benchmarking lca studies for fossil fuel based power generation

17
Benchmarking LCA studies for fossil fuel based power generation value chains Life Cycle Costing in CO 2 storage Anna Korre, Zhenggang Nie, Rajesh Govindan, Ji Quan Shi, Sevket Durucan Minerals, Energy and Environmental Engineering Research Group Department of Earth Science and Engineering Royal School of Mines Prince Consort Road London, SW7 2AZ Benchmarking LCA studies for fossil fuel based power generation value chains

Upload: lynhan

Post on 11-Feb-2017

220 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Benchmarking LCA studies for fossil fuel based power generation

Benchmarking LCA studies for fossil fuel based power generation value chains

Life Cycle Costing in CO2 storage

Anna Korre, Zhenggang Nie, Rajesh Govindan, Ji Quan Shi, Sevket DurucanMinerals, Energy and Environmental Engineering Research GroupDepartment of Earth Science and EngineeringRoyal School of MinesPrince Consort RoadLondon, SW7 2AZ

Benchmarking LCA studies for fossil fuel based power generation

value chains

Page 2: Benchmarking LCA studies for fossil fuel based power generation

© Imperial College London Page 3

Natural resources Emissions to air, water and soil

Electricity and by-products

Power Generation with CO2 Capture

Extraction of fossil fuel

Consumables Production

Raw Material Production

Upstream processes

infrastructure

Power plant and CO2 capture facility

infrastructure

CO2 injection infrastructure

CO2 pipeline infrastructure

CO2 Conditioning

CO2 Transportation

CO2 Storage

Processing of fossil fuel

Fossil fuel transportation

Consumables transportation

Imperial College’s LCA model (ICLCA) of fossil fuel production, transport, power generation value chains

LCA model of the natural gas supply chain and power generation options

Page 4

Page 3: Benchmarking LCA studies for fossil fuel based power generation

CCGT

CCGT + MEA

ATR with PSA 

SMR + Membrane

Offshore  natural gas production  

Receiving terminal at South Hook + 

onshore gas pipeline to power plant

Alternative gas power generation with/without CO2 capture

CO2 pipeline transportation

CO2 injection into saline aquifer

LNG shipping  (Q‐Max & Q‐Flex) to the UK via Suez

Gas processing and LNG plant

Qatar North Field offshore production(1,730 MMscf/day) → undersea pipeline (80 km)→ Gas processing and LNG plant at Ras Laffan (2×7.8MTPA) → LNG shipping  (Q‐Max & Q‐Flex): from Qatar to the UK via Suez Canal (11,281 km) → Receiving terminal at South Hook (2×7.8MTPA) → onshore gas pipeline to power plant (100km) → Alternative Gas power generation with/without CO2 capture → CO2 pipeline transportation (300km) → CO2 injection into saline aquifer (161t/hr) 

Case study: full chain analysis of Middle East natural gas to a UK power plant without/with CCS

© Imperial College London Page 6

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

Predrilling andwell testing

Offshore NGplatform

constructin &installation

Offshorepipeline

construction &commissioning

Onshore NGprocessing

plant

Onshorepipeline

construction

LNG plantconstruction

LNG receivingterminal

construction

1.36E+07

1.89E+08

2.35E+07

9.03E+057.91E+04

7.78E+07

4.52E+06

GHG emissions from construction (kg CO2‐e)

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

year1

year2

year3

year4

year5

year6

year7

year8

year9

year10

year11

year12

year13

year14

year15

year16

year17

year18

year19

year20

Gas supply chain operation life cycle GHG emissions (kg CO2‐e)LNG receiving terminal

LNG shipping

LNG plant

Onshore pipeline

Onshore processing plant

GHG emissions from the gas supply chain

Case study: full chain analysis of Middle East natural gas to a UK power plant without/with CCS

Page 4: Benchmarking LCA studies for fossil fuel based power generation

© Imperial College London Page 7

0 100 200 300 400

CCGT

CCGT+MEA capture

SMR+Membrane

ATR+PSA

kg CO2‐e/MWh

Predrilling and well testing

Offshore NG platform constructin & installation

Onshore NG processing plant

Onshore pipeline construction

LNG plant construction

LNG receiving terminal construction

Offshore NG production platform

Onshore processing plant

Onshore pipeline

LNG plant operation

LNG shipping

LNG receiving terminal

Power plant

CO2 transportation

CO2 injection

Life cycle of GHG emissions for alternative power plant configurations with gas supplied from Middle East

Case study: full chain analysis of Middle East natural gas to a UK power plant without/with CCS

Comparison of GHG emissions for different gas supply options to the UK market

© Imperial College London Page 8

Page 5: Benchmarking LCA studies for fossil fuel based power generation

© Imperial College London Page 9

Comparison of GHG emissions for different natural gas power generation value chains around the world

and with CCS implementation

Comparison of GHG emissions for alternative coal and natural gas fired power plant configurations

© Imperial College London Page 10

Page 6: Benchmarking LCA studies for fossil fuel based power generation

© Imperial College London Page 11

0.Coal_wo_CCS_lit

1.Coal_wo_CCS IC

2.Coal_w_CCS_lit

3.Coal POST IC

4.Coal OXY IC

5.Gas_wo_CCS_lit

6.Gas CCGT IC

7.Gas_w_CCS_lit

8.Gas MEA IC

9.Gas ATR IC

9.Gas SMR IC

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

N=186

N=15

N=28

N=15

N=15

N=95

N=16

N=25

N=16

N=16

N=16

N:Sample Size

Greehouse Gas Emissions (gCO2e/kWh)

Comparison of GHG emissions for alternative coal and natural gas fired power plant configurations

IC : Imperial College modellit: literature studies

Life Cycle Costing in CO2 storage

© Imperial College London Page 12

Page 7: Benchmarking LCA studies for fossil fuel based power generation

Key drivers of the CO2 storage cost uncertainty

Life Cycle CO2 storage cost model

© Imperial College London Page 13

Life Cycle CO2 storage cost model

© Imperial College London Page 14

Page 8: Benchmarking LCA studies for fossil fuel based power generation

Basis of the methodology

individual geological formations

and their characteristics can be

assessed on the basis of their

depositional and tectonic

setting

recent reservoir/site history

including hydrocarbon

exploration and/or production

data can be used to produce

key performance metrics for

operability and efficiency of a

CO2 storage site.

Injection and storage model

© Imperial College LondonPage 15

Map of UKCS showing location of the generic storage sites considered

Rotliegend depleted gas field

Bunter Sst. depleted gas field/saline aquifer

Captain Sst. saline aquifer

Cenozoicsubmarine fan sandstone saline aquifer

© Imperial College London Page 15

Approach

Identification and selection of set

of generic CO2 subsurface storage

sites

Data gathering

Injection and storage modelSNS Rotliegend group

SPBA Petroleum Geological Atlas (2010)

Rotliegend reservoir facies distribution

© Imperial College London

© Imperial College London Page 16

Page 9: Benchmarking LCA studies for fossil fuel based power generation

Approach

Identification and selection of set

of generic CO2 subsurface storage

sites

Data gathering

Injection and storage modelSNS Rotliegend group

SPBA Petroleum Geological Atlas (2010)

Rotliegend reservoir facies distribution

Ravenspurndepleted gasfield

© Imperial College London Page 17

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

Pro

duc

tion

rate

(mill

ion

scm

/day

)

No of years

Reported

Simulated (Scaled porosity,low perm 1, S=0)

Simulated (Scaled porosity, low perm 1, S = -5.0)

Simulated (Scaled porosity, Low perm 2, S=0)

Simulated (Scaled porosity, Low perm 2, S =-5.0)

Injection and storage modelSNS Rotliegend group

Low permeability 2

low permeability 1

Turner et al., 1993

Ravenspurn North and South depleted gas fields

Approach

Identification and selection of set

of generic CO2 subsurface storage

sites

Data gathering

Building of 3D model for each site

BGS/IC iteration finalising each

model’s parameter attributions and

constructing dynamic models

Running and validating dynamic

models for each 3D model

© Imperial College London Page 18

Page 10: Benchmarking LCA studies for fossil fuel based power generation

Injection and storage model Dynamic modellingSNS Rotliegend group

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40

CO

2in

ject

ion

rate

(M

t/yea

r)

Years since start of CO2 injection

Well 4326-34326-64326-14230-D74230-D10

Aggregate

0

1

2

3

4

5

6

0 10 20 30 40

CO

2in

ject

ion

rate

(M

t/yea

r)

Years since start of CO2 injection

5 Mt/year

4

3

2

1

CO2 injection rate, Mt/year

1 2 3 4 5

PSI, year 50 24 14 7.5 5.1

FCU, fraction 0.38 0.36 0.32 0.23 0.19

Determination of key performance indicators for the Ravenspurn fields

Period of Sustained Injection (PSI)

The duration wherein a pre-specified constant injection

rate can be maintained

Fraction of Capacity Utilised (FCU)

The fraction of available pore space within the reservoir

occupied by CO2

© Imperial College London Page 19

Life Cycle CO2 storage cost model

© Imperial College London Page 20

Page 11: Benchmarking LCA studies for fossil fuel based power generation

Implementation of the cost model for the Goldeneye CO2 storage anchor case

Units Value

Injection rate per year Mt/year 2.0*

Storage facility injection life Years 11

Total CO2 injected M tonnes 20

Area of review (monitoring area during injection)

Km2 160

CO2 storage financial responsibility

£/tonne CO2 0.417

Number of injection wells - 4

Modified injection platform - 1

Water production well - 0

Water production rate Mt / Mt CO2 injected 0

* For the 10th and 11th year, CO2 injection rates are 1.5 and 0.5 respectively

Key parameters used (Scottish Power FEED report)

© Imperial College London Page 21

The life cycle cash flow of CO2 storage at Goldeneye

Levelised CO2 storage cost is calculated as £20.32 per tonne of CO2

stored© Imperial College London Page 22

Page 12: Benchmarking LCA studies for fossil fuel based power generation

The life cycle cash flow of CO2 storage at Goldeneye

Sensitivity analysis of CO2 storage costs

© Imperial College London Page 23

Combined CO2 storage and transport life cycle cost analysis for the Goldeneye anchor case

Sensitivity analysis of CO2 storage and transport costs for each scenario

storage transport

© Imperial College London Page 24

Page 13: Benchmarking LCA studies for fossil fuel based power generation

CO2 storage at a North Sea saline aquifer

Levelised CO2 storage cost £7.02 per tonne of CO2 stored (400MT, 30 year operation)

© Imperial College London Page 25

Cash flow of a CCS value chain

Central North Sea multi-store CO2

transport and geological storage network optimisation

Page 14: Benchmarking LCA studies for fossil fuel based power generation

CO2 storage sites selected for the multi-store scenario analysis

Sources

Installation Source typeVerified CO2 emissions

2011 (kg/year)CO2 emission

(Mt)

Peterhead Power Station CCGT plant 2,482,116 2.48

Longannet Power Station Coal 9,124,587 9.12

Grangemouth Refinery Refinery 1,487,237 1.49

Cockenzie Power Station Coal 3,945,259 3.95

Lynemouth Power Station Coal & biomass 2,551,364 2.55

P© Imperial College London

CO2 storage sites selected for the multi-store scenario analysis

Sinks

Description Site availabilityLeasing area

storage capacity (Mt CO2)

Max injection rate (Mt CO2/year)

Britannia aquifer block now 22.98 2

Captain aquifer block 17 now 16.98 2Captain aquifer block 18 now 11.24 2Goldeneye gas condensate field

since 2011 20.00 2

Blake oil field after 2015 28.00 2

Scapa oil field after 2020 48.32 4Britannia condensate field after 2025 130.20 6

© Imperial College London Page 28

Page 15: Benchmarking LCA studies for fossil fuel based power generation

Transport and storage system evolution

Amount of CO2 captured during each time period

CO2 stored at time t in Mt/yearT1

2014-2017

T2

2018-2022

T3

2023-2027

T4

2028-2038

T5

2039-2050

Length of time period (years) 4 5 5 11 12

Britannia aquifer 2.00 2.00 0.99

Captain block 17 2.00 1.80

Captain block 18 2.00 0.65

Goldeneye Gas Condensate Field 2.00 1.185 1.22

Blake Oil Field 2.00 2.00 0.73

Scapa Oil Field 4.00 2.58

Britannia Condensate Field 6.00 5.35

Annual total (Mt) 8.00 7.36 8.12 9.30 5.35

CO2 injected during the period (Mt) 32.00 38.15 41.06 102.32 64.2

Total CO2 stored during 2014-2050 277.73

© Imperial College London Page 29

Time period 1: 2014‐2018Storage sites used: Britannia/Saline AquiferCaptain 17Captain 18Goldeneye

Time period 2: 2018‐2023Storage sites used:Britannia/Saline AquiferCaptain 17Captain 18GoldeneyeBlake/Oil

Time period 3: 2023‐2028Storage sites used:Britannia/Saline AquiferScapaBlake/OilCaptain 18Goldeneye

Time period 4: 2028‐2039Storage sites used:Britannia/CondensateScapaBlake oil field

Time period 5:  2039‐2050Storage sites used:

Britannia/Condensate

Transport and storage system evolution

© Imperial College London Page 30

Page 16: Benchmarking LCA studies for fossil fuel based power generation

Life cycle cash flow for individual storage sites

Full utilisation of the optimal CNS multi-store capacity for a fixed CO2 price (£25)

Cash flow per storage site during the planning horizon (2011 to 2050)© Imperial College London Page 31

© Imperial College London Page 32

Many thanks to our sponsors

Further information:

Prof. Anna KorreImperial College LondonDepartment of Earth Science and EngineeringRoyal School of Mines, Prince Consort Road, London SW7 2AZ, UKTel.: +44 (0)20 759 47372

[email protected]

Page 17: Benchmarking LCA studies for fossil fuel based power generation

© Imperial College London Page 33

Life Cycle Cost - points for discussion

Which are the types of questions we may aim to

answer through life cycle costing

Advantages, weaknesses of streamlined / high level

and detailed LCC studies

Do we understand the importance of input data

uncertainty and variability in LCC results

How does this relate to LCC modelling uncertainty

for different applications