solitons in the regime of effective amplification. J. Opt. Soc. Am.

B 11 (1994) 1254-1260.

[73] Whitham G B: Nonlinear dispersive waves. Proc. R. Soc. London A 283 (1965)

238-261.

[74] Wu B and Niu Q: Landau and dynamical instabilities of the superflow of Bose-

Einstein condensates in optical lattices, Phys. Rev. A 64 (2001) 061603.

[75] Kevrekidis P G and Frantzeskakis D J: Pattern forming dynamical instabilities

of Bose-Einstein condensates. Mod. Phys. Lett. B 18 (2004) 173-202.

[76] Stegeman G I and Segev M: Optical spatial solitons and their interactions:

universality and diversity. Science 286 (1999) 1518-1522.

[77] Kodama Y and Hasegawa A: Solitons in optical communications. Oxford Uni-

versity Press, Oxford 1995.

[78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics

II, McGraw-Hill, New York 1995.

[79] Dyott R B, Cozens J R and Morris D G: Preservation of polarization in optical

fiber wave guides with elliptical cores. Electron. Lett. 15 (1979) 380-382.

160

Page 9: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[80] Emplit P, Hamaide J P, Reynaud F, Froehley C and Barthelemy A: Picosecond

steps and dark pulses through nonlinear single mode fibers. Optic. Commun.

62 (1987) 374-379.

[81] Kodama Y and Hasegawa A: Nonlinear pulse propagation in a monomode di-

electric guide. IEEE J. Quantum Electron. 23 (1987) 510-524.

[82] Krokel D, Halas N J, Giuliani G and Grischkowsky D: Dark-pulse propagation

in optical fibers. Phys. Rev. Lett. 60 (1988) 29-32.

[83] Manakov S V: On the theory of two-dimensional stationary self-focusing of

electromagnetic waves. Sov. Phys. JETP. 38 (1974) 248-253.

[84] Akhmediev N, Soto-Crespo J M: Dynamics of solitonlike pulse propagation in

birefringent optical fibers. Phys. Rev. E 49 (1994) 5742-5754.

[85] Malomed B A: Polarization dynamics and interactions of solitons in a birefrin-

gent optical fiber. Phys. Rev. A 43 (1991) 410-423.

[86] Hutchings D C, Arnold J M and Parker D F: Stationary mixed-polarization

spatial solitons and their stability in semiconductor waveguides. Phys. Rev. E

58 (1998) 6649-6658.

[87] Senthilnathan K and Porsezian K: Evolution of polarization of a nonlinear pulse

in birefringent fiber with quintic effects. Phys. Lett. A 301 (2002) 433-441.

[88] Barad Y and Silberberg Y: Polarization evolution and polarization instability

of solitons in a birefringent optical fiber. Phys. Rev. Lett. 78 (1997) 3290-3293.

[89] Gedalin M, Scott TC and Band Y B: Optical solitary waves in the higher-order

nonlinear Schrodinger equation. Phys. Rev. Lett. 78 (1997) 448-451.

161

Page 10: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[90] Chen C J, Menyuk C R, Islam M N and Stolen R H: Numerical study of the

Raman effect and its impact on soliton-dragging logic gates. Opt. Lett. 16

(1991) 1647-1649.

[91] Malomed B A and Tasgal R A: The Raman effect and solitons in an elliptical

optical fiber. J. Nonlin. Opt. Phys. Materials 5 (1996) 559-574.

[92] Malomed B A and Tasgal R A: The Raman effect and solitons in an optical

fiber with general ellipticity. Pure Appl. Opt. 5 (1996) 947-965.

[93] Nakkeeran K, Porsezian K, Shanmugha Sundaram P and Mahalingam A: Op-

tical solitons in N-coupled higher-order nonlinear Schrodinger equations. Phys.

Rev. Lett. 80 (1998) 1425-1428.

[94] Sakovich S and Suchida T: Symmetrically coupled higher-order nonlinear

Schrodinger equations: singularity analysis and integrability. J. Phys. A: Math.

Gen. 33 (2000) 7217-7226.

[95] Mahalingam A and Porsezian K: Propagation of dark solitons with higher-order

effects in optical fibers. Phys. Rev. E 64 (2001) 46608.

[96] Porsezian K, Sundaram P S and Mahalingam A: Coupled higher-order nonlinear

Schrodinger equations in nonlinear optics: Painleve analysis and itegrability.

Phys. Rev. E 50 (1994) 1543-1547.

[97] Q-Han Park and Shin H J: Systematic construction of multicomponent optical

solitons. Phys. Rev. E 61 (2000) 3093-3106.

[98] Du M, Chan K, and Chui K: A novel approach to solving the nonlinear

Schrodinger equation by the coupled amplitude-phase formulation. IEEE J.

Quantum Electron. 31 (1995) 177-182.

162

Page 11: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[99] Palacios S L, Guinea A, Fernandez-Daz J M, and Crespo R D: Dark solitary

waves in the nonlinear Schrodinger equation with third-order dispersion, self-

steepening, and self-frequency shift. Phys. Rev. E 60 (1999) R45-R47.

[100] Kumar S, Selvarajan A and Anand G V: Influence of Raman scattering on the

cross phase modulation in optical fibers. Opt. Commun. 102 (1993) 329-335.

[101] Menyuk C R: Pulse propagation in an elliptically birefringent Kerr medium.

IEEE J. Quantum Electron. 25 (1989) 2674-2682.

[102] Liu S and Liu X: Mutual compensation of the higher-order nonlinearity and the

third-order dispersion. Phys. Lett. A 225 (1997) 67-72.

[103] Nandy S: Inverse scattering approach to coupled higher-order nonlinear

Schrodinger equation and N-soliton solutions. Nucl. Phys. B 679 (2004) 647-

659.

[104] Sankar S and Nakkeeran K: Simultaneous propagation of N-solitons in a fiber

medium with all higher-order effects. J. Phys. A: Math. Gen. 32 (1999) 7031-

7037.

[105] Fan E G: Extended tanh-function method and its applications to nonlinear

equations. Phys. Lett. A 277 (2000) 212-220.

[106] Liu S S, Fu Z T, Liu S D, Zhao Q: Jacobi elliptic function expansion method

and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289

(2001) 69-74.

[107] Hioe F T: Analytic solutions of some coupled nonlinear equations. Phys. Rev.

E 56 (1997) 7253-7256.

163

Page 12: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[108] Fan E and Hon Y C: A series of travelling wave solutions for two variant Boussi-

nesq equations in shallow water waves. Chaos, Solitons and Fractals 15 (2003)

559-566.

[109] Kivshar Yu S, Anderson D J, Hook A and Lisak M: Symbiotic optical solitons

and modulational instability. Physica Scripta. 44 (1991) 195-202.

[110] Zhao W and Bourkoff E: Propagation properties of dark solitons. Opt. Lett. 14

(1989) 703-705.

[111] Zhao W and Bourkoff E: Periodic amplification of dark solitons using stimulated

Raman scattering. Opt. Lett. 14 (1989) 808-810.

[112] Zhao W and Bourkoff E: Interactions between dark solitons. Opt. Lett. 14

(1989) 1371-1373.

[113] Gredeskul S A, Kivshar Yu S and Yanovskaya M V: Dark-pulse solitons in

nonlinear optical fibers. Phys. Rev. A 41 (1990) 3994-4008.

[114] Kivshar Yu S: Perturbation-induced dynamics of small-amplitude dark optical

solitons. Opt. Lett. 15 (1990) 1273-1275.

[115] Trillo S, Wabnitz S, Wright E U and Stegeman G I: Optical solitary waves

induced by cross-phase modulation. Opt. Lett. 13 (1988) 871-873.

[116] Afanasjev V V, Kivshar Yu S, Konotop V V and Serkin V N: Dynamics of

coupled dark and bright optical solitons. Opt. Lett. 14 (1989) 805-807.

[117] Afanasjev V V, Dianov E M and Serkin V N: Nonlinear pairing of short bright

and dark soliton pulses by phase cross modulation. IEEE J. Quantum Electron.

25 (1989) 2656-2664.

164

Page 13: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[118] Lisak M, Hook A and Anderson D J: Symbiotic solitary-wave pairs sustained by

cross-phase modulation in optical fibers. J. Opt. Soc. Am. B 7 (1990) 810-814.

[119] Agrawal G P: Fiber-optic communications systems. John Wiley & Sons, New

York 2008.

[120] Kubota H and Nakazawa M: Partial soliton communication system. Opt. Com-

mun. 87 (1992) 15-18.

[121] Nakazawa M, Kubota H, Suzuki K, Yamada E and Sahara A: Recent progress

in soliton transmission technology. Chaos 10 (2000) 486-514.

[122] Maruta A, Yamamoto Y, Okamoto S, Suzuki A, Morita T, Agata A and

Hasegawa A: Effectiveness of densely dispersion managed solitons in ultra-high

speed transmission. Electron. Lett. 36 (2000) 1947-1949.

[123] Richardson L J, Forysiak W and Doran N J: Transoceanic 160-Gb/s single-

channel transmission using shortperiod dispersion management. Photon. Tech.

Lett. 13 (2001) 209-211.

[124] Taga H, Edagawa N, Yoshida Y, Yamamoto S and Wakabayashi H: IM-DD four-

channel WDM transmission experiment over 1500 km employing 22 cascaded

optical amplifiers. Electron. Lett. 29 (1993) 485-486.

[125] Vengsarkar A M, Lemaire P J, Judkins J B, Bhatia V, Erdogan T and Sipe J

E: Long-period fiber gratings as band-rejection filters. J. Lightwave Tech. 14

(1996) 58-65.

[126] Sun Y, Judkins J B, Srivastava A K, Garrett L, Zyskind J L, Sulhoff J W, Wolf

C, Derosier R M, Gnauck A P, Tkach R W, Zhou J, Espindola R P, Vengsarkar

A M and Chraplyvy A R: Transmission of 32-WDM 10-Gb/s channels over

165

Page 14: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

640 km using broad-band, gain-flattened erbium-doped silica fiber amplifiers.

Photon. Tech. Lett. 9 (1997) 1652-1654.

[127] Forysiak W, Knox F M and Doran N J: Average soliton propagation in period-

ically amplified systems with stepwise dispersion-profiled fiber. Opt. Lett. 19

(1994) 174-176.

[128] Hasegawa A , Kumar S and Kodama Y: Reduction of collision-induced time

jitters in dispersion-managed soliton transmission systems. Opt. Lett. 21 (1996)

39-41.

[129] Mollenauer L F, Mamyshev P V and Neubelt M J: Demonstration of soliton

WDM transmission at 6 and 7×10 Gb/s, error free over transoceanic distances.

Electron. Lett. 32 (1996) 471-473.

[130] Suzuki M, Morita I, Edagawa N, Yamamoto S, Toga H and Akiba S: Reduction

of Gordon-Haus timing jitter by periodic dispersion compensation in soliton

transmission. Electron. Lett. 31 (1995) 2027-2029.

[131] Smith N J, Knox F M, Doran N J, Blow K J and Bennion I: Enhanced power

solitons in optical fibers with periodic dispersion management. Electron. Lett.

32 (1996) 54-55.

[132] Hasegawa A: An historical review of application of optical solitons for high

speed communications. Chaos 10 (2000) 475-485.

[133] Willner A E and Hwang S M: Transmission of many WDM channels through a

cascade of EDFAs in long-distance link and ring networks. J. Lightwave Tech.

13 (1995) 802-816.

[134] Gordon J P and Haus H A: Random walk of coherently amplified solitons in

optical fiber transmission. Opt. Lett. 11 (1986) 665-667.

166

Page 15: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[135] Essiambre R J, Mikkelsen B and Raybon G, Intra-channel cross-phase modu-

lation and four-wave mixing in high-speed TDM systems. Electron. Lett. 35

(1999) 1576-1578.

[136] Mamyshev P V and Mamysheva N A: Pulse-ovelapped dispersion-managed data

transmission and intrachannel four-wave mixing. Opt. Lett. 24 (1999) 1454-

1457.

[137] Sugahara H, Kato H and Kodama Y: Maximum reductions of collision induced

frequency shift in soliton-WDM systems with dispersion compensation. Elec-

tron. Lett. 33 (1997) 1065-1066.

[138] Hirooka T and Hasegawa A: Chirped soliton interaction in strongly dispersion-

managed wavelength-division-multiplexed-systems. Opt. Lett. 23 (1998) 768-

770.

[139] Mamyshev P V and Mollenauer L F: Soliton collisions in wavelength-division-

multiplexed dispersion-managed systems. Opt. Lett. 24 (1999) 448-450.

[140] Ablowitz M J, Biondini G and Olson E S: Incomplete collisions of wavelength-

division multiplexed dispersion-managed solitons. J. Opt. Soc. Am. B 18 (2001)

577-583.

[141] Anderson D: Variational approach to nonlinear pulse propagation in optical

fibers. Phys. Rev. A 27 (1983) 3135-3145.

[142] Kutz J N, Holmes P, Evangelides S G, and Gordon J P: Hamiltonian dynamics

of dispersion-managed breathers. J. Opt. Soc. Am. B 15 (1998) 87-96.

[143] Boesch R, Stancioff P and Willis C R: Hamiltonian equations for multiple-

collective-variable theories of nonlinear Klein-Gordon equations: A projection-

operator approach. Phys. Rev. B 38 (1988) 6713-6735.

167

Page 16: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[144] Wai P K A and Nakkeeran K: On the uniqueness of Gaussian ansatz parameters

equations: generalized projection operator method. Phy. Lett. A 332 (2004)

239-243.

[145] Nakkeeran K and Wai P K A: Generalized projection operator method to derive

the pulse parameters equations for the nonlinear Schrodinger equation. Opt.

Commun. 244 (2005) 377-382.

[146] Nakkeeran K and Wai P K A: Behavior of different anstze in the generalized

projection operator method. Chaos, Solitons and Fractals 31 (2007) 639-647.

[147] Mousumi B and Roy Chowdhury A: Projection operator technique and solitary

pulse scattering in optical fiber. Nonlinear Opt. Quantum Opt. 10 (2005) 1-12.

[148] Moubissi A B, Nakkeeran K, Dinda P T and Kofane TC: Non-Lagrangian col-

lective variable approach for optical solitons in fibers. J. Phys. A: Math. Gen.

34 (2001) 129-136.

[149] Moubissi A B, Dinda P T and Kofane T C: Note on collective variable theory

of nonlinear Schrodinger solitons. J. Phys. A: Math. Gen. 33 (2000) 2453-2455.

[150] Dinda P T, Moubissi A B and Nakkeeran K: A collective variable approach for

dispersion-managed solitons. J. Phys. A: Math. Gen. 34 (2001) L103-L110.

[151] Dinda P T, Moubissi A B and Nakkeeran K: Collective variable theory for

optical solitons in fibers. Phys. Rev. E 64 (2001) 16608-1-15.

[152] Mandal B and Roy Chowdhury A: Solitary optical pulse propagation in fused

fiber coupler effect of Raman scattering and switching. Chaos, Solitons and

Fractals 24 (2005) 557-565.

[153] Nakkeeran K, Moubissi A B, Dinda P T and Wabnitz S: Analytical method for

designing dispersion-managed fiber systems. Opt. Lett. 26 (2001) 1544-1546.

168

Page 17: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[154] Millot G, Pitois S, Dinda P T and Haelterman M: Observation of modulational

instability induced by velocity-matched cross-phase modulation in a normally

dispersive bimodal fiber. Opt. Lett. 22 (1997) 1686-1688.

[155] Agrawal G P: Applications of nonlinear fiber optics. Academic Press, New York

2008.

[156] Lamb G L, Jr: Analytical descriptions of ultrashort optical pulse propagation

in a resonant medium. Rev. Mod. Phys. 43 (1971) 99-124.

[157] Slusher R E: Self-induced transparency. Progress in optics 12 (1974) 53-100.

[158] Nakazawa M, Kimura Y and Kubota H: Coexistence of self-induced trans-

parency soliton and nonlinear Schrodinger soliton. Phys. Rev. Lett. 66 (1991)

2625-2628.

[159] Nakazawa M, Yamada E and Kubota H: Coexistence of a self-induced trans-

parency soliton and a nonlinear Schrodinger soliton in an erbium-doped fiber.

Phys. Rev. A 44 (1991) 5973-5987.

[160] Blaauboer M, Malomed B A, and Kurizki G: Spatiotemporally localized mul-

tidimensional solitons in self-induced transparency media. Phys. Rev. Lett. 84

(2000) 1906-1909.

[161] Kurizki G, Kozhekin A E and Malomed B A: Optical solitons in periodic me-

dia with resonant and off-resonant nonlinearities. Progress in optics 42, North

Holland, Amsterdam 2001.

[162] Kamchatnov A M: New approach to periodic solutions of integrable equations

and nonlinear theory of modulational instability. Phys. Rep. 286 (1997) 199-

270.

169

Page 18: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[163] He J S, Cheng Y, Li Y S: The Darboux transformation for NLS-MB equations.

Commun. Theor. Phys. 38 (2002) 493-496.

[164] Ziolkowski R W, Arnold J M and Gogny D M: Ultrafast pulse interactions with

two-level atoms. Phys. Rev. A 52 (1995) 3082-3094.

[165] Hughes S: Subfemtosecond soft-x-ray generation from a two-level atom: Ex-

treme carrier-wave Rabi flopping. Phys. Rev. A 62 (2000) 055401.

[166] Hughes S: Breakdown of the area theorem: carrier wave Rabi flopping of fem-

tosecond optical pulses. Phys. Rev. Lett. 81 (1998) 3363-3366.

[167] Tarasishin A V, Magnitskii S A, Zheltikov A M: Propagation and amplification

of ultrashort light pulses in a resonant two-level medium: finite difference time-

domain analysis. Opt. Commun. 193 (2001) 187-196.

[168] van Tartwijk G H M and Agrawal G P: Maxwell-Bloch dynamics and modu-

lation instabilities in fiber lasers and amplifiers. J. Opt. Soc. Am. B 14 (1997)

2618-2627.

[169] Lugiato L A, Narducci L M and Squicciarini M F: Exact linear stability analysis

of the plane-wave Maxwell-Bloch equations for a ring laser. Phys. Rev. A 34

(1986) 3101-3108.

[170] Afanas’ev A A, Vlasov R A and Cherstvyi A G: Optical solitons in dense reso-

nant media. J. Exp. Theor. Phys. 90 (2000) 428-433.

[171] Afanas’ev A A, Vlasov R A, Khasanov O K, Smirnova T V and Fedotova O M:

Coherent and incoherent solitons of self-induced transparency in dense, resonant

media. J. Opt. Soc. Am. B 19 (2002) 911-919.

170

Page 19: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[172] Hui R, O’Sullivan M, Robinson A and Taylor M: Modulation instability and its

impact in multispan optical amplified IMDD systems: Theory and experiments.

J. Lightwave Tech. 15 (1997) 1071-1081.

[173] Yu M, Agrawal G P and McKinstrie C J: Pump-wave effects on the propagation

of noisy signals in nonlinear dispersive media. J. Opt. Soc. Am. B 13 (1995)

1126-1132.

[174] Labruyere A, Ambomo S, Ngabireng C, Dinda P T, Nakkeeran K and Porsezian

K, Suppression of sideband frequency shifts in the modulational instability spec-

tra of wave propagation in optical fiber systems, Opt. Lett. 32 (2007) 1287-1289.

[175] Dinda P T, Ngabireng C M, Porsezian K and Kalithasan B: Modulational in-

stability in optical fibers with arbitrary higher-order dispersion and delayed

Raman response. Opt. Commun. 266 (2006) 142-150.

[176] Pitois S, Millot G: Experimental observation of a new modulational instability

spectral window induced by fourth-order dispersion in a normally dispersive

single mode optical fiber. Opt. Commun. 226 (2003) 415-422.

[177] Kitayama K, Okamoto K and Yoshinaga H: Extended four-photon mixing ap-

proach to modulational instability. J. Appl. Phys. 64 (1988) 6586-6587.

[178] Ito F, Kitayama K and Yoshinaga H: Experimental verification of frequency

level-off of modulational instability in the minimum dispersion region. Appl.

Phys. Lett. 54 (1989) 2503-2505.

[179] Abdullaev F Kh, Darmanyan S A, Bischoff S, Christiansen P L and Sorensen

M P: Modulational instability in optical fibers near the zero dispersion point.

Opt. Commun. 108 (1994) 60-64.

171

Page 20: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[180] Cavalcanti S B, Cressoni J C, da Cruz H R and Gouveia-Neto A S: Modulation

instability in the region of minimum group-velocity dispersion of single-mode

optical fibers via an extended nonlinear Schrodinger equation. Phys. Rev. A 43

(1991) 6162-6165.

[181] de Sterke C M: Theory of modulational instability in fiber Bragg gratings. J.

Opt. Soc. Am. B 15 (1998) 2660-2667.

[182] Huang J and Yao J: Small-signal analysis of cross-phase modulation instability

in lossy fibers. J. Mod. Opt. 52 (2005) 1947-1955.

[183] Chi S and Chang C W: Femtosecond soliton propagation in erbium-doped fiber

amplifiers: the equivalance of two different modes. Opt. Commun. 106 (1994)

193-196.

[184] Matulic L and Eberly J E: Analytic Study of Pulse Chirping in Self-induced

transparency. Phys. Rev. A 6 (1972) 822-836.

[185] Opatrny T, Malomed B A and Kurizki G: Dark and bright solitons in resonantly

absorbing gratings. Phys. Rev. E 60 (1999) 6137-6149.

[186] Nakkeeran K: Non-existence of dark solitons in a nonlinear Schrodinger-

Maxwell-Bloch fiber system. J. Phys. A: Math. General 33 (2000) 7007-7011.

[187] Kittel C: Introduction to solid state physics. John Wiley & Sons, Hoboken 2005.

[188] Hill K O, Fujii Y, Johnson D C and Kawasaki B S: Photosensitivity in optical

fiber waveguides: Application to reflection filter fabrication. App. Phys. Lett.

32 (1978) 647-649.

[189] Meltz G, Morey W W and Glenn W H: Formation of Bragg gratings in optical

fibers by a transverse holographic method. Opt. Lett. 14 (1989) 823-825.

172

Page 21: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[190] Kashyap R, Armitage J R, Wyatt R, Davey S T and Williams D L: All-fiber

narrowband reflection gratings at 1500 nm. Electron. Lett. 26 (1990) 730-732.

[191] de Sterke C M, Krug P A and Sipe J E: Bragg grating solitons. Phys. Rev. Lett.

76 (1996) 1627-1630.

[192] Tseng H Y and Chi S: Distortionless pulse-train propagation in a nonlinear

photonic bandgap structure doped uniformly with inhomogeneously broadening

two-level atoms. IEEE J. Selec. Topics in Quantum Electron. 8 (2002) 681-689.

[193] Mak W C K, Malomed B A and Chu P L: Interaction of a soliton with a

localized gain in a fiber Bragg grating. Phys. Rev. E 67 (2003) 026608.

[194] de Sterke C M, Broderick N G R, Eggleton B J and Steel M J: Nonlinear optics

in fiber gratings. Optical Fiber Tech. 2 (1996) 253-268.

[195] Yablonovitch E: Inhibited spontaneous emission in solid state physics and elec-

tronics. Phys. Rev. Lett. 58 (1987) 2059-2063.

[196] Kalithasan B, Porsezian K, Dinda P T and Malomed B A: Modulational insta-

bility and generation of self-induced transparency solitons in resonant optical

fibers. J. Opt. A: Pure Appl. Opt. 11 (2008) 045205.

[197] Porsezian K, Senthilnathan K and Devipriya S: Modulational instability in

fiber Bragg grating with non-Kerr nonlinearity. IEEE J. Quantum Electron.

41 (2005) 789-796.

[198] Porsezian K and Senthilnathan K: Generation of Bragg solitons through mod-

ulation instability in a Bragg grating structure. Chaos 15 (2005) 037109.

[199] Ancemma J, Senthilnathan K, Porsezian K and Dinda P T: Gap solitons and

modulation instability in a dynamic Bragg grating with nonlinearity manage-

ment. J. Opt. A: Pure Appl. Opt. 11 (2009) 015203.

173

Page 22: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[200] Abdullaev F Kh, Abdumalikov A A and Galimzyanov R M: Galimzyanov: Mod-

ulational instability of matter waves under strong nonlinearity management.

Physica D 238 (2009) 1345-1351.

[201] Abdullaev F Kh, Darmanyan S A, and Garnier J: Modulational instability of

electromagnetic waves in inhomogeneous and in discrete media. Progress in

optics 44, North Holland, Amsterdam 2002.

[202] Eggleton B J, de Sterke C M and Slusher R E: Nonlinear pulse propagation in

Bragg gratings. J. Opt. Soc. Am. B 14 (1997) 2980-2993.

[203] Eggleton B J, de Sterke C M, Aceves A B., Sipe J E, Strasser T A and Slusher R

E: Modulational instability and tunable multiple soliton generation in apodized

fiber gratings. Opt. Commun. 149 (1998) 267-271.

[204] Lichinitser N M, McKinstrie C J, de Sterke C M and Agrawal G P: Spatiotem-

poral instabilities in nonlinear bulk media with Bragg gratings. J. Opt. Soc.

Am. B 18 (2001) 45-54.

[205] Pitios S, Haelterman M and Millot G: Bragg modulational instability induced

by a dynamic grating in an optical fiber. Opt. Lett. 26 (2001) 780-782.

[206] Pitios S, Haelterman M and Millot G: Theoretical and experimental study of

Bragg modulational instability in a dynamic fiber grating. J. Opt. Soc. Am. B

19 (2002) 782-791.

[207] Aceves A B and Wabnitz S: Self-induced transparency solitons in nonlinear

refractive periodic media. Phys. Lett. A 141 (1989) 37-42.

[208] Aceves A B: Optical gap solitons: past, present and future; theory and experi-

ments. Chaos 10 (2000) 584-589.

174

Page 23: Bibliography - Shodhgangashodhganga.inflibnet.ac.in/.../15/15_bibliography.pdf · [78] Bass M, Van Stryland E W, Williams D R and Wolfe W L: Hand book of optics II, McGraw-Hill, New

[209] Christodoulides D N and Joseph R I: Slow Bragg solitons in nonlinear periodic

structures. Phys. Rev. Lett. 62 (1989) 1746-1749.

[210] de Sterke C M and Sipe J E: Gap solitons. Progress in optics 33, North Holland,

Amsterdam 1994.

[211] Eggleton B J, Slusher R E, de Sterke C M, Krug P A and Sipe J E: Bragg

grating solitons. Phys. Rev. Lett. 76 (1996) 10-13.

[212] Chen W and Mills D L: Gap solitons and the nonlinear optical response of

superlattices. Phys. Rev. Lett. 58 (1987) 160-163.

[213] Mills D L and Trullinger S E: Gap solitons in nonlinear periodic structures.

Phys. Rev. B 36 (1987) 947-952.

[214] Sipe J E andWinful H G: Nonlinear Schrodinger solitons in a periodic structure.

Opt. Lett. 13 (1988) 132-133.

[215] de Sterke C M and Sipe J E: Envelope-function approach for the electrodynam-

ics of nonlinear periodic structures. Phys. Rev. A 38 (1988) 5149-5165.

[216] Mantsyzov B I: Gap 2� pulse with an inhomogeneously broadened line and an

oscillating solitary wave. Phys. Rev. A 51 (1995) 4939-4943.

[217] Kozhekin A and Kurizki G: Self-induced transparency in Bragg reflectors: Gap

solitons near absorption resonances. Phys. Rev. Lett. 74 (1995) 5020-5023.

[218] Kozhekin A, Kurizki G and Malomed B A: Self-induced transparency in Bragg

reflectors: Gap solitons near absorption resonances. Phys. Rev. Lett. 81 (1998)

3647-3650.

[219] Mantsyzov B I and Kuz’min R N: Coherent interaction of light with a discrete

periodic resonant medium. Sov. Phys. JETP 64 (1986) 37-44.

175