berg ellen univ_pugetsound_12feb2015

66
Chemical biology approaches for predicting human drug and chemical safety Ellen L. Berg, PhD Scientific Director, BioSeek, a division of DiscoveRx University of Puget Sound 12 February 2015

Upload: ellen-berg

Post on 16-Jul-2015

59 views

Category:

Education


0 download

TRANSCRIPT

Chemical biology approaches for predicting human drug and chemical safety

Ellen L. Berg, PhDScientific Director, BioSeek, a division of DiscoveRx

University of Puget Sound12 February 2015

BIG DATA and In Vitro Testing

are Transforming

Drug Discovery

and Chemical Safety

DATA

BIG

DATA

What is ?

Very large datasets

100+ terabytesIntegration of

diverse data

• Advances in high throughput technologies

BIG

DATA

Why

Now ?

Data Driven Research

OLD or

Data Driven Research

OLD or

NEW

Hypothesis 1

Hypothesis 2

Hypothesis 3

Hypothesis 4 . . .

SolutionIncorporate “domain” expertise upfront

IssuesMany hypotheses are generated

Each hypothesis requires validation

Validation requires both computational

and “domain” expertise

Data Driven Research

BIG DATA and In Vitro Testing

are Transforming

Drug Discovery

and Chemical Safety

In Vitro In Vivo

In Vitro In Vivo

High Thoughput Low Throughput

Fast Slow

Simple Complex

In Vitro In Vivo

Simple

Complex

Too Simple? Too

Complex?

Biological Systems Are Complex

Scale (meters)

molecules pathways cells tissues humans

10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 10-3 M 10-2 M 10-1 M 1 M

Human exposureMolecular targets

13

What are the organizing principles?

Biological Systems have a Modular Design

• Great diversity from few components

A given component can contribute to

“many” functions

• Function depends on “context”

Scale (meters) (Time)

molecules pathways cells tissues humans

10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 10-3 M 10-2 M 10-1 M 1 M

10-6 sec 102 sec 104 sec 105 sec 108 sec

. . . and Networked Architecture

components

interactions

Provides:

• Rapid responses to environment

Efficient information flow

• Framework for control systems

Feedback mechanisms, etc.

• Tolerance to perturbations (robustness)

Scale (meters) (Time)

molecules pathways cells tissues humans

10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 10-3 M 10-2 M 10-1 M 1 M

10-6 sec 102 sec 104 sec 105 sec 108 sec

Consequences:

• Many potential outcomes

System “wiring” determines outcome

• “Hidden nature” of feedback mechanisms

Unexpected fragility

• Hard to make predictions

Scale (meters) (Time)

molecules pathways cells tissues humans

10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 10-3 M 10-2 M 10-1 M 1 M

10-6 sec 102 sec 104 sec 105 sec 108 sec

components

interactions

. . . and Networked Architecture

Modular, Networked ArchitectureConsequences for Drug Discovery & Chemical Safety

• Drug targets function in multiple biological processes

- Unexpected side effects don’t show up before testing in people

• Drugs and chemicals have effects far downstream of the target

- Hard to predict outcomes

• Problems are amplified as most drugs have multiple targets

- Targets may interact in unexpected ways

Primary Human Cell In Vitro SystemsBridging the Gap

Scale (meters)

molecules pathways cells tissues humans

10-9 M 10-8 M 10-7 M 10-6 M 10-5 M 10-4 M 10-3 M 10-2 M 10-1 M 1 M

Human exposureMolecular targets

18

BioMAP Systems

BioMAP® Technology Platform

BioMAP®

Assay Systems

Reference

Profile Database

Predictive

Informatics Tools

Human primary cells

Disease-models

> 50 systems

Biomarker responses to drugs

are stored in the database

> 3000 drugs and agents

Custom informatics tools are

used to predict clinical outcomes

High Throughput Human Biology

19

BioMAP® Systems – Key Features

Primary human cell types

Physiologically relevant “context”

Complex activation settings

Co-cultures

Translational biomarker endpoints

20

Feature Mouse Man

Lifespan 2 Years 70 Years

Size 60 g 60 kg

EnvironmentAnimal facility,

cage-matesOutside world, people,

animals, etc.

Why Human?

Key differences:DNA repair mechanisms

Control of blood flow, hemostasis

Immune system status

21

Why Primary Human Cells?

22

• Primary human cells

- Freshly isolated from tissues

- Not adapted to life on plastic

- Remember “where they came from”

CC

L2

/MC

P−

1

CD

10

6/V

CA

M−

1

CD

14

1/T

hro

mb

om

od

uli

n

CD

14

2/T

iss

ue

Fa

cto

r

CD

54

/IC

AM−

1

CD

62

E/E−

Se

lec

tin

CD

87

/uP

AR

CX

CL

8/I

L−

8

CX

CL

9/M

IG

HL

A−

DR

Pro

life

rati

on

SR

B

Vis

ua

l

CC

L2

/MC

P−

1

CC

L2

6/E

ota

xin−

3

CD

10

6/V

CA

M−

1

CD

62

P/P−

se

lecti

n

CD

87

/uP

AR

SR

B

VE

GF

R2

CC

L2

/MC

P−

1

CD

10

6/V

CA

M−

1

CD

14

2/T

iss

ue

Fa

cto

r

CD

40

CD

62

E/E−

Se

lec

tin

CX

CL

8/I

L−

8

IL−

1a

lph

a

M−

CS

F

sP

GE

2

SR

B

sT

NF−

alp

ha

CC

L2

/MC

P−

1

CD

38

CD

40

CD

62

E/E−

Se

lec

tin

CD

69

CX

CL

8/I

L−

8

CX

CL

9/M

IG

PB

MC

Cy

toto

xic

ity

Pro

life

rati

on

SR

B

CD

87

/uP

AR

CX

CL

10

/IP−

10

CX

CL

9/M

IG

HL

A−

DR

IL−

1a

lph

a

MM

P−

1

PA

I−I

SR

B

TG

F−

be

taI

tPA

uP

A

CC

L2

/MC

P−

1

CD

10

6/V

CA

M−

1

CD

14

1/T

hro

mb

om

od

uli

n

CD

14

2/T

iss

ue

Fa

cto

r

CD

87

/uP

AR

CX

CL

8/I

L−

8

CX

CL

9/M

IG

HL

A−

DR

IL−

6

LD

LR

M−

CS

F

Pro

life

rati

on

Se

rum

Am

ylo

id A

SR

B

CD

10

6/V

CA

M−

1

Co

llag

en

III

CX

CL

10

/IP−

10

CX

CL

8/I

L−

8

CX

CL

9/M

IG

EG

FR

M−

CS

F

MM

P−

1

PA

I−I

Pro

life

rati

on

_7

2h

r

SR

B

TIM

P−

1

CC

L2

/MC

P−

1

CD

54

/IC

AM−

1

CX

CL

10

/IP−

10

IL−

1a

lph

a

MM

P−

9

SR

B

TG

F−

be

taI

TIM

P−

2

uP

A

−1.5

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0L

og

Rat

io

Profiles

Cyclopamine 40 uM

Cyclopamine 13.333 u...

Cyclopamine 4.444 uM

Cyclopamine 1.482 uM

3C 4H LPS SAg BE3C CASM3C HDF3CGF KF3CT

CC

L2

/MC

P−

1

CD

10

6/V

CA

M−

1

CD

14

1/T

hro

mb

om

od

uli

n

CD

14

2/T

iss

ue

Fa

cto

r

CD

54

/IC

AM−

1

CD

62

E/E−

Se

lec

tin

CD

87

/uP

AR

CX

CL

8/I

L−

8

CX

CL

9/M

IG

HL

A−

DR

Pro

life

rati

on

SR

B

Vis

ua

l

CC

L2

/MC

P−

1

CC

L2

6/E

ota

xin−

3

CD

10

6/V

CA

M−

1

CD

62

P/P−

se

lecti

n

CD

87

/uP

AR

SR

B

VE

GF

R2

CC

L2

/MC

P−

1

CD

10

6/V

CA

M−

1

CD

14

2/T

iss

ue

Fa

cto

r

CD

40

CD

62

E/E−

Se

lec

tin

CX

CL

8/I

L−

8

IL−

1a

lph

a

M−

CS

F

sP

GE

2

SR

B

sT

NF−

alp

ha

CC

L2

/MC

P−

1

CD

38

CD

40

CD

62

E/E−

Se

lec

tin

CD

69

CX

CL

8/I

L−

8

CX

CL

9/M

IG

PB

MC

Cy

toto

xic

ity

Pro

life

rati

on

SR

B

CD

87

/uP

AR

CX

CL

10

/IP−

10

CX

CL

9/M

IG

HL

A−

DR

IL−

1a

lph

a

MM

P−

1

PA

I−I

SR

B

TG

F−

be

taI

tPA

uP

A

CC

L2

/MC

P−

1

CD

10

6/V

CA

M−

1

CD

14

1/T

hro

mb

om

od

uli

n

CD

14

2/T

iss

ue

Fa

cto

r

CD

87

/uP

AR

CX

CL

8/I

L−

8

CX

CL

9/M

IG

HL

A−

DR

IL−

6

LD

LR

M−

CS

F

Pro

life

rati

on

Se

rum

Am

ylo

id A

SR

B

CD

10

6/V

CA

M−

1

Co

llag

en

III

CX

CL

10

/IP−

10

CX

CL

8/I

L−

8

CX

CL

9/M

IG

EG

FR

M−

CS

F

MM

P−

1

PA

I−I

Pro

life

rati

on

_7

2h

r

SR

B

TIM

P−

1

CC

L2

/MC

P−

1

CD

54

/IC

AM−

1

CX

CL

10

/IP−

10

IL−

1a

lph

a

MM

P−

9

SR

B

TG

F−

be

taI

TIM

P−

2

uP

A

−1.5

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0L

og

Rat

io

Profiles

Cyclopamine 40 uM

Cyclopamine 13.333 u...

Cyclopamine 4.444 uM

Cyclopamine 1.482 uM

3C 4H LPS SAg BE3C CASM3C HDF3CGF KF3CT

CC

L2

/MC

P−

1

CD

10

6/V

CA

M−

1

CD

14

1/T

hro

mb

om

od

uli

n

CD

14

2/T

iss

ue

Fa

cto

r

CD

54

/IC

AM−

1

CD

62

E/E−

Se

lec

tin

CD

87

/uP

AR

CX

CL

8/I

L−

8

CX

CL

9/M

IG

HL

A−

DR

Pro

life

rati

on

SR

B

Vis

ua

l

CC

L2

/MC

P−

1

CC

L2

6/E

ota

xin−

3

CD

10

6/V

CA

M−

1

CD

62

P/P−

se

lecti

n

CD

87

/uP

AR

SR

B

VE

GF

R2

CC

L2

/MC

P−

1

CD

10

6/V

CA

M−

1

CD

14

2/T

iss

ue

Fa

cto

r

CD

40

CD

62

E/E−

Se

lec

tin

CX

CL

8/I

L−

8

IL−

1a

lph

a

M−

CS

F

sP

GE

2

SR

B

sT

NF−

alp

ha

CC

L2

/MC

P−

1

CD

38

CD

40

CD

62

E/E−

Se

lec

tin

CD

69

CX

CL

8/I

L−

8

CX

CL

9/M

IG

PB

MC

Cy

toto

xic

ity

Pro

life

rati

on

SR

B

CD

87

/uP

AR

CX

CL

10

/IP−

10

CX

CL

9/M

IG

HL

A−

DR

IL−

1a

lph

a

MM

P−

1

PA

I−I

SR

B

TG

F−

be

taI

tPA

uP

A

CC

L2

/MC

P−

1

CD

10

6/V

CA

M−

1

CD

14

1/T

hro

mb

om

od

uli

n

CD

14

2/T

iss

ue

Fa

cto

r

CD

87

/uP

AR

CX

CL

8/I

L−

8

CX

CL

9/M

IG

HL

A−

DR

IL−

6

LD

LR

M−

CS

F

Pro

life

rati

on

Se

rum

Am

ylo

id A

SR

B

CD

10

6/V

CA

M−

1

Co

llag

en

III

CX

CL

10

/IP−

10

CX

CL

8/I

L−

8

CX

CL

9/M

IG

EG

FR

M−

CS

F

MM

P−

1

PA

I−I

Pro

life

rati

on

_7

2h

r

SR

B

TIM

P−

1

CC

L2

/MC

P−

1

CD

54

/IC

AM−

1

CX

CL

10

/IP−

10

IL−

1a

lph

a

MM

P−

9

SR

B

TG

F−

be

taI

TIM

P−

2

uP

A

−1.5

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0L

og

Rat

io

Profiles

Cyclopamine 40 uM

Cyclopamine 13.333 u...

Cyclopamine 4.444 uM

Cyclopamine 1.482 uM

3C 4H LPS SAg BE3C CASM3C HDF3CGF KF3CT

CC

L2

/MC

P−

1

CD

10

6/V

CA

M−

1

CD

14

1/T

hro

mb

om

od

uli

n

CD

14

2/T

iss

ue

Fa

cto

r

CD

54

/IC

AM−

1

CD

62

E/E−

Se

lec

tin

CD

87

/uP

AR

CX

CL

8/I

L−

8

CX

CL

9/M

IG

HL

A−

DR

Pro

life

rati

on

SR

B

Vis

ua

l

CC

L2

/MC

P−

1

CC

L2

6/E

ota

xin−

3

CD

10

6/V

CA

M−

1

CD

62

P/P−

se

lecti

n

CD

87

/uP

AR

SR

B

VE

GF

R2

CC

L2

/MC

P−

1

CD

10

6/V

CA

M−

1

CD

14

2/T

iss

ue

Fa

cto

r

CD

40

CD

62

E/E−

Se

lec

tin

CX

CL

8/I

L−

8

IL−

1a

lph

a

M−

CS

F

sP

GE

2

SR

B

sT

NF−

alp

ha

CC

L2

/MC

P−

1

CD

38

CD

40

CD

62

E/E−

Se

lec

tin

CD

69

CX

CL

8/I

L−

8

CX

CL

9/M

IG

PB

MC

Cy

toto

xic

ity

Pro

life

rati

on

SR

B

CD

87

/uP

AR

CX

CL

10

/IP−

10

CX

CL

9/M

IG

HL

A−

DR

IL−

1a

lph

a

MM

P−

1

PA

I−I

SR

B

TG

F−

be

taI

tPA

uP

A

CC

L2

/MC

P−

1

CD

10

6/V

CA

M−

1

CD

14

1/T

hro

mb

om

od

uli

n

CD

14

2/T

iss

ue

Fa

cto

r

CD

87

/uP

AR

CX

CL

8/I

L−

8

CX

CL

9/M

IG

HL

A−

DR

IL−

6

LD

LR

M−

CS

F

Pro

life

rati

on

Se

rum

Am

ylo

id A

SR

B

CD

10

6/V

CA

M−

1

Co

llag

en

III

CX

CL

10

/IP−

10

CX

CL

8/I

L−

8

CX

CL

9/M

IG

EG

FR

M−

CS

F

MM

P−

1

PA

I−I

Pro

life

rati

on

_7

2h

r

SR

B

TIM

P−

1

CC

L2

/MC

P−

1

CD

54

/IC

AM−

1

CX

CL

10

/IP−

10

IL−

1a

lph

a

MM

P−

9

SR

B

TG

F−

be

taI

TIM

P−

2

uP

A

−1.5

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0L

og

Rat

io

Profiles

Cyclopamine 40 uM

Cyclopamine 13.333 u...

Cyclopamine 4.444 uM

Cyclopamine 1.482 uM

3C 4H LPS SAg BE3C CASM3C HDF3CGF KF3CT

Why Primary Human Cells?

23

• Primary human cells

- Freshly isolated from tissues

- Not adapted to life on plastic

- Remember “where they came from”

- Retain regulatory pathways and “interconnections”

Primary Cells Versus Cell Lines

24

• Cell lines

- Long lived – immortal

- Adapted to plastic

- Aberrant pathways are turned on

- Chromosome duplications & deletions

Primary Cells Versus Cell Lines

25

• Cell lines

- Long lived – immortal

- Adapted to plastic

- Aberrant pathways are turned on

- Chromosome duplications & deletions

- Many regulatory mechanisms lost

- Pathways become “isolated”

26

Why Complex Activation Conditions?

TNF-

VCAM

One Pathway Active

Expression Level

27

Why Complex Activation Conditions?

TNF-

VCAM

One Pathway Active

X

XX

Expression Level

Activation of a single pathway

provides limited information

28

Why Complex Activation Conditions?

TNF-

VCAM

One Pathway ActiveMultiple Pathways Active

IFN

Synergy

IL-1

Feedback

Expression Level

29

Why Complex Activation Conditions?

TNF-

VCAM

IFN

IL-1

One Pathway ActiveMultiple Pathways Active

X

XXActivation of multiple pathways

provides more information

Expression Level

More physiologically relevant

30

Why Complex Activation Conditions?

TNF-

VCAM

IFN

IL-1

One Pathway ActiveMultiple Pathways Active

X

XXActivation of multiple pathways

provides more information

Expression Level

More physiologically relevant

31

Why Complex Activation Conditions?

PATTERNMechanism

TNF-

VCAM

IFN

IL-1

One Pathway ActiveMultiple Pathways Active

X

XXActivation of multiple pathways

provides more information

Expression Level

More physiologically relevant

32

Why Complex Activation Conditions?

Is there something special

about VCAM?

TNF-

VCAM

IFN

IL-1

One Pathway ActiveMultiple Pathways Active

X

XXActivation of multiple pathways

provides more information

Expression Level

More physiologically relevant

33

Why Complex Activation Conditions?

Yes.

VCAM belongs to a special

class of proteins:

translational biomarkers

Closer to the disease process

Downstream of multiple pathways and integrate information

“Decision-making”

Measured by clinicians to guide therapy

Predictive

Benefits of Translational Biomarkers

mRNA,epigenome

Phospho-sites, intracellular proteins,

metabolome

Cell surface,secreted molecules

34

Primary Human Cell Systems Panels3C 4H LPS SAg BE3C CASM3C HDF3CGF KF3CT

Endothelial Cells

Endothelial Cells

PBMC + Endothelial

Cells

PBMC + Endothelial

Cells

Bronchial epithelial cells

Coronary artery SMC

FibroblastsKeratinocytes + Fibroblasts

Th1 Th2 TLR4 TCR Th1 Th1 Th1 + GF Th1 + TGF

Acute Inflammation E-selectin, IL-8

E-selectin, IL-1a, IL-8, TNF-

a, PGE2 IL-8 IL-1a

IL-8, IL-6, SAA

IL-8 IL-1α

Chronic Inflammation

VCAM-1, ICAM-1, MCP-1, MIG

VCAM-1, Eotaxin-3,

MCP-1

VCAM-1, MCP-1

MCP-1, E-selectin, MIG

IP-10, MIG, HLA-DR

MCP-1, VCAM-1,MIG, HLA-

DR

VCAM-1, IP-10, MIG

MCP-1, ICAM-1, IP-10

Immune Response HLA-DR CD40, M-CSFCD38, CD40, CD69, T cell

Prolif., Cytotox.HLA-DR M-CSF M-CSF

Tissue Remodeling uPAR, MMP-1, PAI-1, TGFb1, SRB, tPA, uPA

uPAR,

Collagen III, EGFR, MMP-1, PAI-1, Fibroblast

Prolif., SRB, TIMP-1

MMP-9, SRB, TIMP-2, uPA,

TGFβ1

Vascular Biology

TM, TF, uPAR, EC

Proliferation, SRB, Vis

VEGFRII, uPAR, P-

selectin, SRB

Tissue Factor, SRB

SRB

TM, TF, LDLR, SMC

Proliferation, SRB

Vascular Biology,

Cardiovascular

Disease, Chronic

Inflammation

Asthma, Allergy,

Oncology,

Vascular Biology

Cardiovascular

Disease, Chronic

Inflammation,

Infectious Disease

Autoimmune

Disease, Chronic

Inflammation,

Immune Biology

COPD,

Respiratory,

Epithelial Biology

Vascular Biology,

Cardiovascular

Inflammation,

Restenosis

Tissue Remodeling,

Fibrosis, Wound

Healing

Skin

Biology,Psoriasis,

Dermatitis

En

dp

oin

t Ty

pe

s

Disease / Tissue Relevance

BioMAP System

Primary Human Cell Types

Stimuli

! ! ! ! !

Endothelial Cells

Bronchial Epithelial Cells

Keratinocytes

Smooth Muscle Cells

Dermal Fibroblasts

Peripheral Blood Mononuclear Cells

Profile compounds

across a panel of assays

35

Panel of Primary Human Cell SystemsBioMAP® Predictive Tox Panel

3C 4H LPS SAg BE3C CASM3C HDF3CGF KF3CT

Endothelial Cells

Endothelial Cells

PBMC + Endothelial

Cells

PBMC + Endothelial

Cells

Bronchial epithelial cells

Coronary artery SMC

FibroblastsKeratinocytes + Fibroblasts

Th1 Th2 TLR4 TCR Th1 Th1 Th1 + GF Th1 + TGF

Acute Inflammation E-selectin, IL-8

E-selectin, IL-1a, IL-8, TNF-

a, PGE2 IL-8 IL-1a

IL-8, IL-6, SAA

IL-8 IL-1α

Chronic Inflammation

VCAM-1, ICAM-1, MCP-1, MIG

VCAM-1, Eotaxin-3,

MCP-1

VCAM-1, MCP-1

MCP-1, E-selectin, MIG

IP-10, MIG, HLA-DR

MCP-1, VCAM-1,MIG, HLA-

DR

VCAM-1, IP-10, MIG

MCP-1, ICAM-1, IP-10

Immune Response HLA-DR CD40, M-CSFCD38, CD40, CD69, T cell

Prolif., Cytotox.HLA-DR M-CSF M-CSF

Tissue Remodeling uPAR, MMP-1, PAI-1, TGFb1, SRB, tPA, uPA

uPAR,

Collagen III, EGFR, MMP-1, PAI-1, Fibroblast

Prolif., SRB, TIMP-1

MMP-9, SRB, TIMP-2, uPA,

TGFβ1

Vascular Biology

TM, TF, uPAR, EC

Proliferation, SRB, Vis

VEGFRII, uPAR, P-

selectin, SRB

Tissue Factor, SRB

SRB

TM, TF, LDLR, SMC

Proliferation, SRB

Vascular Biology,

Cardiovascular

Disease, Chronic

Inflammation

Asthma, Allergy,

Oncology,

Vascular Biology

Cardiovascular

Disease, Chronic

Inflammation,

Infectious Disease

Autoimmune

Disease, Chronic

Inflammation,

Immune Biology

COPD,

Respiratory,

Epithelial Biology

Vascular Biology,

Cardiovascular

Inflammation,

Restenosis

Tissue Remodeling,

Fibrosis, Wound

Healing

Skin

Biology,Psoriasis,

Dermatitis

En

dp

oin

t Ty

pes

Disease / Tissue Relevance

BioMAP System

Primary Human Cell Types

Stimuli

! ! ! ! !

36

• Applying in vitro human cell systems in order to

understanding chemical toxicity mechanisms

- Analyzing a large chemical biology data set

- Connecting chemicals to biological activities

- Integrating this data to connect pathways and build

knowledge frameworks

Case Study

37

Case Study: Understanding Chemical

Toxicity Mechanisms

38

• GOAL: To develop a cost-effective approach for efficiently prioritizing the toxicity testing of thousands of chemicals

• APPROACH:

- Collect a large set of known chemicals• Large and diverse collection, well characterized

• In vivo toxicology studies, exposure information, human data

- Test in a large number of in vitro assays• Diverse (biochemical, target-based, phenotypic, novel technologies)

• QUESTIONS:

- Can we identify in vitro assays that predict in vivo effects?• “Replace, reduce and refine” animal testing

- Can this data help us understand toxicity mechanisms?

- How can we use this data in risk assessment?

EPA ToxCastTM Program

> 1100 Chemicals Profiled in BioMAP Systems>300,000 Datapoint Chemical Biology Dataset for ToxCast

BioMAP Assays

Ch

em

ica

ls

Grouped by Biological Similarity

Gro

uped b

y C

hem

ical C

lass

Houck, JBS, 2009

Kleinstreuer, NBT, 2014

Unsupervised Data Analysis

Self Organizing Maps (SOMs)

Clustering

• Looking for patterns in the data Insights

SOM Analysis Identified a Cluster of ChemicalsKey Feature: Increased Tissue Factor

• Cluster of chemicals defined by their BioMAP signature

- Key feature: Increased Tissue Factor (TF) in BioMAP 3C system

Nicole Kleinstreuer, et al., NBT, 2014

Tissue Factor

• Phenotypic signature of compounds in SOM cluster #57

- Box and whisker plot for cluster 57 representing a signature for AhR activation

• Compounds: AhR Agonists

- 85% of members of clusters 57, 67 (adjacent in the 10X10 SOM) were active in an AhR reporter gene assay (examples shown here).

Tissue Factor

Kleinstreuer, 2014, Nature Biotechnology, 32:583-91.43

SOM Analysis Identified a Cluster of ChemicalsAryl Hydrocarbon Receptor Agonists

Tissue Factor (TF)Primary Cellular Initiator of Blood Coagulation

RW Colman 2006 J. Exp. Med

Blood

Coagulation

44

Thrombosis

Thrombosis is Required for Normal Wound Healing

45

• Pathologic setting – aberrant coagulation thrombosis

- The formation of a blood clot (coagulation) within a vein

- Deep vein thrombosis (DVT), stroke, pulmonary embolism thrombi break off and get lodged in the lung

- Ebola infection produces a consumptive coagulopathy

Thrombosis Can Also Be Pathologic

SMC

Endothelial cells

Vessel Lumenplatelets in fibrin clot

46

• Aryl Hydrocarbon receptor agonists- PAHs, Benz(a)anthracene

- Smoking (Cigarette smoke extract)

• mTOR inhibitors- Everolimus (Baas, 2013, Thromb Res 132:307)

• Anti-Estrogens / SERMS, oral contraceptives- Tamoxifen, Clomiphene, Cyproterone

• Second generation anti-psychotics- Clozapine

• Others- Crizotinib (oncology drug)

Mechanisms / Drugs Associated with Thrombosis-Related Side Effects

All show increased Tissue Factor levels in the BioMAP 3C System

47

• Leverage our large chemical biology database of >3800 compounds

• Search the database for all compounds / test agents that increase TF in the 3C system

- How common is this activity?

- What are the mechanisms represented?

- Is there a connection that helps us better understand the regulation of thrombosis?

Are These Mechanisms Connected?

48

Analysis of Reference CompoundsTest Agents Mechanism

Confidence in

Mechanism 2-Mercaptobenzothiazole AhR agonist High

3-Hydroxyfluorene AhR agonist High

Benzo(b)fluoranthene AhR agonist High

C.I Solvent yellow 14 AhR agonist High

FICZ AhR agonist High

Abiraterone CYP17A Inhibitor High

Ketoconazole CYP17A Inhibitor High

Clomiphene citrate Estrogen R Antagonist High

Histamine H1R agonist High

Histamine Phosphate H1R agonist High

Cobalt(II) Chloride Hexahydrate HIF-1α Inducer High

Tin(II) Chloride HIF-1α Inducer High

Chloroquine Phosphate Lysosome Inhibitor High

Primaquine Diphosphate Lysosome Inhibitor High

Temsirolimus mTOR Inhibitor High

Torin-1 mTOR Inhibitor High

Torin-2 mTOR Inhibitor High

Bryolog PKC activator High

Bryostatin PKC activator High

Bryostatin 1 PKC activator High

Phorbol 12-myristate 13-acetate PKC activator High

Phorbol 12,13-didecanoate PKC activator High

Picolog PKC activator High

3,5,3-Triiodothyronine Thyroid H R agonist Good

Concanamycin A Vacuolar ATPase Inhibitor Good

Mifamurtide NOD2 agonist Good

Oncostatin M OSM R agonist Good

Ethanol Organic Solvent Good

PAz-PC Oxidized phospholipid Good

Z-FA-FMK Cysteine protease Inhibitor Good

8-Hydroxyquinoline Chelating agent Unknown

A 205804 ICAM, E-selectin inhibitor Unknown

AZD-4547 FGFR Inhibitor Unknown

Crizotinib ALK, c-met Inhibitor Unknown

Desloratadine H1R antagonist Unknown

Dodecylbenzene Industrial chemical Unknown

Fenaminosulf Fungicide Unknown

GDC-0879 B-Raf Inhibitor Unknown

GW9662 PPARγ agonist Unknown

Imatinib PDGFR, c-Kit, Bcr-Abl Inhibitor Unknown

KN93 CaMKII Inhibitor Unknown

Linoleic Acid Ethyl Ester Fatty Acid Unknown

Mancozeb Fungicide Unknown

MK-2206 AKT Inhibitor Unknown

Mometasone furoate GR agonist Unknown

N-Ethylmaleimide Alkylating agent Unknown

PP3 SRC Kinase Inhibitor Unknown

Primidone GABA R agonist Unknown

Sulindac Sulfide NSAID Unknown

Terconazole Anti-fungal Unknown

Tris(1,3-dichloro-2-propyl) phosphate Flame retardant Unknown

TX006146 Unknown Unknown

TX006237 Unknown Unknown

TX011661 Unknown Unknown

U-73343 Unknown Unknown

UO126 MEK Inhibitor Unknown

ZK-108 PI-3K Inhibitor (βγ-selective) Unknown

Mechanisms that Increase TF

AhR Agonist

CYP17A Inhibitor

Estrogen R Antagonist

H1R Agonist

HIF-1α Inducer

Lysosomal Inhibitor

mTOR Inhibitor

PKC Activator

Thyroid H R Agonist

Vacuolar ATPase Inhibitor

NOD2 Agonist

OSM R Agonist

49

• Increased TF is an uncommon activity

• 55/3187 compounds (1.7%)

Implicate Autophagy

Berg, et al., IJMS, 2015

Autophagy

• Intracellular self-degradation system

• Cellular response to nutrient deprivation

• Also contributes to recycling of dysfunctional organelles, handling of protein aggregates, bacteria and viruses50

The Autophagy Connection

The Autophagy Connection

Lysosomal

Function

The Autophagy Connection

Lysosomal

Function

The Autophagy Connection

Lysosomal

Function

The Autophagy Connection

Lysosomal

Function

The Autophagy Connection

Lysosomal

Function

• Data mining large chemical biology data sets can produce

detailed pathway frameworks and mechanistic hypotheses

for important toxicity mechanisms

• Mechanistic Hypothesis: thrombosis-related side effects may

be caused by alterations in the process of autophagy that

increase TF cell surface levels

• In moderation, during nutrient deprivation, an increase in TF

leading to the recruitment of nutrient-rich platelets to a

tissue sites would be a beneficial response

The Autophagy ConnectionTissue Factor, Autophagy & Thrombosis

57

• GOAL: To develop a cost-effective approach for efficiently prioritizing the toxicity testing of thousands of chemicals

• Can we identify in vitro assays that predict in vivo effects?- “Replace, reduce and refine” animal testing

• Can this data help us understand toxicity mechanisms?

• How can we use this data in risk assessment?

EPA ToxCastTM Program

YES, in

some

cases

YES, in

some

cases

AOPs

Adverse Outcome Pathway Framework

MIEKey

EventAdverse

OutcomeKey

EventKey

Event

Molecular

Initiating EventClinical Effect

• Framework for integrating mode of action hypotheses to outcomes for chemical risk assessment (OECD)- http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-

molecular-screening-and-toxicogenomics.htm

• Focused on the clinical outcome- Anchored at both ends

59

AOP for DVT

MIEKey

EventAdverse

Outcome

Inhibition of

mTOR

Upregulation

of Tissue

Factor

Deep Vein

Thrombosis

Initiation of

Coagulation

Key Event

Key Event

Molecular

Initiating EventClinical Effect

Increase in

Autophagic

Vacuolization

60

AOP for DVT

MIEKey

EventAdverse

Outcome

Inhibition of

mTOR

Upregulation

of Tissue

Factor

Deep Vein

Thrombosis

Initiation of

Coagulation

Key Event

Key Event

Molecular

Initiating EventClinical Effect

MIE

Activation of

AhR

Increase in

Autophagic

Vacuolization

Key Event

Inhibition of

NPC1

Key Event

HDF3CGF

In vitro

disease model

3C

3C 4H LPS SAg BE3C CASM3C HDF3CGF KF3CT

Endothelial Cells

Endothelial Cells

PBMC + Endothelial

Cells

PBMC + Endothelial

Cells

Bronchial epithelial cells

Coronary artery SMC

FibroblastsKeratinocytes + Fibroblasts

Th1 Th2 TLR4 TCR Th1 Th1 Th1 + GF Th1 + TGF

Acute Inflammation E-selectin, IL-8

E-selectin, IL-1a, IL-8, TNF-

a, PGE2 IL-8 IL-1a

IL-8, IL-6, SAA

IL-8 IL-1α

Chronic Inflammation

VCAM-1, ICAM-1, MCP-1, MIG

VCAM-1, Eotaxin-3,

MCP-1

VCAM-1, MCP-1

MCP-1, E-selectin, MIG

IP-10, MIG, HLA-DR

MCP-1, VCAM-1,MIG, HLA-

DR

VCAM-1, IP-10, MIG

MCP-1, ICAM-1, IP-10

Immune Response HLA-DR CD40, M-CSFCD38, CD40, CD69, T cell

Prolif., Cytotox.HLA-DR M-CSF M-CSF

Tissue Remodeling uPAR, MMP-1, PAI-1, TGFb1, SRB, tPA, uPA

uPAR,

Collagen III, EGFR, MMP-1, PAI-1, Fibroblast

Prolif., SRB, TIMP-1

MMP-9, SRB, TIMP-2, uPA,

TGFβ1

Vascular Biology

TM, TF, uPAR, EC

Proliferation, SRB, Vis

VEGFRII, uPAR, P-

selectin, SRB

Tissue Factor, SRB

SRB

TM, TF, LDLR, SMC

Proliferation, SRB

Vascular Biology,

Cardiovascular

Disease, Chronic

Inflammation

Asthma, Allergy,

Oncology,

Vascular Biology

Cardiovascular

Disease, Chronic

Inflammation,

Infectious Disease

Autoimmune

Disease, Chronic

Inflammation,

Immune Biology

COPD,

Respiratory,

Epithelial Biology

Vascular Biology,

Cardiovascular

Inflammation,

Restenosis

Tissue Remodeling,

Fibrosis, Wound

Healing

Skin

Biology,Psoriasis,

Dermatitis

En

dp

oin

t Ty

pe

s

Disease / Tissue Relevance

BioMAP System

Primary Human Cell Types

Stimuli

! ! ! ! !

61

• Chemical profiling in human cell systems generates activity profiles that can be used to:

- Group chemicals into bioactivity classes

- Generate MoA hypotheses

- Identify activities that may correlate with in vivo outcomes

• High throughput in vitro data is most informative when combined with external information

- Known targets

- In vivo bioactivities

Summary

Confidential62

The Future

• BIG DATA and in vitro testing are transforming drug discovery and chemical safety

BUT

• We need biologists who can do data science

• So learn programming, statistics, R, and data mining methods

• BioSeek

- Mark A. Polokoff

- Dat Nguyen

- Xitong Li

- Antal Berenyi

- Alison O’Mahony

• NIEHS (ILS)

- Nicole Kleinstreuer

Acknowledgements

• EPA

- Keith Houck

- Richard Judson

- David Dix

- Bob Kavlock

- David Reif

- Matt Martin

- Ann Richard

- Tom Knudsen

64

Resources

• EPA’s ToxCast Program

- http://www.epa.gov/ncct/toxcast/

• Tox21

- http://ntp.niehs.nih.gov/go/tox21

• NCATS (National Center for Advancing Translational Sciences)

- http://www.ncats.nih.gov

• Open FDA

- https://open.fda.gov

Contact:

Ellen L. Berg, PhD,

Scientific Director

BioSeek, a division of DiscoveRx

310 Utah Avenue, Suite 100

South San Francisco, CA 94080

+1-650-416-7621

[email protected]

66