behavior of plain elastomeric padssp.bridges.transportation.org/documents/scobs...plain pad w l t e...

41
Behavior of Plain Elastomeric Pads John Stanton & Scott Tetzlaff University of Washington AASHTO SCOBS T-2 Meeting 9 July 2012, Austin, TX.

Upload: others

Post on 05-Nov-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Behavior of Plain Elastomeric

Pads

John Stanton & Scott Tetzlaff

University of Washington

AASHTO SCOBS T-2 Meeting

9 July 2012, Austin, TX.

Page 2: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Acknowledgments

• AASHTO

• MN DOT

Page 3: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Plain Elastomeric Pads – the

Problem.

• Plain pads are made from unreinforced

sheets of elastomer (Natural Rubber or

Neoprene.)

• MN DOT found plain pads bulging out

from the plates that they support.

• Was something wrong with the rubber?

• Are the AASHTO design values at fault?

Page 4: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

MNDOT bearing

Girder

Steel

rocker

Elastomeric

pad

Welded

studs

Concrete

pier cap

Page 5: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

MNDOT bearing

Page 6: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

MNDOT bearing

Page 7: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Plain Pad in Compression

Page 8: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Plain Pad in Compression

Page 9: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Plain Pad in Compression

Slip No slip Slip

Page 10: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Comparison with Steel-Laminated

Bearing

Page 11: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Comparison with Steel-Laminated

Bearing

No lateral expansion –

bonded to internal plates

Page 12: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Plain Pad in Compression

Slip No slip Slip

Rubber volume stays constant.

Lateral expansion implies vertical deflection.

Expansion resisted by friction (m) and rubber stiffness, G.

Page 13: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Compression Stiffness.

Reinforced (bonded) Bearing

t

AEK cc

Kc = stiffness

A = plan area

t = rubber thickness

Ec = Effective modulus

S = Shape Factor

W

L

ti

WLt

LWS

i

224GSEc

Page 14: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Compression Stiffness. Plain pad

LRBcKPEPc EfE ,,

fK ≈ 0.75m (Nasty math. Depends on slip/no slip boundary).

Assumes: Incompressible material.

W = infinite (strip bearing).

Constant m (independent of contact pressure).

Plain pads:

Compression Stiffness Factor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

m

f K

S = 2

S = 3

S = 4

S = 6

S = 8

approx

t

AEK cc

Page 15: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Test Plan

Compression test variables:

Elastomer material

Contact surface (may affect friction)

Shape factor

Aspect ratio

Loading type and level

Friction test variables

Contact pressure

Page 16: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Compression Test Matrix

Test Rubber Contact Length Width S AR Loading

Name Material Surface (inch) (inch)

1.GG.24.12 Lot 1 GG 24 12 8 2 Cyc

2.GG.24.12 Lot 2 GG 24 12 8 2 Cyc

1.CC.24.12 Lot1 CC 24 12 8 2 Cyc

1.SS.24.12 Lot1 SS 24 12 8 2 Cyc

1.CS.24.12 Lot1 CS 24 12 8 2 Cyc

1.GG.12.06 Lot1 GG 12 6 4 2 Cyc

1.GG.06.03 Lot1 GG 6 3 2 2 Cyc

1.GG.24.05 Lot1 GG 24 4.8 4 5 Cyc

1.GG.24.02 Lot1 GG 24 2.18 2 11 Cyc

1.GG.24.12 Creep Lot1 GG 24 12 8 2 Creep

1.GG.24.12.Alt Lot1 GG 24 12 8 2 Alt cyc

1.GG.24.12.Offset Lot1 GG 24 12 8 2 Offset

Page 17: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Test set up

Loading

beam

Galvanized

plate

Rubber pad

Concrete block on

steel plate

CROSS-SECTION

Page 18: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Instrumentation.

Horizontal

potentiometer

PLAN

Vertical

potentiometer

Page 19: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Loading Protocol.

Loading Protocols

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200

Time (sec)

Stre

ss, p

si

Normal loading

Alt loading

Page 20: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Test Results – Vertical Strain.

Plain Pad Compression Test: 1.GG.24.12

0

100

200

300

400

500

600

700

800

900

1000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Axial Strain, in/in

Stre

ss, p

si

"200"

"400"

"600"

"800"

• Zero for strain difficult to define: “bedding in”.

• eel ≈ 12% at 800 psi

• Large “creep” strains

Page 21: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Test Results - Lateral Strain.

• Lateral strain = average slip on long sides/short dimension.

• Strain zero does not need adjustment.

• Lateral strain ≈ vertical strain (constant volume).

Plain Pad Compression Test: 1.GG.24.12

0

100

200

300

400

500

600

700

800

900

1000

0 0.05 0.1 0.15 0.2 0.25 0.3Lateral Strain, in/in

Stre

ss, p

si

Page 22: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Test Results - Lateral Strain.

Page 23: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Compression Test Results.

Marks on rubber showing slip region.

No cracks or other damage.

Page 24: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Compression Test Results.

Cyclic loading & creep cause additional deflection.

Total strain comparable to galvanized (1.GG.24.12).

Plain Pad Compression Test: 1.CC.24.12

0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2

Lateral Strain, in/in

Stre

ss, p

si

Page 25: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Test Results.

High Aspect Ratio (11.0), Low S ( 2.0).

High elastic strains, lower creep strains.

Plain Pad Compression Test: 1.GG.24.02

0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Lateral Strain, in/in

Stre

ss, p

si

Page 26: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Test Results - Creep.

Creep increases significantly above 400 psi (= 0.5GS)

Compression Tests: 2.GG.24.12.Creep

0

100

200

300

400

500

600

700

800

900

1000

0 0.05 0.1 0.15 0.2 0.25 0.3

Lateral Strain, in/in

Stre

ss, p

si

Page 27: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Test Results – Creep Rate.

Compression Tests:

2.GG.24.12.Creep

0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000 7000

Time (sec)

Late

ral S

trai

n R

ate

( me

/se

c)

Compression Tests:

2.GG.24.12.Creep

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000 5000 6000 7000

Time (sec)

Late

ral S

trai

n (

in/i

n)

Page 28: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Compression Test Results -

Summary.

• Elastomer: Negligible effect.

• Contact Surface: Little effect.

• Shape Factor: High S higher elastic stiffness.

• Aspect Ratio: Little effect. (High AR less stiff).

• Loading: Large effect. Creep and cyclic load:

large increase in deflections.

Page 29: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Friction tests

3 steel plates (24” x 12”). (2 galvanized, 1 as-rolled).

2 rubber pads (6” x 3”).

Contact pressures: 200, 400, 600 psi.

Page 30: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Friction tests

Page 31: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Friction tests

FrictionTest: 600psi

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Deflection (in)

F/N

Elastic shear

deformation Sliding

Page 32: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Friction tests

Coefficient of friction:

Rubber vs. bare steel

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700

Compressive stress (psi)

m

mu

Previous studies have also found that rubber friction

varies with contact pressure. Similar to PTFE.

Page 33: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Data Analysis

• Quantify the effects of the various parameters on

compression stiffness.

• Use the measured friction coefficients in the analytical

model to compare predicted and measured

compression stiffnesses.

Page 34: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Data Analysis Contact Surface (Concrete, Steel, Galvanized)

Laterals strain shown includes creep.

Bare steel has lowest friction, highest lateral strain.

Differences are small.

Page 35: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Data Analysis Shape Factor, S.

Effect of Shape Factor

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

Lateral Strain, %

Max

Str

ess/

GS

S= 8 AR= 2

S= 4 AR= 2

S= 2 AR= 2

For 24” x 12” pad, rubber squeezed out from plates.

For smaller pads, rubber remained between plates.

Page 36: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Data Analysis Aspect ratio (for same S)

Effect of Aspect Ratio

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40

Lateral Strain, %

Max

. Str

ess/

GS

S= 4 AR= 2

S= 4 AR= 5

S= 2 AR= 2

S= 2 AR= 11

Larger AR gives slightly higher strains.

Difference is quite small

Page 37: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Comparison with Theory. Plain pad

W

L

t

LRBcKPEPc EfE ,,

fK ≈ 0.75m Use mave = 0.44. Then fK ≈ 0.33 Stiffness of a plain pad should be expected to be about 1/3

of that of a reinforced bearing with the same S. However,

this does not include creep deflections.

Plain pads:

Compression Stiffness Factor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

m

f K

S = 2

S = 3

S = 4

S = 6

S = 8

approx

Page 38: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Tentative Design Criteria.

• Design plain pads using criteria similar to

those for steel-reinforced bearings, but

with lower values.

• No long-term damage to pads occurred,

so difficult to link design criteria to

potential damage.

• Consider a limiting compression strain,

and generate a stress criterion from it.

Page 39: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Tentative Design Criteria. Example:

• If strain limited to 10%, s < 0.6GS

Effect of Shape Factor

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

Lateral Strain, %

Max

Str

ess/

GS

S= 8 AR= 2

S= 4 AR= 2

S= 2 AR= 2

Governed here by bearings with S = 8.

Page 40: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Outcomes for Users.

• Plain pad strips under rectangular box

beams: make pad wider.

• Leveling pad (e.g. MNDOT): present pads

are at ≈ 800 psi (would need S = 16, thus

¼” thick pad). Potential problems unless

stiffer material used (70 durometer?).

• Use under prestressed girders. Problems

similar to leveling pads.

• Others?

Page 41: Behavior of Plain Elastomeric Padssp.bridges.transportation.org/Documents/SCOBS...Plain pad W L t E c,PEP f K E c,LRB f K ≈ 0.75m Use m ave = 0.44. Then f K ≈ 0.33 Stiffness of

Preliminary Conclusions

• Additional strain due to creep and cyclic

load is significant, controls behavior.

• Present AASHTO LRFD stress of 800 psi

is much too high.

• Stress limit should be related to S.

• Before recommending changes to

AASHTO LRFD Spec, need to check other

conditions (e.g. higher durometer pads).