bbm402-lecture 20: lp duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/lectures/... ·...

54

Upload: dangquynh

Post on 13-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

BBM402-Lecture 20: LP Duality

Lecturer: Lale Özkahya

Resources for the presentation:https://courses.engr.illinois.edu/cs473/fa2016/lectures.html

Page 2: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

An easy LP?

max cx subject to Ax = b

which is compact form for

max c1x1 + c2x2 + . . . + cnxn

ai1x1 + ai2x2 + . . . + ainxn = bi 1 ≤ i ≤ m

Question: Is this a geneal LP problem or is it some how easy?

Chandra & Ruta (UIUC) CS473 3 Fall 2016 3 / 39

Page 3: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

An easy LP?

max cx subject to Ax = b

Basically reduces to linear system solving. Three cases for Ax = b.The system Ax = b is infeasible, that is, no solutionThe system Ax = b has a unique solution x∗ whenrank([A b]) = n (full rank). Optimum solution value is cx∗

The system Ax = b has infinite solutions whenrank([A b]) < n. There all vectors of the form x∗ + y arefeasible where y is null-space(A) = {y | Ay = 0}. Let d bedimension of null-space(A) and let e1, e2, . . . , ed be anorthonormal basis. Thencx = cx∗ + cy = cx∗ + c(λ1e1 + λ2e2 + . . . + λded . Ifcei 6= 0 for any i then optimum solution value is unbounded.Otherwise cx∗.

Chandra & Ruta (UIUC) CS473 4 Fall 2016 4 / 39

Page 4: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

LP Canonical Forms

Two basic canonical forms:

max cx,Ax = b, x ≥ 0

max cx,Ax ≤ b, x ≥ 0

What makes LP non-trivial and different from linear system solving isthe additional non-negativity constraint on variables.

Chandra & Ruta (UIUC) CS473 5 Fall 2016 5 / 39

Page 5: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Part I

Derivation and Definition of Dual LP

Chandra & Ruta (UIUC) CS473 6 Fall 2016 6 / 39

Page 6: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Feasible Solutions and Lower Bounds

Consider the program

maximize 4x1+ 2x2

subject to x1+ 3x2 ≤ 52x1− 4x2 ≤ 10x1+ x2 ≤ 7

x1 ≤ 5

1 (0, 1) satisfies all the constraints and gives value 2 for theobjective function.

2 Thus, optimal value σ∗ is at least 4.

3 (2, 0) also feasible, and gives a better bound of 8.

4 How good is 8 when compared with σ∗?

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 39

Page 7: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Feasible Solutions and Lower Bounds

Consider the program

maximize 4x1+ 2x2

subject to x1+ 3x2 ≤ 52x1− 4x2 ≤ 10x1+ x2 ≤ 7

x1 ≤ 5

1 (0, 1) satisfies all the constraints and gives value 2 for theobjective function.

2 Thus, optimal value σ∗ is at least 4.

3 (2, 0) also feasible, and gives a better bound of 8.

4 How good is 8 when compared with σ∗?

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 39

Page 8: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Feasible Solutions and Lower Bounds

Consider the program

maximize 4x1+ 2x2

subject to x1+ 3x2 ≤ 52x1− 4x2 ≤ 10x1+ x2 ≤ 7

x1 ≤ 5

1 (0, 1) satisfies all the constraints and gives value 2 for theobjective function.

2 Thus, optimal value σ∗ is at least 4.

3 (2, 0) also feasible, and gives a better bound of 8.

4 How good is 8 when compared with σ∗?

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 39

Page 9: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Feasible Solutions and Lower Bounds

Consider the program

maximize 4x1+ 2x2

subject to x1+ 3x2 ≤ 52x1− 4x2 ≤ 10x1+ x2 ≤ 7

x1 ≤ 5

1 (0, 1) satisfies all the constraints and gives value 2 for theobjective function.

2 Thus, optimal value σ∗ is at least 4.

3 (2, 0) also feasible, and gives a better bound of 8.

4 How good is 8 when compared with σ∗?

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 39

Page 10: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Feasible Solutions and Lower Bounds

Consider the program

maximize 4x1+ 2x2

subject to x1+ 3x2 ≤ 52x1− 4x2 ≤ 10x1+ x2 ≤ 7

x1 ≤ 5

1 (0, 1) satisfies all the constraints and gives value 2 for theobjective function.

2 Thus, optimal value σ∗ is at least 4.

3 (2, 0) also feasible, and gives a better bound of 8.

4 How good is 8 when compared with σ∗?

Chandra & Ruta (UIUC) CS473 7 Fall 2016 7 / 39

Page 11: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Obtaining Upper Bounds

1 Let us multiply the first constraint by 2 and the and add it tosecond constraint

2( x1+ 3x2 ) ≤ 2(5)+1( 2x1− 4x2 ) ≤ 1(10)

4x1+ 2x2 ≤ 20

2 Thus, 20 is an upper bound on the optimum value!

Chandra & Ruta (UIUC) CS473 8 Fall 2016 8 / 39

Page 12: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Generalizing . . .

1 Multiply first equation by y1, second by y2, third by y3 andfourth by y4 (all of y1, y2, y3, y4 being positive) and add

y1( x1+ 3x2 ) ≤ y1(5)+y2( 2x1− 4x2 ) ≤ y2(10)+y3( x1+ x2 ) ≤ y3(7)+y4( x1 ) ≤ y4(5)(y1 + 2y2 + y3 + y4)x1 + (3y1 − 4y2 + y3)x2 ≤ . . .

2 5y1 + 10y2 + 7y3 + 5y4 is an upper bound, providedcoefficients of xi are same as in the objective function, i.e.,

y1 + 2y2 + y3 + y4 = 4 3y1 − 4y2 + y3 = 2

3 The best upper bound is when 5y1 + 10y2 + 7y3 + 5y4 isminimized!

Chandra & Ruta (UIUC) CS473 9 Fall 2016 9 / 39

Page 13: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Dual LP: Example

Thus, the optimum value of program

maximize 4x1 + 2x2

subject to x1 + 3x2 ≤ 52x1 − 4x2 ≤ 10

x1 + x2 ≤ 7x1 ≤ 5

is upper bounded by the optimal value of the program

minimize 5y1 + 10y2 + 7y3 + 5y4

subject to y1 + 2y2 + y3 + y4 = 43y1 − 4y2 + y3 = 2

y1, y2 ≥ 0

Chandra & Ruta (UIUC) CS473 10 Fall 2016 10 / 39

Page 14: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Dual Linear Program

Given a linear program Π in canonical form

maximize∑d

j=1 cjxj

subject to∑d

j=1 aijxj ≤ bi i = 1, 2, . . . n

the dual Dual(Π) is given by

minimize∑n

i=1 biyisubject to

∑ni=1 yiaij = cj j = 1, 2, . . . d

yi ≥ 0 i = 1, 2, . . . n

Proposition

Dual(Dual(Π)) is equivalent to Π

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 39

Page 15: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Dual Linear Program

Given a linear program Π in canonical form

maximize∑d

j=1 cjxj

subject to∑d

j=1 aijxj ≤ bi i = 1, 2, . . . n

the dual Dual(Π) is given by

minimize∑n

i=1 biyisubject to

∑ni=1 yiaij = cj j = 1, 2, . . . d

yi ≥ 0 i = 1, 2, . . . n

Proposition

Dual(Dual(Π)) is equivalent to Π

Chandra & Ruta (UIUC) CS473 11 Fall 2016 11 / 39

Page 16: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Duality Theorems

Theorem (Weak Duality)

If x ′ is a feasible solution to Π and y ′ is a feasible solution toDual(Π) then c · x ′ ≤ y ′ · b.

Theorem (Strong Duality)

If x∗ is an optimal solution to Π and y∗ is an optimal solution toDual(Π) then c · x∗ = y∗ · b.

Many applications! Maxflow-Mincut theorem can be deduced fromduality.

Chandra & Ruta (UIUC) CS473 12 Fall 2016 12 / 39

Page 17: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Duality Theorems

Theorem (Weak Duality)

If x ′ is a feasible solution to Π and y ′ is a feasible solution toDual(Π) then c · x ′ ≤ y ′ · b.

Theorem (Strong Duality)

If x∗ is an optimal solution to Π and y∗ is an optimal solution toDual(Π) then c · x∗ = y∗ · b.

Many applications! Maxflow-Mincut theorem can be deduced fromduality.

Chandra & Ruta (UIUC) CS473 12 Fall 2016 12 / 39

Page 18: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Proof of Weak Duality

We already saw the proof by the way we derived it but we will do itagain formally.

Since y ′ is feasible to Dual(Π): y ′A = c

Therefore c · x ′ = y ′Ax ′

Since x ′ is feasible Ax ′ ≤ b and hence,

c · x ′ = y ′Ax ′ ≤ y ′ · b

Chandra & Ruta (UIUC) CS473 13 Fall 2016 13 / 39

Page 19: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Duality for another canonical form

maximize 4x1+ x2+ 3x3

subject to x1+ 4x2 ≤ 22x1− x2+ x3 ≤ 4

x1, x2, x3 ≥ 0

Choose non-negative y1, y2 and multiply inequalities

maximize 4x1+ x2+ 3x3

subject to y1(x1+ 4x2 ) ≤ 2y1

y2(2x1− x2+ x3) ≤ 4y2

x1, x2, x3 ≥ 0

Chandra & Ruta (UIUC) CS473 14 Fall 2016 14 / 39

Page 20: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Duality for another canonical form

maximize 4x1+ x2+ 3x3

subject to x1+ 4x2 ≤ 22x1− x2+ x3 ≤ 4

x1, x2, x3 ≥ 0

Choose non-negative y1, y2 and multiply inequalities

maximize 4x1+ x2+ 3x3

subject to y1(x1+ 4x2 ) ≤ 2y1

y2(2x1− x2+ x3) ≤ 4y2

x1, x2, x3 ≥ 0

Chandra & Ruta (UIUC) CS473 14 Fall 2016 14 / 39

Page 21: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Duality for another canonical form

Choose non-negative y1, y2 and multiply inequalities

maximize 4x1+ x2+ 3x3

subject to y1(x1+ 4x2 ) ≤ 2y1

y2(2x1− x2+ x3) ≤ 4y2

x1, x2, x3 ≥ 0

Adding the inequalities we get an inequality below that is valid forany feasible x and any non-negative y :

(y1 + 2y2)x1 + (4y1 − y2)x2 + y2 ≤ 2y1 + 4y2

Suppose we choose y1, y2 such thaty1 + 2y2 ≥ 4 and 4y2 − y2 ≥ 1 and 2y1 ≥ 3Then, since x1, x2, x3 ≥ 0, we have 4x1 + x2 + 3x3 ≤ 2y1 + 4y2

Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39

Page 22: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Duality for another canonical form

maximize 4x1+ x2+ 3x3

subject to x1+ 4x2 ≤ 22x1− x2+ x3 ≤ 4

x1, x2, x3 ≥ 0

is upper bounded by

minimize 2y1+ 4y2

subject to y1+ 2y2 ≥ 44y1− y2 ≥ 1

2y1 ≥ 3y1, y2 ≥ 0

Chandra & Ruta (UIUC) CS473 16 Fall 2016 16 / 39

Page 23: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Duality for another canonical form

Compactly,

For the primal LP max cx subject to Ax ≤ b, x ≥ 0the dual LP is min yb subject to yA ≥ c, y ≥ 0

Chandra & Ruta (UIUC) CS473 17 Fall 2016 17 / 39

Page 24: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Some Useful Duality Properties

Assume primal LP is a maximization LP.

For a given LP, Dual is another LP. The variables in the dualcorrespond to “non-trival” primal constraints and vice-versa.

Dual of the dual LP give us back the primal LP.

Weak and strong duality theorems.

If primal is unbounded (objective achieves infinity) then dual LPis infeasible. Why? If dual LP had a feasible solution it wouldupper bound the primal LP which is not possible.

If primal is infeasible then dual LP is unbounded.

Primal and dual optimum solutions satisfy complementaryslackness conditions (discussed soon).

Chandra & Ruta (UIUC) CS473 18 Fall 2016 18 / 39

Page 25: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Part II

Examples of Duality

Chandra & Ruta (UIUC) CS473 19 Fall 2016 19 / 39

Page 26: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Max matching in bipartite graph as LP

Input:G = (V = L ∪ R, E)

max∑

uv∈Exuv

s.t.∑

uv∈Exuv ≤ 1 ∀v ∈ V .

xuv ≥ 0 ∀uv ∈ E

Chandra & Ruta (UIUC) CS473 20 Fall 2016 20 / 39

Page 27: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Network flow

s-t flow in directed graph G = (V ,E) with capacities c . Assumefor simplicity that no incoming edges into s.

max∑

(s,v)∈Ex(s, v)

(u,v)∈Ex(u, v)−

(v ,w)∈Ex(v ,w) = 0 ∀v ∈ V \ {s, t}

x(u, v) ≤ c(u, v) ∀(u, v) ∈ E

x(u, v) ≥ 0 ∀(u, v) ∈ E.

Chandra & Ruta (UIUC) CS473 21 Fall 2016 21 / 39

Page 28: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Dual of Network Flow

Chandra & Ruta (UIUC) CS473 22 Fall 2016 22 / 39

Page 29: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Part III

Farkas Lemma and Strong Duality

Chandra & Ruta (UIUC) CS473 23 Fall 2016 23 / 39

Page 30: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Optimization vs Feasibility

Suppose we want to solve LP of the form:

max cx subject to Ax ≤ b

It is an optimization problem. Can we reduce it to a decisionproblem?

Yes, via binary search. Find the largest values of σ suchthat the system of inequalities

Ax ≤ b, cx ≥ σ

is feasible. Feasible implies that there is at least one solution.Caveat: to do binary search need to know the range of numbers.Skip for now since we need to worry about precision issues etc.

Chandra & Ruta (UIUC) CS473 24 Fall 2016 24 / 39

Page 31: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Optimization vs Feasibility

Suppose we want to solve LP of the form:

max cx subject to Ax ≤ b

It is an optimization problem. Can we reduce it to a decisionproblem? Yes, via binary search. Find the largest values of σ suchthat the system of inequalities

Ax ≤ b, cx ≥ σ

is feasible. Feasible implies that there is at least one solution.Caveat: to do binary search need to know the range of numbers.Skip for now since we need to worry about precision issues etc.

Chandra & Ruta (UIUC) CS473 24 Fall 2016 24 / 39

Page 32: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Certificate for (in)feasibility

Suppose we have a system of m inequalities in n variables defined by

Ax ≤ b

How can we convince some one that there is a feasible solution?

How can we convince some one that there is no feasiblesolution?

Chandra & Ruta (UIUC) CS473 25 Fall 2016 25 / 39

Page 33: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Theorem of the Alternatives

TheoremLet A ∈ Rm×n and b ∈ Rm. The system Ax ≤ b is either feasibleof if it is infeasible then there is a y ∈ Rm such that y ≥ 0 andyA = 0 and yb < 0.

In other words, if Ax ≤ b is infeasible we can demonstrate it via thefollowing compact contradiction. Find a non-negative combination ofthe rows of A (given by certificate y) to derive 0 < 1.

The preceding theorem can be used to prove strong duality. A fairamount of formal detail though geometric intuition is reasonable.

Chandra & Ruta (UIUC) CS473 26 Fall 2016 26 / 39

Page 34: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Farkas Lemma

From the theorem of alternatives we can derive a useful version ofFarkas lemma.

TheoremA system Ax = b, x ≥ 0 is either feasible or there is a y such thatyA ≥ 0 and yb < 0. Then the following hold:

Nice geometric interpretation.

Chandra & Ruta (UIUC) CS473 27 Fall 2016 27 / 39

Page 35: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Complementary Slackness

TheoremLet x∗ be any optimum solution to primal LP Π in the canonicalform max cx,Ax ≤ b, x ≥ 0 and y∗ be an optimum solution tothe dual LP Dual(Π) which is min yb, yA ≥ c, y ≥ 0. Then thefollowing hold.

If y∗i > 0 then∑n

j=1 aijxj = bj (the primal constraint for row iis tight).

If x∗j > 0 then∑m

i=1 yiaij = cj (the dual constraint for row j istight).

The converse also hold: if x∗ and y∗ are primal and dual feasible andsatisfy complementary slackness conditions then both must beoptimal.

Very useful in various applications. Nice geometric interpretation.

Chandra & Ruta (UIUC) CS473 28 Fall 2016 28 / 39

Page 36: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Part IV

Integer Linear Programming

Chandra & Ruta (UIUC) CS473 29 Fall 2016 29 / 39

Page 37: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Integer Linear Programming

ProblemFind a vector x ∈ Zd (integer values) that

maximize∑d

j=1 cjxj

subject to∑d

j=1 aijxj ≤ bi for i = 1 . . . n

Input is matrix A = (aij) ∈ Rn×d , column vector b = (bi) ∈ Rn,and row vector c = (cj) ∈ Rd

Chandra & Ruta (UIUC) CS473 30 Fall 2016 30 / 39

Page 38: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Factory Example

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400x1, x2 ≥ 0

Suppose we want x1, x2 to be integer valued.

Chandra & Ruta (UIUC) CS473 31 Fall 2016 31 / 39

Page 39: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Factory Example Figure

x2

x1

300

2001 Feasible values of x1 and x2 are integer

points in shaded region

2 Optimization function is a line; moving theline until it just leaves the final integerpoint in feasible region, gives optimal values

Chandra & Ruta (UIUC) CS473 32 Fall 2016 32 / 39

Page 40: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Factory Example Figure

x2

x1

300

2001 Feasible values of x1 and x2 are integer

points in shaded region

2 Optimization function is a line; moving theline until it just leaves the final integerpoint in feasible region, gives optimal values

Chandra & Ruta (UIUC) CS473 32 Fall 2016 32 / 39

Page 41: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Factory Example Figure

x2

x1

300

2001 Feasible values of x1 and x2 are integer

points in shaded region

2 Optimization function is a line; moving theline until it just leaves the final integerpoint in feasible region, gives optimal values

Chandra & Ruta (UIUC) CS473 32 Fall 2016 32 / 39

Page 42: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Integer Programming

Can model many difficult discrete optimization problems as integerprograms!

Therefore integer programming is a hard problem. NP-hard.

Can relax integer program to linear program and approximate.

Practice: integer programs are solved by a variety of methods

1 branch and bound

2 branch and cut

3 adding cutting planes

4 linear programming plays a fundamental role

Chandra & Ruta (UIUC) CS473 33 Fall 2016 33 / 39

Page 43: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Example: Maximum Independent Set

DefinitionGiven undirected graph G = (V ,E) a subset of nodes S ⊆ V is anindependent set (also called a stable set) if for there are no edgesbetween nodes in S . That is, if u, v ∈ S then (u, v) 6∈ E .

Input Graph G = (V ,E)

Goal Find maximum sized independent set in G

Chandra & Ruta (UIUC) CS473 34 Fall 2016 34 / 39

Page 44: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form
Page 45: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Example: Dominating Set

DefinitionGiven undirected graph G = (V ,E) a subset of nodes S ⊆ V is adominating set if for all v ∈ V , either v ∈ S or a neighbor of v is inS .

Input Graph G = (V ,E), weights w(v) ≥ 0 for v ∈ VGoal Find minimum weight dominating set in G

Chandra & Ruta (UIUC) CS473 35 Fall 2016 35 / 39

Page 46: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form
Page 47: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Example: s-t minimum cut and implicit constraints

Input Graph G = (V ,E), edge capacities c(e), e ∈ E .s, t ∈ V

Goal Find minimum capacity s-t cut in G .

Chandra & Ruta (UIUC) CS473 36 Fall 2016 36 / 39

Page 48: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form
Page 49: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form
Page 50: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integercoordinates.

Then solving linear program is same as solving integer program. Weknow how to solve linear programs efficiently (polynomial time) andhence we get an integer solution for free!

Luck or Structure:1 Linear program for flows with integer capacities have integer

vertices2 Linear program for matchings in bipartite graphs have integer

vertices3 A complicated linear program for matchings in general graphs

have integer vertices.

All of above problems can hence be solved efficiently.

Chandra & Ruta (UIUC) CS473 37 Fall 2016 37 / 39

Page 51: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integercoordinates.Then solving linear program is same as solving integer program. Weknow how to solve linear programs efficiently (polynomial time) andhence we get an integer solution for free!

Luck or Structure:1 Linear program for flows with integer capacities have integer

vertices2 Linear program for matchings in bipartite graphs have integer

vertices3 A complicated linear program for matchings in general graphs

have integer vertices.

All of above problems can hence be solved efficiently.

Chandra & Ruta (UIUC) CS473 37 Fall 2016 37 / 39

Page 52: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integercoordinates.Then solving linear program is same as solving integer program. Weknow how to solve linear programs efficiently (polynomial time) andhence we get an integer solution for free!

Luck or Structure:1 Linear program for flows with integer capacities have integer

vertices2 Linear program for matchings in bipartite graphs have integer

vertices3 A complicated linear program for matchings in general graphs

have integer vertices.

All of above problems can hence be solved efficiently.

Chandra & Ruta (UIUC) CS473 37 Fall 2016 37 / 39

Page 53: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Linear Programs with Integer Vertices

Meta Theorem: A combinatorial optimization problem can be solvedefficiently if and only if there is a linear program for problem withinteger vertices.

Consequence of the Ellipsoid method for solving linear programming.

In a sense linear programming and other geometric generalizationssuch as convex programming are the most general problems that wecan solve efficiently.

Chandra & Ruta (UIUC) CS473 38 Fall 2016 38 / 39

Page 54: BBM402-Lecture 20: LP Duality - web.cs.hacettepe.edu.trozkahya/classes/bbm402/Lectures/... · Chandra & Ruta (UIUC) CS473 15 Fall 2016 15 / 39. Duality for another canonical form

Summary

1 Linear Programming is a useful and powerful (modeling)problem.

2 Can be solved in polynomial time. Practical solvers availablecommercially as well as in open source. Whether there is astrongly polynomial time algorithm is a major open problem.

3 Geometry and linear algebra are important to understand thestructure of LP and in algorithm design. Vertex solutions implythat LPs have poly-sized optimum solutions. This implies thatLP is in NP.

4 Duality is a critical tool in the theory of linear programming.Duality implies the Linear Programming is in co-NP. Do yousee why?

5 Integer Programming in NP-Complete. LP-based techniquescritical in heuristically solving integer programs.

Chandra & Ruta (UIUC) CS473 39 Fall 2016 39 / 39