bernoulli beams & trusses

17
Basically, bars oriented in two dimensional Cartesian system. Trusses support compressive and tensile forces only, as in bars. Translate the local element matrices into the structural (global) coordinate system. 2D TRUSSES

Upload: erik-calderon-zuniga

Post on 22-Jul-2016

24 views

Category:

Documents


2 download

DESCRIPTION

ELEMENTOS FINITOS

TRANSCRIPT

Page 1: Bernoulli Beams & Trusses

Basically, bars oriented in two dimensional Cartesian system.

Trusses support compressive and tensile forces only, as in bars.

Translate the local element matrices into the structural (global) coordinate system.

2D TRUSSES

Page 2: Bernoulli Beams & Trusses

CONSIDER A TYPICAL 2D TRUSS IN GLOBAL X-Y PLANE

Local system:

𝑒′=[𝑒 β€² 1𝑒 β€² 2]Global system:

𝑒=[𝑒1𝑒2𝑒3𝑒4 ]

Page 3: Bernoulli Beams & Trusses

𝑒′=[𝑒 β€²1=𝑒1βˆ— cosπœƒ+𝑒2βˆ— sin πœƒ  π‘’β€² 2=𝑒3βˆ—cosπœƒ+𝑒4βˆ— sinπœƒ ]=[cosπœƒ sinπœƒ 0000cosπœƒ sin πœƒ ]βˆ— [𝑒1𝑒2𝑒3𝑒4]

(π‘₯1 , 𝑦1)

(π‘₯2, 𝑦 2)

πœƒ

=m=

cosπœƒ=   l  =π‘₯2βˆ’ π‘₯1𝑙𝑒

𝑒′=[π‘™π‘š000 0 π‘™π‘š]βˆ—[𝑒1𝑒2𝑒3𝑒4 ] 𝑒′=πΏβˆ—π‘’

𝑙𝑒=√(π‘₯2βˆ’π‘₯1)2+(𝑦2βˆ’π‘¦1)

2

Page 4: Bernoulli Beams & Trusses

STIFFNESS MATRIX

Strain Energy:

π‘‘π‘ˆ=12βˆ—πœŽ π‘₯βˆ—πœ€π‘₯βˆ— π΄βˆ—π‘‘π‘₯

π‘ˆ=𝑒 β€² π‘‘βˆ—πΎ β€²βˆ—π‘’ β€²Energy for the local system:

𝑒′=πΏβˆ—π‘’

)

π‘ˆ=𝑒  π‘‘βˆ—(πΏπ‘‘βˆ—πΎ β€²βˆ—πΏ)βˆ—π‘’

K

𝐾=πΈβˆ—π΄π‘™π‘’ [ 𝑙0π‘š00000 ]βˆ—[ 1 βˆ’1

βˆ’1 1 ]βˆ—[π‘™π‘š0000 π‘™π‘š]

Stiffness matrix for the local system:

𝐾 β€²=πΈβˆ—π΄π‘™π‘’

βˆ—[ 1 βˆ’1βˆ’1 1 ]

…

Page 5: Bernoulli Beams & Trusses

𝐾=πΈβˆ—π΄π‘™π‘’ [ π‘™βˆ’π‘™

π‘šβˆ’π‘šβˆ’π‘™ π‘™βˆ’π‘šπ‘š ]βˆ—[π‘™π‘š0000 π‘™π‘š]

𝐾=πΈβˆ—π΄π‘™π‘’

βˆ— [ 𝑙2 π‘™βˆ—π‘š βˆ’ 𝑙2βˆ’ π‘™βˆ—π‘šπ‘šβˆ—π‘™ π‘š2 βˆ’π‘šβˆ—π‘™βˆ’π‘š2

βˆ’π‘™2βˆ’ π‘™βˆ—π‘š

βˆ’π‘šβˆ—π‘™βˆ’π‘š2

𝑙2 π‘™βˆ—π‘šπ‘™βˆ—π‘šπ‘š2 ]

Stiffness matrix for the global system

Page 6: Bernoulli Beams & Trusses

STRESSES AT THE ELEMENT

𝜎=πΈβˆ—πœ€ 𝜎=πΈβˆ—π‘’ β€² 2βˆ’π‘’ β€²1

π‘™π‘’πœŽ=

πΈπ‘™π‘’βˆ— [βˆ’1 1 ]βˆ—[𝑒 β€² 1𝑒 β€² 2]

𝑒′=πΏβˆ—π‘’

𝜎=πΈπ‘™π‘’βˆ— [βˆ’π‘™βˆ’π‘šπ‘™π‘š ]βˆ— [𝑒1𝑒2𝑒3𝑒4 ]

Local system:

Global system:

Page 7: Bernoulli Beams & Trusses

BERNOULLI BEAMSβ€’ Beams are subject to transverse loading. including

transverse forces and moments that result in transverse deformation.

β€’ They are deflection in the y direction (w), and rotation in the x-y plane with respect to the z axis.

β€’ Each two-noded mean element has total of four degrees of freedrom(DOFs)

Page 8: Bernoulli Beams & Trusses

INTRODUCTIONβ€’ The Euler-Bernoulli beam

theory assumes that undeformed plane sections remain plane under deformation.

w= deflectionβ€’ Strain are defined as:

Page 9: Bernoulli Beams & Trusses

STRAIN ENERGY

Taking :

Inertia:Then strain energy:

Page 10: Bernoulli Beams & Trusses

SHAPE FUNCTION CONSTRUCTION

β€’ As there are four DOFs for a beam element, there should be four shape functions.

Shape functions:

For N1:

Page 11: Bernoulli Beams & Trusses

SHAPE FUNCTION CONSTRUCTION For N2:

For N3:

Page 12: Bernoulli Beams & Trusses

SHAPE FUNCTION CONSTRUCTIONFor N4:

The shape functions defined as:

Page 13: Bernoulli Beams & Trusses

The transverse displacement is interpolated by Hermite shape functions as:

Taking :

Then:

Page 14: Bernoulli Beams & Trusses

The strain energy is obtained as:

We know that:

Page 15: Bernoulli Beams & Trusses

STIFFNESS MATRIX

Deriving shape functions:

Page 16: Bernoulli Beams & Trusses

Each element of the matrix is integrated between [-1,1]:

Page 17: Bernoulli Beams & Trusses

The stiffness matrix is: