beam design

Upload: ring-o-foo

Post on 09-Jan-2016

19 views

Category:

Documents


0 download

DESCRIPTION

Beam Design

TRANSCRIPT

  • 7/17/2019 Beam Design

    1/84

    BEAM DESIGN

    ERT352FARM STRUCTURES

    It doesnt matter what the subject is; once youvelearnt how to study, you can do anything you want.

  • 7/17/2019 Beam Design

    2/84

    INTRODUCTION Steel beams of various cross-sectional shapes are

    commercially available. Sections of steel beams are indicated ith a

    combination of letters and a number. !"# $%& ' (%) U* ) $%& mm by (%) mm

    universal beam ei"hin" )& +",m.

  • 7/17/2019 Beam Design

    3/84

    N /SIS 0 O DDISTRI*UTION

    oads from slab are normally de1ned in 234+N,m ) . These loads are transferred to supportin" beams

    in either 2 4+N,m or 254 +N. oads from reinforced concrete solid slab#

    o oads may be distributed to the supportin" beamsdependin" on the ratio of lon" side,short side of the slab6 y, 78

    o Type of distribution loads from slab# One- ay spannin" slab9 hen y, 7 : ).% T o- ay spannin" slab9 hen y, 7 ; ).%

  • 7/17/2019 Beam Design

    4/84

    N /SIS 0 O D DISTRI*UTION6cont.8

    oad from precastconcrete slab

    o oads may bedistributed to the

    supportin" beams inone direction only andnot dependin" on theratio of y, 7.

    o This is becauseprecast concrete slabare one- ay spannin"as they are supportedby beams at the endsof the slab only.

  • 7/17/2019 Beam Design

    5/84

    N /SIS 0 O DDISTRI*UTION 6cont.8

    (. One- ay spannin" slab 6 y, 7 : ).%8o

  • 7/17/2019 Beam Design

    6/84

    N /SIS 0 O DDISTRI*UTION 6cont.8

    ). T o- ay spannin" slab 6 y, 7 ; ).%8o

  • 7/17/2019 Beam Design

    7/84

    !7ample (# oad distributionand beam analysis

    The follo in" 1"ure sho s s =oor plan of a steel buildin". The =oor consists of precast concrete hollo core slabs.

    oad carried by the slab are follo s#o Unfactored dead load from self ei"ht of precast slabs9

    self ei"ht of steel beams and 1nishin" > &.% +N,m)

    o Unfactored imposed load > ?.% +N,m ) Determine the ma7imum shear force and moment in beam

    (, -*.

  • 7/17/2019 Beam Design

    8/84

    Solution# oad distribution#

    o for precast slab9 considered as one- ay spannin" and it issupported by beam * and CD.

    Desi"n load9 nn > (.$&@+ A (.&B+ > (.$& 6& +N,m ) 8 A(.& 6?.% +N,m ) 8 > (). & +N,m )

    Total desi"n load9 > n 7 idth of load transferred to beam (, -*

    > (). & +N,m ) 7 6) m8 > )&.& +N,m

  • 7/17/2019 Beam Design

    9/84

    Solution# 6cont.8 Since beam * is simply supported and loads are

    symmetry9 then#o a7imum shear force9 E !d > 6 8,)

    > 6)&.& +N,m86& m8,)> 63.75 kN

    o a7imum moment9 !d > 6 ) 8,F> 6)&.& +N,m86& m8 ) ,F> 79.7kNm

  • 7/17/2019 Beam Design

    10/84

    !7ample )# oad distributionand beam analysis

    The follo in" 1"ure sho s the plan of a buildin". The slab is cast in-situ reinforced concrete.Unfactored dead and imposed loads are sho n onthe dra in". In addition9 beam ), -* alo carries

    ?m hi"h bric+ all of $ +N,m). determine thema7imum shear force and moment of beam ), -*.

  • 7/17/2019 Beam Design

    11/84

    Solution# oad distribution on reinforced concrete solid slab

    o Slab (# y, 7 > m,?m > (. & G ).%9 t o ay spannin"slab

    o Slab )# y, 7 > m,$m > ).$ : ).%9 one ay spannin"slab

  • 7/17/2019 Beam Design

    12/84

    Solution#6cont.8 oad from slab (# beam ), -*

    o Desi"n load9 n ( > (.$&@+ A (.&B+> (.$& 6& +N,m ) 8 A (.&6).%+N,m ) 8> H. &+N,m )

    o Total desi"n load9 5( > n( 7 trape odial area of loadfrom slab (

    > H. &+N,m) 7 J6$m A m8,) 7 )mK

    > H .&+N

  • 7/17/2019 Beam Design

    13/84

    Solution#6cont.8 Since beam is simply supported and loads are

    symmetry9 then#o a7imum shear force9 E !d( > 6 8,)

    > 6H .& +N,m86& m8,)> 48.75 kN

    o )ma > )m , m > %.)FM

    o a7imum moment9 !d( > J6$ 0 ? a ) 8 ,)? 6( - a8K 5 > J6$ 0 ? 6%.)FM ) 8 ,)? 6( - %.)FM8K H .&+N

    6 m8 > 106.5 kNm

  • 7/17/2019 Beam Design

    14/84

    Solution#6cont.8 oad from slab )# beam ), -*

    o Desi"n load9 n ) > (.$&@+ A (.&B+> (.$& 6& +N,m ) 8 A (.&6$.%+N,m ) 8> ((.)& +N,m )

    o Total desi"n load9 5) > n) 7 idth of slab )> ((.)& +N,m ) 7 (.& m> (M.H +N,m

  • 7/17/2019 Beam Design

    15/84

    Solution#6cont.8 oad from beam self ei"ht and bric+ all

    o Self ei"ht of beam > ( +N,mo 5ei"ht of bric+ all per meter len"th > ei"ht of bric+ all 7 hei"ht

    of all

    > $ +N,m)

    7 ? m > () +N,mo Total dead load9 @+ > self ei"ht of beam A ei"ht of bric+ all

    > ( +N,m A () +N,m> ($ +N,m

    o Desi"n load9 $ > (.$&@+ > (.$&6($+N,m8 > ( .&& +N,m

    o Total desi"n load for slab )9 bric+ all and self ei"ht of beam9? > ) A $ > (M.H +N,m A ( .&& +N,m

    > $?.& +N,m

  • 7/17/2019 Beam Design

    16/84

    Solution#6cont.8 Since beam * is simply supported and loads are

    symmetry9 then#o a7imum shear force9 E !d) > 6 8,)

    > 6$?.& +N,m86 m8,)> 120.75 kN

    o a7imum moment9 !d) > 6 ) 8,F> 6$?.& +N,m86 m8 ) ,F> 211.3 kNm

  • 7/17/2019 Beam Design

    17/84

    Solution#6cont.8 oad combination from slab ( and slab )

    o The ma7imum shear force and moment from beam ), -*is obtained by combinin" the loads from slab ( and slab) to"ether as follo #

    o a7imum shear force9 E !d > E !d( A E !d)> ?F. & A ()%. &> 169.5 kN

    o a7imum moment9 !d > !d( A !d)> (%M.& A )((.$> 317.8 kNm

  • 7/17/2019 Beam Design

    18/84

    *eam Desi"n Section Classi1cation

    o ny steel beam sections that are sub ect to compression due tobendin" or an a7ial force should be classi1ed.

    o

    The purpose of the classi1cation is to determine hether localbuc+lin" in=uences the capacity of the beam.

    o The occurrence of local buc+lin" of compressed elements of across-section prevents the development of full section capacity.

    o The classi1cation of a section is carried out by comparin" theidth-to-thic+ness ration of the elements9 i.e. c/t ! t"# $%&'#

    #(#m#&t and c/t ! t"# )#* #(#m#&t a"ainst the limit of c,t ofthe =an"e and c,t of the eb respectively "iven by T%*(# 5.2EC3

  • 7/17/2019 Beam Design

    19/84

  • 7/17/2019 Beam Design

    20/84

  • 7/17/2019 Beam Design

    21/84

    l

  • 7/17/2019 Beam Design

    22/84

    !7ample# Sectionclassi1cation

    Determine the classi1cation of a ?%M 7 (?% 7 ?MU* in "rade S) &.

    Solution:o Refer Table $.( pa"e )M#

    Steel "rade9 S) & t G ?% mm fy > ) & N,mm )

    o Refer Table &.) pa"e ?)# > P 6)$&,fy8 > P 6)$&,) &8 >%.H)

    o &$.% G ) > )6%.H)8 > MM.) eb is Class(

    R i d d

  • 7/17/2019 Beam Design

    23/84

    Restrained andUnrestrained *eams

    Steel beams may be desi"n as either restrainedor unrestrained.

    If a beam full lateral restraint to its compression=an"e alon" the span9 the beam is consideredfully restrained.

    Cases here beams can be desi"ned as fullyrestrained alon" the spans are#

    o *eams carryin" in-situ reinforced concrete slabo *eams ith steel dec+in" =oorin" systems9 ith orithout shear studs. Shear studs function as a simple

    concrete anchor.

  • 7/17/2019 Beam Design

    24/84

    Restrained and Unrestrained *eams6cont.8

    De=ection of restrained beamo The restrained beam is fully prevented from movin"

    side ays.o The de=ection ill only ta+e place vertically about the

    ma or a7is ithout any lateral de=ection.

    Types of restrainto There are t o conditions of restraint#

  • 7/17/2019 Beam Design

    25/84

    Desi"n of Restrained*eam

    The desi"n process for fully restrained beam isfollo s#

    o naly e the beam and determine the reaction 6R8 Lma7imum shear force 6E !d 8L ma7imum moment 6 !d 8 and

    ma7imum de=ection.o Select suitable steel U* section.o Classify the sectiono Chec+ the bendin" moment resistanceo Chec+ shear resistanceo Chec+ shear buc+lin" resistance of ebo Chec+ combination of shear and momento Chec+ de=ection

    * di " 9

  • 7/17/2019 Beam Design

    26/84

    *endin" oment9Clause M.).& !C$

    The desi"n resistance for bendin" for classes (and ) cros sections

  • 7/17/2019 Beam Design

    27/84

    Shear9 Clause M.).M!C$

  • 7/17/2019 Beam Design

    28/84

    Shear area for secondary beam9 v

    o

    5here > "ross sectional area of the section

    Shear *uc+lin" Resistance of 5eb9 Clause M.).M 6M8!C$

    o If 9 shear buc+lin" resistance no need tobe carried out.

    o 5here9 depth of eb9

    )2(9.0 f v bt A A =

    72

    0,

    )1(

    m

    y pl Rd c

    f W M

    =2

    ,

    12 =

    Rd pl

    Ed

    V V

  • 7/17/2019 Beam Design

    30/84

    !7ample# *eam * ith span &.% m is simply supported at

    and *. )?%

    +Nm. Usin" "rade S) &9 Desi"n beam *.

  • 7/17/2019 Beam Design

    31/84

    Solution# Trial section si e based on moment resistance9 5pl

    So9 try section ?%M 7 (?% 7 ?M U* in "rade S) & 65pl >FFFcm $8

    3

    33

    2

    6

    2

    7.872

    102.872/275

    10240/275

    240

    cm

    mm xmm N Nmm x

    mm N kNm

    f M

    W y

    Ed pl

    =

    =

    ==

    =

  • 7/17/2019 Beam Design

    32/84

    Solution# 6cont.8 Section properties ?%M 7 (?% 7 ?M U*

    h > ?%$.) mm d > $M%.?mmb > (?).) mm > &F.M cm )

    t > M.F mm t f > ((.) mmIy > (& %% cm ? I > &$F cm ?

    5 pl9y > FFF cm $ 5 el9 y > F cm $

    d,t > &$ c,t f > &9($! > )(%%%% N,mm ) @ > F(%%% N,mm )

  • 7/17/2019 Beam Design

    33/84

    Solution# 6cont.8 Desi"n stren"th

    o Table $.(# Steel "rade S) &o TG ?% mm f y > ) & N,mm ) 9 f u > ?$% N,mm )

    Section classi1cationo Refer Table &.) pa"e ?)# > P 6)$&,fy8 > P 6)$&,) &8 >

    %.H)o &$.% G ) > )6%.H)8 > MM.) eb is Class

    (

    o Since =an"e and eb are class (9 the section is classi1edas Class (.

  • 7/17/2019 Beam Design

    34/84

    Solution# 6cont.8 Shear Resistance of Section 6Clause M.).M8

    o a7imum e7ternal desi"n shear force9 E!d > (H) +No Shear resistance of section9 E c9 Rd > E pl9 Rd

    o

  • 7/17/2019 Beam Design

    35/84

    Solution# 6cont.8 Shear area for main beam9 v

    Therefore9 use the bi""est v > )H H.$ mm )

    2,

    2 4.25893.2979

    6.3043.31855860

    2.11)]2.10(28.6[)2.11)(2.142(25860

    )2(2

    mm Amm

    t r t bt A A

    webv

    f w f v

    =>=+=

    ++=

    ++=

  • 7/17/2019 Beam Design

    36/84

    Solution# 6cont.8

    Desi"n chec+

    section is satisfactory.

    kN x

    f AV V

    m

    yv Rd pl Rd c

    473101

    )]3/275(3.2979[

    )3/(

    3

    0,,

    =

    =

    ==

    0.141.0473192

    ,

    == Rd c

    Ed

    V V

  • 7/17/2019 Beam Design

    37/84

    Solution# 6cont.8 *endin" oment Resistance of Section 6Clause

    M.).&8o a7imum e7ternal desi"n moment9 !d > )?% +No oment resistance for class ( cross-section#

    kNm

    x x

    f W M

    m

    y pl Rd c

    2.244

    101)275)(10888(

    6

    3

    0,

    =

    =

    =

    kNm M M Rd pl Rd c 2.244,, ==

    0.198.02.244

    240

    ,

    == Rd c

    Ed

    M M

  • 7/17/2019 Beam Design

    38/84

    Solution# 6cont.8 Shear *uc+lin" Resistance of 5eb 6Clause

    M.).M6M88o If 9 shear buc+lin" resistance no need to be

    carried out.

    o 5eb depth 9

    o So9

    local eb buc+lin" is li+ely to occur and hence shearbuc+lin" chec+ no need to be carried out.

    72 )?% +NL

    Shear force at ma7imum moment is E > % +N. %.& Ec9Rd > %.& 7 ? $ > )$M.& +N

    Since E > % +N G %.& Ec9Rd9 it does not a ect the momentresistance9 c9Rd.

    o This beam section is able to carry the most criticalcombination of bendin" and shear.

    0.198.02.244

    240

    ,

    == Rd c

    Ed

    M M

  • 7/17/2019 Beam Design

    40/84

    Unrestrained *eam The possibility of lateral-torsional buc+lin" must

    be ta+en into consideration hen thecompression =an"e of the beam is not fullyrestrained alon" the span.

    The buc+lin" capacity of unrestrained beamdepends on the

    o Section type.o

    Unrestrained len"tho Restraint conditiono Type of load applied

    D i" f U t i d

  • 7/17/2019 Beam Design

    41/84

    Desi"n of Unrestrained*eam

    The follo in" are the steps for desi"nin"unrestrained beams#

    o Divide the beam into se"ments bet een lateralrestraints

    o Chec+ the moment buc+lin" resistance for each se"menthere is "iven asL

    o Section modulus9 5yL 5y > 5pl9yL lastic modulus for Class ( and Class )

    sections 5y > 5el9y9 !lastic modulus for Class $ section

    1,

    m

    y y LT Rd b

    f W M

    =

  • 7/17/2019 Beam Design

    42/84

    The reduction factor T9 is "iven by

    5here9o Non dimensional slenderness9

    o *uc+lin" parameter9

    22

    1

    LT LT LT

    LT

    +=

    cr

    y y LT M

    f W =

    ])2.0(1[5.02 LT LT LT LT ++=

  • 7/17/2019 Beam Design

    43/84

    The critical elastic buc+lin" moment9

    5here#o !9 @ are material propertieso I 9 It9 I are section propertieso cr is the buc+lin" len"th of the membero C( is the factor that depends on the shape of bendin" moment

    dia"ram

    5.0

    2

    2

    2

    2

    1 += z

    t cr

    z

    w

    cr

    z cr

    EI

    GI L

    I

    I

    L

    EI C M

  • 7/17/2019 Beam Design

    44/84

    If the moment alon" the beam is not uniform9then cr is modi1ed by the C ( factor

    The modi1cation factor9 C ( is "overned by theratio V hich is the ration of the smaller to lar"ermoments of restrained ends.

    The ratio of smaller moment to lar"er moment is"iven as

    V > small , lar"e for restrained ends

    The C ( factor can be obtained from the follo in"table refer *S&H&% .

  • 7/17/2019 Beam Design

    45/84

  • 7/17/2019 Beam Design

    46/84

    The C ( factor is never less than (.%.

    If C( > (.%9 its means the moment alon" the

    beam is uniform.

    C( > (.FF 0 (.?% V A %.&) V )

    9f d i" i "

  • 7/17/2019 Beam Design

    47/84

    9cr for desi"nin"unrestrained

    beams Typical e7ampleof beams ithoutintermediatelateral restraintsand theircorrespondin"buc+lin" len"ths.

  • 7/17/2019 Beam Design

    48/84

    intermediate lateral

    restraints Simple supported beams ith intermediate lateralrestraints are described as beams hereo ateral restraints are provided at beam supports and at

    intermediate of beams

  • 7/17/2019 Beam Design

    49/84

  • 7/17/2019 Beam Design

    50/84

    The C ( factor#o V > small , lar"e for restrained endso C( > (.FF 0 (.?% V A %.&) V )

    !7ample# Desi"n of

  • 7/17/2019 Beam Design

    51/84

    !7ample# Desi n ofUnrestrained *eam

  • 7/17/2019 Beam Design

    52/84

  • 7/17/2019 Beam Design

    53/84

    Solution# Desi"n load9 3 > (.$&@+ A (.&B+

    > (.$&6$.%+N,m ) 8 A (.&6&.%+N,m ) 8> ((.&&+N,m )

    Reaction of beam CD at support C> point load at point C of beam !> 63 7 idth 7 len"th8,)> 6((.&&+N,m) 7 ).& m 7 M m8,)> FM.M +N

    Self- ei"ht beam !9 > &$+",m 7 H.F( 7 (%-$> %.&) +N,m

  • 7/17/2019 Beam Design

    54/84

  • 7/17/2019 Beam Design

    55/84

    Section properties ?%M 7 (?% 7 &$ UW*h > ?%M.M mm d > $M%.?mmb > (?$.$ mm > M .H cm )

    t > .H mm t f > ().H mmIy > (F$9%% cm ? I > M$& cm ?

    I > %.)?M dm ? It > )H cm ?

    5 pl9y > (%$% cm$

    5 el9 y > FHH cm$

    d,t > ?&.M c,t f > ?.?M

    ! > )(%%%% N,mm ) @ > F(%%% N,mm )

    cr > ).& m r > (%.) mm

  • 7/17/2019 Beam Design

    56/84

    Desi"n stren"tho Table $.(# Steel "rade S) &o TG ?% mm f y > ) & N,mm ) 9 f u > ?$% N,mm )

    Section classi1cationo Refer Table &.) pa"e ?)# > P 6)$&,fy8 > P 6)$&,) &8 >

    %.H)o ?&.M G ) > )6%.H)8 > MM.) eb is

    Class (

    o Since =an"e and eb are class (9 the section is classi1edas Class (.

  • 7/17/2019 Beam Design

    57/84

    Solution# 6cont.8

    Shear Resistance of Section 6Clause M.).M8o a7imum e7ternal desi"n shear force9 E!d > ??.M +No Shear resistance of section9 E c9 Rd > E pl9 Rd

    o 5eb shear area

    o So9 shear are of eb only

    0,,

    )3/(

    m

    yv Rd pl Rd c

    f AV V

    ==

    wwwebv t h A =,

    mmmmmm

    t hh f w8.380)2.11(22.403

    2

    ===

    2

    3.3008

    )9.7)(8.380(0.1

    ,

    mm

    mmmm

    t h A wwwebv

    =

    ==

  • 7/17/2019 Beam Design

    58/84

    Solution# 6cont.8 ore accurate calculation of shear area

    considerin" the 1llet area

    Therefore9 use the bi""est v > $?&F mm )

    2,

    2 3.30083458

    1.3651.369767909.12)]2.10(29.7[)9.12)(3.143(26790

    )2(2

    mm Amm

    t r t bt A A

    webv

    f w f v

    =>=+= ++=

    ++=

  • 7/17/2019 Beam Design

    59/84

    Solution# 6cont.8

    Desi"n chec+

    section is satisfactory.

    kN x

    f AV V

    m

    yv Rd pl Rd c

    549101

    )]3/275(3458[

    )3/(

    3

    0,,

    =

    =

    ==

    0.108.0549

    6.44

    ,

    == Rd c

    Ed

    V V

  • 7/17/2019 Beam Design

    60/84

    Solution# 6cont.8 *endin" oment Resistance of Section 6Clause

    M.).&8o a7imum e7ternal desi"n moment9 !d > (%H.H +No oment resistance for class ( cross-section#

    kNm x

    x

    f W M

    m

    y pl Rd c

    3.283101

    )275)(101030(6

    3

    0,

    =

    =

    =

    kNm M M Rd pl Rd c 3.283,, ==

    0.139.03.2839.109

    ,

    == Rd c

    Ed

    M M

  • 7/17/2019 Beam Design

    61/84

    Solution# 6cont.8 ateral torsional buc+lin" 6 T*8

    o a7imum e7ternal desi"n moment9 !d > (%H.H +Nmo oment buc+lin" resistance

    o

    If the moment alon" the beam is not uniform9 then cris modi1ed by the C( factor.

    1,

    m

    y y LT Rd b

    f W M =

  • 7/17/2019 Beam Design

    62/84

    o Determine the modi1cation factor9 C(small > % +Nm9 lar"e > (%H.H +Nm

    V > small , lar"e > %,(%H.H > % for restrained ends >

    %

    C( > (.FF 0 (.?% V A %.&) V )

    > (.FF 0 (.?%6%8 A %.&)6%8 )

    > (.FFo !lastic critical buc+lin" moment

    5.0

    2

    2

    2

    2

    1 += z

    t cr

    z

    w

    cr

    z cr EI

    GI L I I

    L

    EI C M

  • 7/17/2019 Beam Design

    63/84

    ( dm > (%% mm9 hence ( dm M > (% () mm M

    Non-dimensional slenderness for T*

    kNm

    Nmm x

    mm x xmm N

    mm x xmm N

    xmmmm x

    mm xmm

    mm x xmm

    N

    EI GI L

    I I

    L EI

    C M z

    t cr

    z

    w

    cr

    z cr

    3.884

    1030.884

    )10635()21000(

    )1029()81000()2500(1063510246.0

    )2500(

    )10635()21000(88.1

    6

    5.0

    442

    2

    44

    2

    2

    44

    612

    2

    44

    2

    2

    5.0

    2

    2

    2

    2

    1

    ==

    +

    =

    +=

    566.0103.884

    )/275(1010306

    233

    === Nmm x

    mm N mm x M

    f W

    cr

    y y LT

  • 7/17/2019 Beam Design

    64/84

    o Determine the buc+lin" parameter9 X TImperfection factor9 Y T for T* curves

    h,b > ?%M.M mm,(?$.$ mm > ).F? :)curve Zb[ \ hence9 Y T > %.$?

    o Reduction factor9 ] T for T*

    722.0

    ]566.0)2.0566.0(34.01[5.0])2.0(1[5.0

    2

    2

    =++=

    ++= LT LT LT LT

    855.0566.0722.0722.0

    112222

    =+

    =+

    = LT LT LT

    LT

  • 7/17/2019 Beam Design

    65/84

    oment buc+lin" resistance

    Desi"n chec+ section is satisfactory

    kNm x

    mm N mm x

    f W M

    m

    y y LT Rd b

    18.242100.1

    )/275()101030(855.0 62

    33

    1,

    =

    =

    =

    0.145.018.2429.109

    ,

    == Rd c

    Ed

    M M

    !7ample# Desi"n of

  • 7/17/2019 Beam Design

    66/84

    !7ample# Desi n ofrestrained beam

  • 7/17/2019 Beam Design

    67/84

    l

  • 7/17/2019 Beam Design

    68/84

    Solution#

    l

  • 7/17/2019 Beam Design

    69/84

    Solution# Section properties &$$ 7 )(% 7()) UW*

    h > &??.& mm d > ? M.&mmb > )((.H mm > (&& cm )

    t > (). mm t f > )(.$ mmIy > M9%%% cm? I > $$H% cm ?

    I > ).$) dm ? It > ( F cm ?

    5 pl9y > $)%% cm $ 5 el9 y > ) H% cm $

    d,t > $ .& c,t f > ?.%F! > )(%%%% N,mm ) @ > F(%%% N,mm )

    cr > ?.% mr > (). mm

    S l i 6 8

  • 7/17/2019 Beam Design

    70/84

    Solution# 6cont.8 Desi"n stren"th

    o Table $.(# Steel "rade S) &o TG ?% mm f y > ) & N,mm ) 9 f u > ?$% N,mm )

    Section classi1cationo Refer Table &.) pa"e ?)# > P 6)$&,fy8 > P 6)$&,) &8 >

    %.H)o $ .& G ) > )6%.H)8 > MM.) eb is

    Class (

    o Since =an"e and eb are class (9 the section is classi1edas Class (.

    S l i # 6 8

  • 7/17/2019 Beam Design

    71/84

    Solution# 6cont.8 *endin" oment Resistance of Section 6Clause

    M.).&8o a7imum e7ternal desi"n moment9 !d > F)( +Nmo oment resistance for class ( cross-section#

    kNm x

    x

    f W M m

    y pl

    Rd c

    880101

    )275)(103200(6

    3

    0,

    =

    =

    =

    kNm M M Rd pl Rd c 880,, ==

    0.193.0880821

    ,

    == Rd c

    Ed

    M M

    S l i # 6 8

  • 7/17/2019 Beam Design

    72/84

    Solution# 6cont.8 ateral torsional buc+lin" 6 T*8

    o a7imum e7ternal desi"n moment9 !d > F)( +Nmo oment buc+lin" resistance

    o

    If the moment alon" the beam is not uniform9 then cris modi1ed by the C( factor.

    1,

    m

    y y LT Rd b

    f W M =

  • 7/17/2019 Beam Design

    73/84

    o Determine the modi1cation factor9 C(small > H? +Nm9 lar"e > H? +Nm

    V > small , lar"e > H?, H? > ( for restrained ends

    C( > (.FF 0 (.?% V A %.&) V )

    > (.FF 0 (.?%6(8 A %.&)6(8 )

    > (.%o !lastic critical buc+lin" moment

    5.0

    2

    2

    2

    2

    1 += z

    t cr

    z

    w

    cr

    z cr EI

    GI L I I

    L

    EI C M

  • 7/17/2019 Beam Design

    74/84

    ( dm > (%% mm9 hence ( dm M > (% () mm M

    Non-dimensional slenderness for T*

    kNm

    Nmm x

    mm x xmm N

    mm x xmm

    N

    xmmmm xmm x

    mm

    mm x xmm

    N

    EI GI L

    I I

    L EI

    C M z

    t cr

    z

    w

    cr

    z cr

    46.1397

    1046.1397

    )103390()21000(

    )10178()81000()4000(103390

    10232)4000(

    )103390()21000(0.1

    6

    5.0

    442

    2

    44

    2

    2

    44

    612

    2

    44

    2

    2

    5.0

    2

    2

    2

    2

    1

    ==

    +

    =

    +=

    794.01046.1397

    )/275(1032006

    233

    === Nmm x

    mm N mm x M

    f W

    cr

    y y LT

  • 7/17/2019 Beam Design

    75/84

    o Determine the buc+lin" parameter9 X TImperfection factor9 Y T for T* curves

    h,b > &??.& mm,)((.H mm > ).M :)curve Zb[ \ hence9 Y T > %.$?

    o Reduction factor9 ] T for T*

    916.0

    ]794.0)2.0794.0(34.01[5.0

    ])2.0(1[5.02

    2

    =++=

    ++= LT LT LT LT

    728.0794.0916.0916.0

    112222

    =+

    =+

    = LT LT LT

    LT

  • 7/17/2019 Beam Design

    76/84

    oment buc+lin" resistance

    Desi"n chec+ section is not satisfactory9

    hence9 lar"er section should be used.

    kNm x mm N mm x

    f W M

    m

    y y LT Rd b

    4.640100.1 )/275()103200(728.0 6

    2

    33

    1,

    =

    =

    =

    0.128.14.640

    821

    ,

    >== Rd c

    Ed

    M M

    D i

  • 7/17/2019 Beam Design

    77/84

    De=ection beam may not fail due to e7cessive de=ection9

    ho ever9 it is necessary to ensure that de=ections arenot e7cessive under unfactored imposed loadin" toprevent#

    o Dama"e to various architectural features such as interior alls9

    partitions9 ceilin"s and e7terior claddin"o Severe crac+in" in brittle 1nishes such as bric+ all ith plaster

    1nishedo Dama"e to non-structural element such as "lass fa^ade9 ceilin"s9

    partitions and other fra"ile elements.

    Eertical de=ection limito The follo in" table "ives su""ested limits for calculated vertical

    de=ections of certain members under the characteristic loadcombination due to variable loads and should not includepermanent loads.

  • 7/17/2019 Beam Design

    78/84

    Desi"nsituation

    Eertical De=ectionlimit

  • 7/17/2019 Beam Design

    79/84

    a7imum Eertical De=ection due to e7ternal loado The follo in" table sho s the formula to calculate

    vertical de=ection at mid-span of a simply supportedbeam ith di erent loadin" types.

    o The formula can be used to calculate de=ection of arestrained or unrestrained beam

  • 7/17/2019 Beam Design

    80/84

    !7 l #

  • 7/17/2019 Beam Design

    81/84

    !7ample# Chec+ de=ection of beam sho n in 1"ure belo

    S l ti #

  • 7/17/2019 Beam Design

    82/84

    Solution# De=ection is chec+ed under serviceability. Therfore9 only unfactored imposed load 6(.%B+8

    are considered in calculatin" the de=ection. Deadloads are not included

    *eam ?%M 7 ( F 7 M% U* Clause $.).M !C$#

    o odulus of !lasticity9 ! > )(% %%% N,mm )

    )( M%% cm ?

    S l ti #6 t8

  • 7/17/2019 Beam Design

    83/84

    Solution#6con.t8 a7imum de=ection due to unfactored imposed loads

    If the beam is carryin" all ith plaster 1nish or anyother brittle 1nish9 de=ection limit9

    choose lar"er beam section

    mm

    mmmmmm xmm N

    x

    mm xmm N

    mmmm N EI

    wL EI

    wLc

    2.28

    8.134.14)1021600)(/210000(48

    )10000(1030

    )1021600)(/210000(384

    )10000)(/5(548384

    5

    442

    33

    442

    4

    34

    =+=

    +=

    +=

    mmmm L

    8.27360

    10000360lim

    ===

    mmmmc 8.272.28 lim =>=

  • 7/17/2019 Beam Design

    84/84

    To acquire knowledge, one must study; but to acquire wisdom, onemust observe .

    TQ NW /OU