behavioral modeling of power amplifier using dnn and rnn

37
TJU Behavioral Modeling of Power Amplifier using DNN and RNN Zhang Chuan

Upload: fayre

Post on 31-Jan-2016

31 views

Category:

Documents


0 download

DESCRIPTION

Behavioral Modeling of Power Amplifier using DNN and RNN. Zhang Chuan. 1. 2. 3. DNN and RNN Modeling using new transistor. Next Work. Review. Outline. 1. Review. Review. Power amplifier. Memory effect. Short-term memory effect Long-term memory effect. Neural Network Modeling. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Behavioral Modeling of  Power Amplifier using DNN and RNN

TJU

Behavioral Modeling of Power Amplifier using DNN

and RNN

Zhang Chuan

Page 2: Behavioral Modeling of  Power Amplifier using DNN and RNN

Outline

Review1

DNN and RNN Modeling using new transistor2

Next Work3

Page 3: Behavioral Modeling of  Power Amplifier using DNN and RNN

ReviewReview1

Page 4: Behavioral Modeling of  Power Amplifier using DNN and RNN

Power amplifier

Page 5: Behavioral Modeling of  Power Amplifier using DNN and RNN

Memory effect

Short-term memory effect

Long-term memory effect

Page 6: Behavioral Modeling of  Power Amplifier using DNN and RNN

Long-term memory effect

Neural Network Modeling

Vin

Vin_L

Vout_L

Vout

Vin

Vout

Page 7: Behavioral Modeling of  Power Amplifier using DNN and RNN

Long-term memory effect example

Neural Network Modeling

Vin

Vout

Vin_L

Vout_L

Page 8: Behavioral Modeling of  Power Amplifier using DNN and RNN

Short-term DNN structure

Neural Network Modeling

Page 9: Behavioral Modeling of  Power Amplifier using DNN and RNN

Long-term DNN structure

Neural Network Modeling

Page 10: Behavioral Modeling of  Power Amplifier using DNN and RNN

Short-term RNN structure

Vin(t-τ) Vin(t-2τ)

Vout(t-τ) Vout(t-2τ)

Page 11: Behavioral Modeling of  Power Amplifier using DNN and RNN

Long-term RNN structure

Т Т

Τ=nτ

Vout(t-τ) Vout_L(t)

Vout_L(t-Τ)

Vin(t-τ) Vin_L(t)

Vout_L(t-Τ)

_ _ _

_ _ _

( ) ( ), ( ), , ( ),( ), ( ), , ( ),

( ), ( ), , ( ),

( ), , ( )

(

)

out in in in

in L in L in L

out L out L out L

out out

Т Т

Т Т

v t f v t v t v t mv t v t v t m

v t v t v t n

v t v t n

Page 12: Behavioral Modeling of  Power Amplifier using DNN and RNN

Short-term DNN vs RNN

DNNderivative unit: both 2harmonics: 3hidden neurons: 30training data:Pin:0~24 dBm step:2dBm freq: 850~900 MHz step: 5MHz test data:Pin: 1~23 dBm step: 2dBmfreq: 852.5~897.5 MHz step:5MHz training error:Time-domain : 0.0174%Freq-domain : 0.9246%test error:Time-domain : 0.018%Freq-domain : 1.1514%

RNNdelay unit: both 2harmonics: 3hidden neurons: 30training data:Pin:0~24 dBm step:2dBm freq: 850~900 MHz step: 5MHz test data:Pin: 1~23 dBm step: 2dBmfreq: 852.5~897.5 MHz step:5MHz training error:FFNN : 0.019%RNN : 0.1133%test error:FFNN : 0.0159%RNN : 0.125%

Page 13: Behavioral Modeling of  Power Amplifier using DNN and RNN

Short-term Result(DNN vs RNN)

Page 14: Behavioral Modeling of  Power Amplifier using DNN and RNN

Long-term DNN vs RNN DNNderivative unit: Vin:2 Vin_L:2 Vout_L:2Iin:1 Vout:2harmonics: both 5hidden neurons: 55training data:Pin: 0~6 dBm step:2dBm fspacing: 5~50 MHz step: 5MHz test data:Pin: 1~5 dBm step: 2dBmfreq: 7.5~47.5 MHz step:5MHz training error:Time-domain : 0.0449%Freq-domain : 1.7352%test error:Time-domain : 0.2653%Freq-domain : 2.1134%

RNNdelay unit: Vin:2 Vin_L:2 Vout_L:2Iin:1 Vout:2harmonics: both 5hidden neurons: 55training data:Pin: 0~6 dBm step:2dBm fspacing: 5~50 MHz step: 5MHz test data:Pin: 1~5 dBm step: 2dBmfreq: 7.5~47.5 MHz step:5MHz training error:FFNN : 0.0363%RNN : 0.0627%test error:FFNN : 0.0418%RNN : 0.0782%

Page 15: Behavioral Modeling of  Power Amplifier using DNN and RNN

Long-term Result(DNN vs RNN)

Page 16: Behavioral Modeling of  Power Amplifier using DNN and RNN

DNN and RNN Modeling using new transistor2

Page 17: Behavioral Modeling of  Power Amplifier using DNN and RNN

Whole PA circuit

Page 18: Behavioral Modeling of  Power Amplifier using DNN and RNN

New PA example using freescale transistor

Page 19: Behavioral Modeling of  Power Amplifier using DNN and RNN

New PA example using freescale transistor(in ADS)

Page 20: Behavioral Modeling of  Power Amplifier using DNN and RNN

Short-term comparison (DNN vs RNN)

DNNderivative unit: 3 3 2harmonics: 5hidden neurons: 30training data:Pin:0~32 dBm step:2dBm freq: 2.6~2.65 GHz step: 10MHz test data:Pin: 1~31 dBm step: 2dBmfreq: 2.605~2.645 MHz step:10MHz training error:Time-domain : 0.0057%Freq-domain : 0.8436%test error:Time-domain : 0.0062%Freq-domain : 0.9514%

RNNderivative unit: 3 3 2harmonics: 5hidden neurons: 30training data:Pin:0~32 dBm step:2dBm freq: 2.6~2.65 GHz step: 10MHz test data:Pin: 1~31 dBm step: 2dBmfreq: 2.605~2.645 MHz step:10MHz training error:FFNN : 0.0472%RNN : 0.0113%test error:FFNN : 0.0291%RNN : 0.0335%

Page 21: Behavioral Modeling of  Power Amplifier using DNN and RNN

Short-term memory result

Page 22: Behavioral Modeling of  Power Amplifier using DNN and RNN

Long-term DNN vs RNN DNNderivative unit: Vin:2 Vin_L:2 Vout_L:2Iin:1 Vout:2harmonics: both 5hidden neurons: 40training data:Pin: 16~22 dBm step:2dBm fspacing: 150~370 MHz step: 20MHz test data:Pin: 17~21 dBm step: 2dBmfspacing: 160~360 MHz step:20MHz training error:Time-domain : 0.0337%Freq-domain : 1.3751%test error:Time-domain : 0.1253%Freq-domain : 2.6134%

RNNderivative unit: Vin:2 Vin_L:2 Vout_L:2Iin:1 Vout:2harmonics: both 5hidden neurons: 40training data:Pin: 16~22 dBm step:2dBm fspacing: 150~370 MHz step: 20MHz test data:Pin: 17~21 dBm step: 2dBmfspacing: 160~360 MHz step:20MHz training error:FFNN : 0.0036%RNN : 0.0534%test error:FFNN : 0.0048%RNN : 0.0626%

Page 23: Behavioral Modeling of  Power Amplifier using DNN and RNN

Long-term memory result(fine model)

Page 24: Behavioral Modeling of  Power Amplifier using DNN and RNN
Page 25: Behavioral Modeling of  Power Amplifier using DNN and RNN

DNN two lines training result

Page 26: Behavioral Modeling of  Power Amplifier using DNN and RNN

DNN two lines test result

Page 27: Behavioral Modeling of  Power Amplifier using DNN and RNN

RNN two lines training result

Page 28: Behavioral Modeling of  Power Amplifier using DNN and RNN

RNN two lines test result

Page 29: Behavioral Modeling of  Power Amplifier using DNN and RNN

Long-term DNN vs RNN DNNderivative unit: Vin:2 Vin_L:2 Vout_L:2Iin:1 Vout:2harmonics: both 5hidden neurons: 25training data:Pin: 16~18 dBm step:2dBm fspacing: 150~370 MHz step: 30MHz test data:Pin: 17 dBm fspacing: 160~340 MHz step:30MHz 

RNNderivative unit: Vin:2 Vin_L:2 Vout_L:2Iin:1 Vout:2harmonics: both 5hidden neurons: 25training data:Pin: 16~18 dBm step:2dBm fspacing: 150~370 MHz step: 30MHz test data:Pin: 17 dBm fspacing: 160~340 MHz step:30MHz 

Page 30: Behavioral Modeling of  Power Amplifier using DNN and RNN

L_7_2_td4

Page 31: Behavioral Modeling of  Power Amplifier using DNN and RNN

Use less number of training data

Page 32: Behavioral Modeling of  Power Amplifier using DNN and RNN
Page 33: Behavioral Modeling of  Power Amplifier using DNN and RNN

Test using more data

Page 34: Behavioral Modeling of  Power Amplifier using DNN and RNN
Page 35: Behavioral Modeling of  Power Amplifier using DNN and RNN

Next Work3

Page 36: Behavioral Modeling of  Power Amplifier using DNN and RNN

Next work

I’ll figure out:

Long-term memory effects modeling, choose a precise size of data and reduced DNN and RNN structure to get a good result.

Page 37: Behavioral Modeling of  Power Amplifier using DNN and RNN

TJU