bentley rm bridge seismic design and analysis alexander mabrich, pe, msc

45
Bentley RM Bridge Seismic Design and Analysis Alexander Mabrich, PE, Msc

Upload: grant-flowers

Post on 31-Dec-2015

225 views

Category:

Documents


10 download

TRANSCRIPT

Bentley RM Bridge Seismic Design and Analysis

Alexander Mabrich, PE, Msc

AGENDA

Kobe, Japan (1995)

AGENDA

Loma Prieta, California (1989)

RM Bridge Seismic Design and Analysis

• Critical infrastructures require:

– Sophisticated design methods

– Withstand collapse in earthquake occurrences

RM Bridge Seismic Design and Analysis

• AASTHO, Simple Seismic Load

• Basic concepts for Dynamic Analysis:

- Eigenvalues

- Eigenshapes

• Two non-linear dynamic options:

- Response Spectrum

- Time-History

AASHTO Bridge Design Specifications

• 7% probability of exceedence in 75years

• Seismic Design Categories

– Soil

– Site / location

– Importance

• Earthquake Resistant System

• Demand/Capacity

8 | WWW.BENTLEY.COM

• Site Location

AASHTO Bridge Design Specifications

• Type of Seismic Analysis Required

AASHTO Bridge Design Specifications

Static Seismic Load

11 | WWW.BENTLEY.COM

Equivalent Static Analysis

• Uniform Load Analysis

• Orthogonal Displacements

• Simultaneously

• Fundamental mode

12 | WWW.BENTLEY.COM

Equivalent Static Analysis• Direction, Factor

13 | WWW.BENTLEY.COM

Fundamental Mode

14 | WWW.BENTLEY.COM

Results

15 | WWW.BENTLEY.COM

16 | WWW.BENTLEY.COM

Basic Concepts used inDynamic Analysis

Basic Concepts

• Vibration of Systems with one or more DOF

• Eigen values and Eigen modes

• Forced Vibration– Harmonic and Stochastic Simulation

• Linear and Non-linear behavior of the structure

Dynamic Vibration

T 2T 1

2

3

-1

-2

-3

0 TIME [sec]

Oscillation deflection [m] Oscillation velocity [m/s] Oscillation acceleration [m/s²]

Maximum Amplitude

Period T

d,v,a

M

K

2

ff

T1

Damped Vibration

)0(

)(

v

v t

n0t

tevv tbt 0)0()( cos

tbev )0(

-1

1

0.5

-0.5

0.0

A1 A2

2ln

3

1

A

A

Single Mass Oscillator

spring constant k damping constant c

xF

mass m

external Force F(t)amplitude x(t)

EQUILIBRIUM

EQUATION OF MOTION

Damping Ratio

c0: 20

2

22

m

c

m

cs

t

u

=100%

t

u

t

u

=200%

t

u

=0%

=10%

Critic damping

Not damped

Below critic damping Above critic damping

0 kuucum

tutu

tu 00 sinsin)(

Solution:

Free Vibration

M

K

0c …no damping…and dividing by m…

0 um

ku But..

02 uu

Multi Degree of Freedom System

)()()()( tttt PUKUCUM

nm

m

m

M

...00

......

0...0

0...0

2

1

nnnn

n

n

ccc

ccc

ccc

C

...

......

...

...

21

22221

11211

nnnn

n

n

kkk

kkk

kkk

K

...

......

...

...

21

22221

11211

nu

u

u

U...

2

1

nu

u

u

U

...

2

1

nu

u

u

U

...

2

1

)(

...

)(

)(

2

1

)(

tp

tp

tp

P

n

t

Numerical Methods for Dynamic Analysis

• Calculation of Eigen frequency

• Modal Analysis

• Direct Time integration, linear and non-linear

• System of dynamic equations :

)(tFXKXCXM

• Free vibration motion:

02 nMK

• Non trivial solution:

02 MK n

Modal Analysis

Eigen Calculation

• Eigen values

• Eigen shapes

• Unique nature

• Differential equations

27 | WWW.BENTLEY.COM

Eigen Shapes

28 | WWW.BENTLEY.COM

MASS PARTICIPATION FACTORS [%] MODE phi*M*phi X Y Z SUM-X SUM-Y SUM-Z HERTZ

-------------------------------------------------------------------------

1 0.3768E+04 88.33 0.00 3.14 88.33 0.00 3.14 0.905

2 0.1653E+04 2.35 0.00 71.45 90.68 0.00 74.59 1.704

3 0.8292E+03 0.00 5.03 0.04 90.68 5.03 74.63 3.111

4 0.1770E+04 1.14 0.01 0.05 91.82 5.04 74.68 3.809

5 0.1055E+04 0.28 0.01 0.01 92.10 5.05 74.69 5.425

6 0.1101E+04 0.00 57.35 0.01 92.10 62.40 74.69 6.300

7 0.1675E+04 0.43 0.01 7.31 92.54 62.41 82.00 7.145

8 0.9072E+03 0.17 0.00 0.05 92.70 62.41 82.05 9.656

9 0.5307E+04 0.13 0.04 3.98 92.83 62.45 86.03 10.042

10 0.1038E+04 0.06 0.01 0.04 92.90 62.46 86.08 11.795

11 0.1405E+04 0.13 0.01 0.00 93.02 62.47 86.08 11.830

12 0.1671E+04 0.74 0.01 0.03 93.77 62.48 86.10 13.265

13 0.4010E+03 1.74 0.00 0.04 95.51 62.49 86.14 13.321

14 0.8892E+03 0.00 0.43 0.05 95.51 62.92 86.20 13.890

15 0.5452E+04 0.01 0.03 0.25 95.52 62.95 86.45 14.077

16 0.1986E+04 0.08 0.03 0.87 95.59 62.97 87.32 16.719

17 0.6586E+03 0.03 5.91 0.03 95.63 68.88 87.35 16.936

18 0.6484E+03 0.09 3.54 0.00 95.72 72.42 87.35 16.961

19 0.1086E+04 0.00 7.02 0.00 95.72 79.44 87.35 17.275

20 0.1866E+04 0.02 0.01 0.00 95.74 79.45 87.35 18.408

21 0.1310E+04 0.11 0.00 3.47 95.85 79.45 90.82 21.221

22 0.2060E+04 0.06 0.00 0.00 95.91 79.45 90.82 22.277

23 0.1474E+04 0.06 0.00 0.00 95.97 79.45 90.83 24.414

24 0.2324E+04 0.04 0.00 0.00 96.00 79.45 90.83 24.983

25 0.1613E+04 0.00 0.00 0.00 96.01 79.45 90.83 26.843

29 | WWW.BENTLEY.COM

Response SpectrumModal Decomposition

30 | WWW.BENTLEY.COM

Response Spectrum

• Combination of natural modes

• One mass oscillator

• Oscillating loads

• Intensity factor

• Single contribution

• Synchronization by Stochastic Calculation Rules: ABS,SRSS,CQC, etc

Spectral Response Acceleration

32 | WWW.BENTLEY.COM

AASHTO Definition

Solution in Frequency Domain

• Solution by combining the contributions of the eigenvectors

• Superposition of eigenvectors– Loading has lost information about correlation during

conversion– Solution has no information on phase differences

between the contributions of different eigenvectorsUse Stochastic methodology

• Use Stochastic methodology

Combination Rules

• Max/Min results with different rules available:

• ABS – Rule (Sum of absolute values)

• SRSS – Rule (Square root of sum of sqaures)

• DSC – Rule (Newmark/Rosenblueth)

• CQC – Rule (Complete quadratic combination)

• GENERAL : a lot of other rules exist

Earthquake Load

Response Spectrum in RM Bridge

Time-HistoryTime Integration

41 | WWW.BENTLEY.COM

Time History

• Direct Time Integration

• Linear and Non-Linear analysis

• Standard event is defined: time-histories of ground acceleration are site specific

• Probability of bearable damage

• Most accurate method to evaluate structure response under earthquake event.

tttttttt PuKuCuM

What Can Be Non-Linear in RM Bridge?

Structure-stiffness- Springs- Connections- Materials- Interaction between the substructure and bridge- Large deformations- Cables

Mass of structure- Moving vehicle traffic

Structure-damping- Raleigh damping effect- Viscous damping

Load dependent on time- Change of position, intensity or direction- Time delay of structural elements

Comparison

• Solution of uncoupled differential equations

• Each eigenmode as single mass oscillator

• Coupled system of differential equations

• Time domain approximated

• Static starting condition

• Analysis of secondary systems: vehicles, equipment, extra bridge features

• All Non-Linearities possible

MODAL ANALYSIS

TIME-HISTORY

Element 105

40 m 60 m 40 m

Element 110

Element 118

Element 125 Element 131

Application Example

Bentley RM Bridge Seismic AnalysisConclusions

46 | WWW.BENTLEY.COM

Kobe, Japan (1995)

48 | WWW.BENTLEY.COM

Akashi-Kaikyo – “Pearl Bridge”

RM Bridge Benefits

• Bentley BrIM vision

• Bentley portfolio

• Intuitive step-by-step calculation

• One tool for all: static, modal, time-history

• Integrated reports and drawings

Bentley RM Bridge Seismic Design and AnalysisQuestions

50 | WWW.BENTLEY.COM

Thank you for your [email protected]