beam column base plate design[1]

Upload: parthivmechmind1987

Post on 03-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Beam Column Base Plate Design[1]

    1/10

    Beam-Column Base Plate DesignLRFD Method

    ENGINEERING J OURNAL /FIRS T QUARTER / 1999

    Richard M. Drake is Principal Structural Engineer, Fluor

    Daniel, Irvine, CA.

    Sharon J. Elkin is Structural Engineer, Fluor Daniel, Irvine,

    CA.

    29

    1

    2

    3

    4

    4

    INTRODUCTION

    RICHARD M. DRAKE and SHARON J. ELKIN

    IB

    N

    b

    d

    f

    m

    N . dm

    nM

    P V

    B . bn

    x

    tdx f

    t

    Fig. 1. Base Plate Design Variables

    o o o o

    o oo o o

    oo o o

    o o oo o o o

    oo o o o

    o oo

    o o o oo o o

    o o oo o o

    oo o o o o

    o o oo o o o o

    o o

    o

    o

    o

    o o oo o o o

    o o o

    o o o

    o

    o o

    o o

    o

    o o o o o o o

    o o o

    o o o

    o o

    o o

    o o

    o

    o o

    o o o o

    o o

    o o o o

    o o o o

    o o o

    o o o o

    o o

    o o o o

    where:

    t is c mm n design practice t design a building r struc-base plate width perpendicular t m ment direc-

    ture beam-c lumn with a m ment-resisting r fixed base.ti n, in.

    Theref re the base plate and anch r r ds must be capablebase plate length parallel t m ment directi n, in.

    f transferring shear l ads, axial l ads, and bending m -c lumn flange width, in.

    ments t the supp rting f undati n.verall c lumn depth, in.

    Typically, these beam-c lumn base plates have beenanch r r d distance fr m c lumn and base plate

    designed and/ r analyzed by using service l ads r bycenterline parallel t m ment directi n, in.

    appr ximating the stress relati nship assuming the c m-base plate bearing interface cantilever directi n

    pressi n bearing l cati n. The auth rs present an ther parallel t m ment directi n, in.appr ach, using fact red l ads directlyin a meth d c nsis-

    tent with the equati ns f static equilibrium and the LRFD 0 95(1)Specificati n.

    2The m ment-resisting base plate must have design

    base plate bearing interface cantilever perpendic-strengths in excess f the required strengths, flexural ( ),ular t m ment directi n, in.axial ( ), and shear ( ) f r all l ad c mbinati ns.

    A typical beam-c lumn base plate ge metry is sh wn0 80in Figure 1, which is c nsistent with that sh wn n page

    (2)211-61 f the LRFD Manual.

    base plate tensi n interface cantilever parallel t

    m ment directi n, in.

    (3)2 2

    c lumn flange thickness, in.

    The pr gressi n f beam-c lumn l adings, in rder f in-

    creasing m ments, is presented in f ur l ad cases.

    Case A is a l ad case with axial c mpressi n and shear,

    with ut bending m ment. This case results in a full length

    unif rm pressure distributi n between the base plate and

    the supp rting c ncrete. This case is summarized in the

    LRFD Manual beginning n page 11-54 and is summa-

    rized herein f r c mpleteness.

    Case B ev lves fr m Case A by the additi n f a smallbending m ment. The m ment changes the full length

    unif rm pressure distributi n t a partial length unif rm

    pressure distributi n, but is n t large en ugh t cause sepa-

    rati n between the base plate and the supp rting c ncrete.

    Case C ev lves fr m Case B by the additi n f a spe-

    cific bending m ment such that the unif rm pressure dis-

    tributi n is the smallest p ssible length with ut separati n

    f

    u

    u u

    f

    f

    f

  • 8/11/2019 Beam Column Base Plate Design[1]

    2/10

    ENGINEERING J OURNAL /FIRS T QUARTER / 199930

    5

    5

    CASE A: NO MOMENTNO UPLIFT

    CASE B: SMALL MOMENT WITHOUT UPLIFT

    M P

    e

    MM

    ePP

    P NM

    Ne

    Y N e

    N Ye

    Y

    Fig. 2. No Moment - No Uplift

    Fig. 3. Small Moment Without Uplift

    o o o

    o o o o o o

    o o o o o

    o o o o o

    o o o o

    o o o o o o

    o o o

    oo o o oo o o

    oo

    o oo o

    o o o o oo o o

    o o oo o o o o

    o o

    o o o o o o o

    o o o o o o o

    o o o o o o o o

    o o o o o o

    o o o o o

    o o

    o o o o o

    o o o o o o

    o o o o

    o o o

    o o

    o o

    o o o

    o o o

    o

    between the base plate and the supp rting c ncrete. This 1. Assume that the resultant c mpressive bearing stress

    c rresp nds t the c mm n elastic limit where any addi- is directly under the c lumn flange.

    ti nal m ment w uld initiate separati n between the base 2. Assume a linear strain distributi n such that the an-

    plate and the supp rting c ncrete. ch r r d strain is dependent n the bearing area

    Case D ev lves fr m Case C by the additi n f suffi- strain.

    cient bending m ment t require anch r r ds t prevent 3. Assume independent strain distributi n.

    separati n between the base plate and the supp rting c n-

    All three meth ds summarized by AISC assume a lin-crete. This is a c mm n situati n f r fixed base platesear triangular distributi n f the resultant c mpressive

    in structural ffice practice. That is, a rigid frame with abearing stress. This implies that the beam-c lumn base

    fixed base plate will usually attract en ugh bending m -plate has n additi nal capacity after the extreme fiber

    ment t require anch r r ds t prevent uplift f the basereaches the c ncrete bearing limit state. The auth rs pr -

    plate fr m the supp rting c ncrete.p se that a unif rm distributi n f the resultant c mpres-

    sive bearing stress is m re appr priate when utilizing

    LRFD.If there is n bending m ment r axial tensi n at the base Case B, a beam-c lumn with a small m ment and n

    f a beam-c lumn, the anch r r ds resist shear l ads but uplift at the base plate elevati n, is sh wn in Figure 3.are n t required t prevent uplift r separati n f the base The m ment is expressed as l cated at s me ec-plate fr m the f undati n. Case A, a beam-c lumn with centricity ( ) fr m the beam-c lumn neutral axis.n m ment r uplift at the base plate elevati n, is sh wn

    in Figure 2.

    0

    (4)0

    06If the magnitude f the bending m ment is small relative

    t the magnitude f the axial l ad, the c lumn anch r0r ds are n t required t restrain uplift r separati n f 6

    the base plate fr m the f undati n. In service, they nly2resist shear. They are als necessary f r the stability f

    the structure during c nstructi n.(5)AISC addresses three different variati ns f the elastic

    2meth d when using an ultimate strength appr ach f r the

    where:design f beam-c lumn base plates subjected t bending

    bearing length, in.m ment.

    u u

    u

    uu

    u

    uu

  • 8/11/2019 Beam Column Base Plate Design[1]

    3/10

    ENGINEERING J OURNAL /FIRS T QUARTER / 1999 31

    3

    1

    CASE C: MAXIMUM MOMENT WITHOUT

    UPLIFT

    CONCRETE BEARING LIMIT STATE

    LRFD Specification Requirements

    CASE D: MOMENT WITH UPLIFT

    N

    Me

    P

    P N M

    M Ne e

    P

    P NM

    PNe

    NY N e N

    Y N

    P P

    N

    P . f A

    Fig. 5. Moment With Uplift

    Fig. 4. Maximum Moment Without Uplift

    o o o

    o o

    o o oo o

    o oo o o

    o o o oo o

    o

    o o o

    o o o

    o o o

    o o

    o o o

    o o

    o o

    o o o o

    o o o

    o

    o o

    o

    o oo o o

    o o o

    shear. Case D, a beam-c lumn with sufficient m ment t

    cause uplift at the base plate elevati n, is sh wn in Figure

    5. This is the m st c mm n case in design practice, espe-The maximum m ment with ut base plate uplift is as-cially f r rigid frames designed t resist lateral earthquakesumed t ccur when the c ncrete bearing limit state is

    r wind l adings n the building r structure.reached ver a bearing area c ncentric with the applied

    l ad at its maximum eccentricity. If the eccentricity ex-

    ceeds , the tendency f r uplift f the plate is assumed t6ccur. This assumes a linear pressure distributi n in acc r-

    dance with elastic the ry and n tensi n capacity between

    the base plate and supp rting c ncrete surfaces. Case C, a

    beam-c lumn with the maximum m ment with ut uplift

    at the base plate elevati n, is sh wn in Figure 4.

    (4)

    06

    (4) (7)6

    06

    T satisfy static equilibrium at the c ncrete bearing limit

    state, the centr id f the c ncrete bearing reacti n ( )

    must be aligned with the line- f-acti n f the applied axial6l ad.

    2 26

    2 The LRFD Specificati n defines the c ncrete bearing(6)3 limit state in Secti n J9.

    (8)

    When the m ment at the beam-c lumn base plate exceeds On the full area f a c ncrete supp rt:

    , anch r r ds are designed t resist uplift as well as0 85 (LRFD J9-1)6

    u

    u

    u u

    u

    u

    uu

    p

    u c p

    p c

  • 8/11/2019 Beam Column Base Plate Design[1]

    4/10

    ENGINEERING J OURNAL /FIRS T QUARTER / 199932

    12

    11

    2 2

    1 1

    12

    2 1

    12

    12

    1

    22

    1

    22

    1

    2

    1

    2

    2

    1

    12

    2 1

    1

    Case B: Small Moment Without Uplift

    Practical Design ProcedureRequired Area

    Case C: Maximum Moment Without Uplift

    Case D: Moment with Uplift

    Case A: No Moment - No Uplift

    A BYAP . f A

    A Y N e

    A AP . . f BY . . f BY

    A A

    P qY

    P q N ef

    A

    A q A

    A y

    y e

    e P

    e

    N

    P MP P

    M P eN

    eq

    A BYA

    q . f B . f BA Y N

    Aq . . f B . . f B A

    A P . . f BY . . f BY BY

    Aq . f B . f B AA P . f B N . f B N

    B N

    P . qN A

    NA M P e P

    M . qN

    A

    A

    P M f B f

    A BNA

    P . f BY qY A A

    P . . f BN . . f BN A M

    ePP qN

    o o o

    o o o

    o o

    o o o o o o oo o o o

    o

    o o o o o o o

    o o o o o

    o o o

    o o

    o o o

    o o o o o

    o

    o

    o o

    o o o

    o o o o o

    o o o o

    o o o

    o o o o

    o o o o o

    o o o

    o o o o o

    o o

    On less than the full area f a c ncrete supp rt:

    0 85 (LRFD J9-2)( 2 )

    2 (0 60)(0 85) (0 60)(0 85) (2)

    where:

    c mpressi n resistance fact r = 0.60 ( 2 ) (12)specified c ncrete c mpressive strength, ksi

    N te that equati n 12 is n t a cl sed f rm s luti n be-area f steel c ncentrically bearing n a c ncretecause;supp rt, in.

    maximum area f the p rti n f the supp rting is a functi n f ,surface that is ge metrically similar t and c n- is a functi n f ,centric with the l aded area, in. is a functi n f , and

    is a functi n f .

    H wever, if is defined as s me fixed distance r asSelect base plate dimensi ns such that: s me percentage f , the c rresp nding maximum values

    f and can be determined directly.(8)

    And n ting that:

    (9) As previ usly stated, Case C is the situati n where uplift

    is imminent and .F r c nvenience, define a new variable, , the c ncrete6

    bearing strength per unit width (K/in).

    0 85 0 85 (2) 2(6)

    3

    (0 60)(0 85) (0 60)(0 85) (2)(0 60)(0 85) (0 60)(0 85) (2)

    0 51 1 02 (10) 2 20 51 1 02

    23 3F r m st c lumn base plates bearing directly n a c n- 3crete f undati n, the c ncrete dimensi n is much greater

    than the base plate dimensi n, and it is reas nable t 0 667 (13)

    assume that the rati 2. F r m st c lumn( )

    6base plates bearing n gr ut r a c ncrete pier, the c n-

    crete (gr ut) dimensi n is equal t the base plate dimen-0 111 (14)si n, and it is reas nable t c nservatively take the rati

    1.

    Given the f ll wing:, , , , , inches & kips

    0 85 (15)(0 60)(0 85) (0 60)(0 85) (2)

    (4)(11)

    p c

    u c c

    u

    c u

    c

    u

    u uu c p

    u u

    c cc c

    c cu c c

    c cu c c

    u

    u u u

    u

    u u c c

    c p c c

    u c cu

    uu

  • 8/11/2019 Beam Column Base Plate Design[1]

    5/10

    ENGINEERING J OURNAL /FIRS T QUARTER / 1999 33

    3

    vertical

    2

    2

    2

    2

    2

    2

    2 2 2

    2

    2

    ANCHOR ROD SHEAR AND TENSION LIMIT

    STATES

    LRFD Specification Requirements

    Required Strength

    Practical Design ProcedureRod Sizes

    T Y

    F

    T P P V F A

    T qY P T F A

    T F . f

    N YP f P e f

    F . fN Y

    qY f P e f

    VqY N qY .qY f P e f

    F

    Aq N TY q f Y P e f

    F

    f

    VY f

    A

    aY bY c

    Fb b ac

    Y

    a

    Fq f q f P f e

    Y

    f

    N N P f e VY f f fq A

    T

    Y

    T qY P

    Y

    N Y VqY f P e f V . F A

    o o o o o o

    o o o o

    o o o

    o oo o o o

    o o

    o oo o o o

    o o o

    o o o

    o o

    o o o

    o

    o o o o

    o o

    o

    o o

    o o o

    o

    o o

    o o o

    o

    o o

    o o o

    o o oo o o

    o o o o

    o

    o o

    o

    Tw equati ns will be needed t s lve f r the tw un-

    kn wns, the required tensile strength f the anch r r ds,

    , and bearing length, .

    T maintain static equilibrium, the summati n f verti-

    cal f rce must equal zer : The LRFD Specificati n defines the anch r r d (b lts)

    shear and tensi n limit states in Secti ns J3.6 and J3.7,0

    and Tables J3.2 and J3.5.0 (21)

    (16) (22)

    F r ASTM A307 b lts:T maintainstatic equilibrium, the summati n f m ments

    taken ab ut the f rce must equal zer : 59 1 9 45 (Table J3.5)

    F r ASTM A325 b lts, threads excluded fr m the shear( ) 0 plane:2 2

    117 1 5 90 (Table J3.5)

    ( ) 0 (17) where:2 2

    required anch r r d shear strength, kipsanch r r d resistance fact r 0 75( ) 0

    n minal shear strength, ksi2 2anch r r d n minal (gr ss) area, in.

    required anch r r d tensile strength, kips( ) 0 (18)2 2 n minal tensile strength, ksi

    anch r r d shear stress, ksiThis is in the f rm f a classic quadratic equati n, with

    unkn wn . (23)

    0 (19) F r A307 b lts:

    24 ksi (Table J3.2)4

    F r A325 b lts when threads are excluded fr m the shear2 plane:

    60 ksi (Table J3.2)4 [ ( )]

    2The shear stress ( ) is calculated c nsidering the required

    shear strength f the c lumn base.

    2 ( )(20) (24)2 2

    where:T determine the ther unkn wn, , substitute the value

    number f r ds sharing shear l ad, unitlessf r int the equati n:

    N te that all the base plate anch r r ds are c nsidered(16)effective in sharing the shear l ad.

    As a check, back substitute the value f r int the

    equati n:

    ( ) 0 (17) 0 75 (25)2 2

    u

    u u c p vub b

    u u tub b

    u t v

    c p u

    t v

    u

    ub

    uv

    b

    ubu

    t

    v

    ubv

    b

    v

    vqN N

    u

    q

    v

    uub

    vv b

    u

    v

    u u

    uu vub b

    v

  • 8/11/2019 Beam Column Base Plate Design[1]

    6/10

    ENGINEERING J OURNAL /FIRS TQU ARTER /199934

    2

    2

    8 9

    3 6

    2

    27

    3

    2

    BASE PLATE FLEXURAL YIELDING LIMIT

    STATE

    LRFD Specification Requirements

    Required StrengthTension Interface

    Required StrengthBearing InterfaceNominal Strength

    VF .

    A mM f

    TT . F A

    nM f

    f

    dbn

    nM f

    c m n n

    cM f

    n

    Fc

    n

    M M

    M M

    Mx

    MT xM

    M B

    m n f tM M F

    P M

    o o o

    o o o

    o o o o

    o o o o o o

    o o o oo

    o o o o o

    o o o o o

    o o o

    o o o o o o o o o o

    o o o

    o o

    o o o

    o o o

    o o o o o

    o o o o

    o o o

    o o oo o

    o o

    o o o o

    o o oo o

    o o

    o o o o

    o o oo

    o oo

    o o o o o o o

    o o o o

    o

    o o o o

    o

    oo o

    o

    o

    o

    o oo

    o o

    o

    On secti n parallel t c lumn flanges:

    59 1 9 45 (26)

    (29)2

    0 75 (27)On secti n parallel t c lumn web:

    where:

    (30)number f r ds sharing tensi n l ad, unitless 2

    N te that all f the base plate anch r r ds are n t c n- where:sidered effective in sharing the tensi n l ad. F r m st base

    c ncrete bearing stress, ksiplate designs, nly half f the anch r r ds are required t

    resist tensi n f r a given l ad c mbinati n. The bearing pressure may cause bending in the base plateThe embedment, edge distances, and verlapping shear in thearea between theflanges, especiallyf r lightly l aded

    c nes f the anch r r ds int the c ncrete mustbe checked c lumns. Yield line the ry is used t analyze this c n-t assure that the design tensile strength als exceeds the siderati n.required tensile strength. This check sh uld be in acc r-

    dance with the appr priate c ncrete design specificati n, (31)4and is bey nd the sc pe f this paper.

    Itsh uldbe n tedthatbase plateh les are ften versized ( )(32)withrespectt the anch r r ds. Inthiscase, s meslippage

    2may be necessary bef re the anch r r d shear limit state

    is reached. F r large shear l ads, the designer may ch se Let the larger f , , and :t investigate alternate shear transfer limit states inv lving

    pretensi ned b lts, fricti n and/ r shear lugs.(33)

    2

    where:

    yield line the ry cantilever distance fr m c lumnThe entire base plate cr ss-secti n can reach the specifiedweb r c lumn flange, in.yield stress ( ).largest base plate cantilever, in.

    N te that f r m st base plate ge metries, the cantileverdimensi n ( ) is very small and c rner bending f the

    TheLRFDSpecificati n definesthe flexural yieldinglimitbase plate is neglected. When the dimensi n is large t

    state in Secti n F1.acc mm date m re anch r r ds r m re bearing surface,

    c rner bending plate m ments sh uld be c nsidered and(28)

    used in the base plate thickness calculati ns.

    (LRFD F1-1)

    where:The tensi n n the anch r r ds will cause bending in the

    required base plate flexural strength, in-Kbase plate f r the cantilever distance .

    flexural resistance fact r = 0.90F r a unit width f base plate:

    n minal flexural strength, in-K

    plastic bending m ment, in-K(34)

    The bearing pressure between the c ncrete and the baseF r a unit width f base plate:

    plate will cause bending in the base plate f r the cantilever

    distances and . The bearing stress, (ksi), is calculated(35)c nsidering the required axial and flexural strength f the

    4c lumn base, and respectively.

    ubt

    b

    ppl

    utub b

    t

    pplt

    p

    ,

    f

    ,

    ppl

    ppl

    y

    nbpl

    n p

    pl

    b

    n

    uppl

    p pn p y

    u u

  • 8/11/2019 Beam Column Base Plate Design[1]

    7/10

    ENGINEERING J OURNAL /FIRST QUARTER /1999 35

    ( )

    22

    ( )

    ( )

    2

    ( )

    2

    ( )

    ( )

    ( )

    23

    ( )

    Practical Design ProcedureBearing Interface Case D: Moment with Uplift

    Base Plate Thickness

    Practical Design ProcedureTension Interface Base

    Plate Thickness

    DESIGN EXAMPLE 1

    Case A: No MomentNo Uplift

    Case B: Small Moment Without Uplift

    Case C: Maximum Moment Without Uplift

    Pf

    BYt

    M MT x

    t .

    M M BF

    t Y mcf . F

    Pt . c

    BY Ff

    t . cF Y m

    P mt .

    BF

    M M

    tT x. F

    B

    T xt .

    BF

    Pf

    BN

    Pt . c

    BN F

    P Pf

    BY B N e

    Pt . c

    B N e F

    P P . Pf

    BY BNB Nm .

    . Pt . c x .

    BN F

    Fig. 6. Design Example 1

    Required:

    Solution:

    o o

    o oo

    o o

    o o

    o o

    o

    (44)Setting the design strength equal t the n minal strength

    and s lving f r the required plate thickness ( ):F r all cases:

    (28)

    2 11 (45)

    (LRFD F1-1)

    If :0 90

    2 4

    1 49 (46)

    1 49 (36)If :

    2 11 (47)

    Setting the design strength equal t the n minal strength

    and s lving f r the required plate thickness:

    (28)

    0 904

    2 11 (37)

    (38)

    1 49 (39)

    (40)( 2 )

    1 49 (41) a) Design anch r r ds( 2 )b) Determine base plate thickness

    1. Dimensi ns:1 5(42)

    22.0 in. 0.95(12.12 in.)5 24 in. (1)

    2

    1 5 16.0 in. 12.12 in. 0.605 in.1 49 (43) 2 24 in. (3)

    2 2 2

    up

    p

    nbplu

    p req

    n p y

    pp y

    up req

    yp

    p reqy

    Yu

    p reqy

    pbpl

    puy

    up req

    y

    up

    up req

    y

    u up

    up req

    y

    u u up

    up req

    y

  • 8/11/2019 Beam Column Base Plate Design[1]

    8/10

    ENGINEERING J OURNAL /FIRS TQU ARTER /199936

    2

    34

    2

    2

    2

    5

    ( )

    2.27 in.2

    ( )

    Select: Base Plate 2 20 1-10

    o.k.

    DESIGN EXAMPLE 2

    o.k.

    o.k.

    Select: 4 - 3/4 in. Diameter Anchor Rods

    e .

    N. . e, Case D

    q .

    q .

    Nf .

    f e . .

    .Y . .

    .

    . . .

    T .

    .V

    F A .

    V

    .

    F . .

    T

    F A .

    T

    Y . . m, n nP

    .Mt .

    m .

    t .

    x .controls

    Fig. 7. Design Example 2

    Required:

    Solution:

    o o o o

    o o

    o o o

    o

    o o o

    o o o

    o o

    o o o

    o

    o

    o

    2. Eccentricity:

    6. Check bearing n c ncrete bel w gr ut layer120 ft-K(12 in./ft)11 08 in. (4) The gr ut is 2 in. thick. Assume that the c ncrete130K

    extends at least 2 in. bey nd gr ut in each directi n.22.0 in.

    3 67 in. 11 08 in. (7)6 6 (24 in.)(6.67 in.)

    (0 51)(4 ksi)(20.0 in.) (10)

    (20 in.)(2.27 in.)3. C ncrete bearing:76.6 K/in. 61.2 K/in. used in designAssume the bearing n gr ut area will g vern.

    (0 51)(6 ksi)(20.0 in.) 1 61.2 K/in. (10)

    16.0 in. 22.0 in.19 0 in.

    2 2 2

    16.0 in.11 08 in. 19 08 in.

    2

    2(130)(19 08)19 0 (19 0) (20)

    61 2

    19 0 16 73 2 27 in.61 2 K/in.(2.27 in.) 130 K 8.92 K (16)

    4. Anch r r d shear and tensi n:

    Check 4 in. dia. anch r r ds

    30 0 K7.50 K (25)

    4

    0 75(24 ksi)(0.4418 in. )

    7.96 K 7.50 K

    7 50 K

    59 1 9 26 7 ksi (26)0.4418 in.

    8.92 K4.46 K (27)

    2

    a) Determine required tensile strength0 75(26.7 ksi)(0.4418 in. )b) Determine base plate thickness

    8.85 4.46 K

    N te that this pr blem is Example 16 fr m the AISC

    C lumn Base Plate Steel Design Guide Series.5. Base plate flexural yielding:1. Required strength: (LRFD A4-2)

    2 27 in. 5 24 in. and n t applicable1.2(21K) 1.6(39K) 87.6K

    (8 92 K)(2.24 in.)1.2(171 in.-K) 1.6(309 in.-K) 700 in.-K2 11 0.35 in. (45)

    (20.0 in.)(36 ksi)2. Dimensi ns:

    14.0 in. 0.95(7.995 in.)3 20 in. (1)(130 K) 5.24 in. 2

    2 11 (47)(20.0 in.)(36 ksi) 11.0 in. 7.995 in. 0.435 in.

    1 72 (3)2 2 21.82 in.

    u

    ub

    v b

    ub

    t

    ub

    t b

    ub

    u

    up req

    p req

  • 8/11/2019 Beam Column Base Plate Design[1]

    9/10

    ENGINEERING J OURNAL /FIRST QUARTER /1999 37

    3

    2

    5

    ( )

    2.45 in.2

    ( )

    14

    5

    14

    14

    12

    SUMMARY AND CONCLUSIONS

    Required Tensile Strength 17.3 KREFERENCES

    Select: Base Plate 1 14 1 -2

    NOMENCLATURE

    e.

    N. . e, Case D

    q .

    Nf .

    f e .

    . .Y . .

    .

    . . .

    T .

    Design Of Welded Structures

    Y . . m, n nStructural Steel Design, LRFD Approach

    .t . .

    . Man-t .

    ual Of Steel Construction, Load & Resistance Factor

    Designcontrols Col-

    umn Base Plates

    Engineering Journal,

    Design.Of Anchor Bolts In Petrochemical Facilities

    .

    Engineering Journal

    .

    Engineering Journal

    .

    A

    o o o o

    o o o o o

    o o o

    o o o

    o o o o o

    o o o

    o o

    o o

    o o o o

    o o

    o o o

    o o

    o o o o o o

    o o o

    o o

    o o

    o o o

    o o

    o

    o

    o

    o o o

    o o o o

    o o o

    o o

    o o o

    o oo o o o

    o o o o

    o oo o

    o

    o o o o o o o o

    o oo o o o o

    o

    o o o o o o

    o o o o o

    o o

    o o o o

    o o o oo o o

    o

    3. Eccentricity: f r the design f the anch r r ds is slightly smaller

    because the centr id f the c mpressi n reacti n is700 in.-K7.99 in. (4) a greater distance fr m the anch r r ds.87 6 K

    14.0 in.2 33 in. 7 99 in. (7)

    6 6 A meth d l gy has been presented that summarizes the4. C ncrete bearing: design f beam-c lumn base plates and anch r r ds using

    fact red l ads directly in a manner c nsistent with the(0 51)(3 ksi)(14 in.) 4 42.8 K/in. (10) equati ns f static equilibrium and the LRFD Specifi-

    cati n. Tw design examples have been presented. A11.0 in. 14.0 in.12 5 in. direct c mparis n was made with a pr blem s lved by2 2 2

    an ther AISC meth d.11.0 in.

    The step-by-step meth d l gy presented will be benefi-7 99 in. 13.49 in.2 cial in a structural design ffice, all wing the design prac-

    titi ner t use the same fact red l ads f r the design f the2(87 6)(13 49)

    steel structure, base plate, and anch r r ds. In additi n the12 5 ( 12 5) (20)42 8 unif rm rectangular pressure distributi n will be easier

    t design and pr gram thanthe linear triangular pressure12 5 10 05 2 45 in.distributi n utilized in all wable stress design and ther

    42 8 K/in.(2.45 in.) 87.6 K 17.3 K (16)

    published LRFD f rmulati ns.

    5. Base plate flexural yielding: 1. Bl dgett, Omer W., ,

    1966.2 45 in. 3 20 in. and n t applicable2. Smith, J. C., ,

    2nd Editi n, 1996.(17 3 K)(1.72 in.)2 11 0 51 in. (45) 3. American Institute f Steel C nstructi n (AISC),(14.0 in.)(36 ksi)

    L ad and Resistance Fact r Design Specificati n f r

    Structural Steel Buildings, December 1, 1993.(87 6 K) 3.20 in. 4. AmericanInstitute f Steel C nstructi n (AISC),

    2 11 (47)(14.0 in.)(36 ksi)

    , 2nd Editi n, V lume 2, 1994.1.24 in. 5. American Institute f Steel C nstructi n (AISC),

    , Steel Design Guide Series, 1990./6. Shipp, J.G., and Haninger, E.R., Design Of Headed

    6. C mparis n:Anch r B lts, V l 20, N . 2,

    AISC s luti n f r this pr blem: (2nd Qtr.), pp 58-69, AISC, 1983.

    7. American S ciety f Civil Engineers (ASCE),Required Anch r R d Tensile Strength 21 2 K,p p 4 - 3 t

    Select: Base Plate 1 / 14 1 -2 4-8, 1997.

    Length f triangular c mpressi n bl ck 5 1 in. 8. Th rnt n, W. A., Design f Small Base plates f r

    Wide-Flange C lumns, , V l 27,Auth rs s luti n f r this pr blem:

    N . 3, (3rd Qtr.), pp 108-110, AISC, 1990a.

    Required Anch r R d Tensile Strength 17 3 K 9. Th rnt n, W. A., Design f Small Base plates f rWide-Flange C lumns - A C ncatenati n fMeth ds,Select: Base Plate 1 / 14 1 -2

    , V l 27, N . 4,(4thQtr.), pp108-Length f rectangular c mpressi n bl ck 110, AISC, 1990b.2 45 in.

    Remarks:

    area f steelc ncentricallybearing n a c ncreteThe auth rs s luti n yields the identical basesupp rt, in.plate size and thickness. Required tensile strength

    u

    p req

    p req

  • 8/11/2019 Beam Column Base Plate Design[1]

    10/10

    ENGINEERING J OURNAL /FIRS TQU ARTER /199938

    2

    2

    2

    A d

    e

    f

    A

    B f

    f

    F f

    F mF

    M n

    M

    M n

    M

    qN

    tP

    tP

    xT

    T

    V

    V

    Y

    b

    c

    o o o o o o o

    o o o

    o o o o o

    o o o o o o o

    o o o o

    o o

    o o o

    o

    o o o

    o

    o o o o

    o o o

    o o

    o o oo o o

    oo o o o

    o o

    o oo o

    o o o

    oo o

    o o o

    o o o oo

    o o o

    maximum area f the p rti n f the supp rting c lumn v erall depth, in.

    surface that is ge metrically similar t and c n- axial eccentricity, in.

    centric with the l aded area, in. anch r r d distance fr m c lumn and base plate

    anch r r d n minal (gr ss) area, in. centerline parallel t m ment directi n, in.

    baseplate width perpendiculart m ment direc- specified c ncrete c mpressive strength, ksi

    ti n, in. c ncrete bearing stress, ksi

    n minal tensile strength, ksi anch r r d shear stress, ksi

    n minal shear strength, ksi base plate bearing interface cantilever parallelspecified minimum yield stress, ksi t m ment directi n, in.

    n minal flexural strength, in.-K base plate bearing interface cantilever perpen-

    plastic bending m ment, in.-K dicular t m ment directi n, in.

    required base plate flexural strength, in.-K yieldlinethe rycantileverdistancefr mc lumn

    web r c lumn flange, in.required flexural strength, in.-K

    c ncrete ( r gr ut) bearing strength per unitbase plate length parallel t m ment directi n,

    width, kips/in.in.

    c lumn flange thickness, in.n minal bearing l ad n c ncrete, kips

    base plate thickness, in.required axial strength, kips

    base plate tensi n interface cantilever parallel trequired tensile strength, kips

    m ment directi n, in.required anch r r d tensile strength, kips

    anch r r d resistance fact r = 0.75required shear strength, kips

    flexural resistance fact r = 0.90required anch r r d shear strength, kips

    c mpressi n resistance fact r = 0.60bearing length, in.

    number f r ds sharing tensi n l ad, unitlessc lumn flange width, in.

    number f r ds sharing shear l ad, unitlesslargest base plate cantilever, in.

    b

    c

    p

    t v

    v

    y

    n

    p

    pl

    u

    p f

    pu

    u

    ub

    u

    bub

    c

    tf

    v