bb10006: cell & molecular biology

43
biology Day Time D ate P lace Lecturer Topic M onday 9:15 14.2.05 U niH all M VH N ucleic acids M onday 14:15 14.2.05 A rtsLT M VH N ucleic acids W ednesday 11:15 16.2.05 A rtsLT M VH N ucleic acids M onday 9:15 21.2.05 U niH all M VH N ucleic acids M onday 14:15 21.2.05 A rtsLT M VH N ucleic acids W ednesday 11:15 23.2.05 A rtsLT M VH N ucleic acids Monday 9:15 28.2.05 UniHall JR B R adiochem istry M onday 14:15 28.2.05 A rtsLT JR B G enetic m odification W ednesday 11:15 2.3.05 A rtsLT JR B G enetic m odification M onday 9:15 7.3.05 U niH all JR B G enetic m odification M onday 14:15 7.3.05 A rtsLT JR B G enetic m odification W ednesday 11:15 9.3.05 A rtsLT JR B G enetic m odification M onday 9:15 14.3.05 U niH all JR B G enetic m odification M onday 14:15 14.3.05 A rtsLT JR B G enetic m odification W ednesday 11:15 16.3.05 A rtsLT JR B G enetic m odification M onday 9:15 11.4.05 U niH all JR B G enetic m odification M onday 14:15 11.4.05 A rtsLT JR B G enetic m odification W ednesday 11:15 13.4.05 A rtsLT JR B G enetic m odification M onday 9:15 18.4.05 U niH all JR B G enetic m odification M onday 14:15 18.4.05 A rtsLT JR B G enetic m odification W ednesday 11:15 20.4.05 A rtsLT JR B G enetic m odification M onday 9:15 25.4.05 U niH all JR B G enetic m odification Monday 14:15 25.4.05 A rtsLT JM W S A nim aldevelopm ent W ednesday 11:15 27.4.05 A rtsLT JM W S A nim aldevelopm ent W ednesday 11:15 4.5.05 A rtsLT JM W S A nim aldevelopm ent Monday 9:15 9.5.05 UniHall JM W S A nim aldevelopm ent Monday 14:15 9.5.05 A rtsLT R JS Plantdevelopm ent W ednesday 11:15 11.5.05 A rtsLT R JS Plantdevelopm ent Monday 9:15 16.5.05 UniHall R JS Plantdevelopm ent Dr. MV Hejmadi Dr. JR Beeching (convenor) Prof. RJ Scott Prof. JMW Slack

Upload: makani

Post on 22-Jan-2016

27 views

Category:

Documents


0 download

DESCRIPTION

BB10006: Cell & Molecular biology. Dr. MV Hejmadi Dr. JR Beeching (convenor) Prof. RJ Scott Prof. JMW Slack. Dr. Momna Hejmadi ([email protected]). Structure and function of nucleic acids Books (any of these) : Biochemistry (2/3e) by D Voet & J Voet - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: BB10006: Cell & Molecular biology

BB10006: Cell & Molecular biologyDay Time Date Place Lecturer Topic

Monday 9:15 14.2.05 UniHall MVH Nucleic acidsMonday 14:15 14.2.05 ArtsLT MVH Nucleic acids

Wednesday 11:15 16.2.05 ArtsLT MVH Nucleic acidsMonday 9:15 21.2.05 UniHall MVH Nucleic acidsMonday 14:15 21.2.05 ArtsLT MVH Nucleic acids

Wednesday 11:15 23.2.05 ArtsLT MVH Nucleic acidsMonday 9:15 28.2.05 UniHall J RB RadiochemistryMonday 14:15 28.2.05 ArtsLT J RB Genetic modification

Wednesday 11:15 2.3.05 ArtsLT J RB Genetic modificationMonday 9:15 7.3.05 UniHall J RB Genetic modificationMonday 14:15 7.3.05 ArtsLT J RB Genetic modification

Wednesday 11:15 9.3.05 ArtsLT J RB Genetic modificationMonday 9:15 14.3.05 UniHall J RB Genetic modificationMonday 14:15 14.3.05 ArtsLT J RB Genetic modification

Wednesday 11:15 16.3.05 ArtsLT J RB Genetic modificationMonday 9:15 11.4.05 UniHall J RB Genetic modificationMonday 14:15 11.4.05 ArtsLT J RB Genetic modification

Wednesday 11:15 13.4.05 ArtsLT J RB Genetic modificationMonday 9:15 18.4.05 UniHall J RB Genetic modificationMonday 14:15 18.4.05 ArtsLT J RB Genetic modification

Wednesday 11:15 20.4.05 ArtsLT J RB Genetic modificationMonday 9:15 25.4.05 UniHall J RB Genetic modificationMonday 14:15 25.4.05 ArtsLT J MWS Animal development

Wednesday 11:15 27.4.05 ArtsLT J MWS Animal developmentWednesday 11:15 4.5.05 ArtsLT J MWS Animal development

Monday 9:15 9.5.05 UniHall J MWS Animal developmentMonday 14:15 9.5.05 ArtsLT RJ S Plant development

Wednesday 11:15 11.5.05 ArtsLT RJ S Plant developmentMonday 9:15 16.5.05 UniHall RJ S Plant development

Dr. MV Hejmadi

Dr. JR Beeching(convenor)

Prof. RJ Scott

Prof. JMW Slack

Page 2: BB10006: Cell & Molecular biology

Dr. Momna Hejmadi ([email protected])

Structure and function of nucleic acids

Books (any of these):1) Biochemistry (2/3e) by D Voet & J Voet2) Molecular biology of the cell (4th ed) by

Alberts et al3) Any biochemistry textbookKey websites 1) http://www.dnai.org/lesson/go/2166/19942) http://molvis.sdsc.edu/dna/index.htm

Page 3: BB10006: Cell & Molecular biology

Outline of my lectures

Lecture 1. Nucleic acids – an introduction

Lecture 2. Properties and functions of nucleic

acids

Lecture 3. DNA replication

Lectures 4-6. Transcription and translation

Access to web lectures athttp://www.bath.ac.uk/bio-sci/hejmadi/teaching%202004-05.htm

Page 4: BB10006: Cell & Molecular biology

Lecture 1 - Outline How investigators pinpointed DNA as the genetic materialThe elegant Watson-Crick model of DNA structureForms of DNA (A, B, Z etc)Types of nucleic acids (DNA and RNA)

References: History, structure and forms of DNA

http://www.dnai.org/lesson/go/2166Voet and Voet – Chapter 28

Page 5: BB10006: Cell & Molecular biology

Timeline1800’s F Miescher - nucleic acids

1928 F. Griffith - Transforming principle

http://www.dnai.org/lesson/go/2166/1994

Page 6: BB10006: Cell & Molecular biology

Discovery of transforming principle

1928 – Frederick Griffith – experiments with smooth (S) virulent strain Streptococcus pneumoniae and rough (R) nonvirulent strain

Page 7: BB10006: Cell & Molecular biology

Griffith experiment

Page 8: BB10006: Cell & Molecular biology

Griffith experiment

Page 9: BB10006: Cell & Molecular biology

What is this transforming principle?

Bacterial transformation demonstrates transfer of genetic material

Page 10: BB10006: Cell & Molecular biology

Timeline1800’s F Miescher - nucleic acids

1928 F. Griffith - Transforming principle

Avery, McCleod & McCarty- Transforming principle is DNA

1944

http://www.dnai.org/lesson/go/2166/1994

Page 11: BB10006: Cell & Molecular biology

Avery, MacLeod, McCarty Experiment

Page 12: BB10006: Cell & Molecular biology

Avery, MacLeod, McCarty Experiment

Page 13: BB10006: Cell & Molecular biology

Timeline1800’s F Miescher - nucleic acids

1928 F. Griffith - Transforming principle

1949

Avery, McCleod & McCarty- Transforming principle is DNA

1944

Erwin Chargaff – base ratios

http://www.dnai.org/lesson/go/2166/1994

Page 14: BB10006: Cell & Molecular biology

E. Chargaff’s ratios

A = TC = G

A + G = C + T% GC constant for given species

Page 15: BB10006: Cell & Molecular biology

Timeline1800’s F Miescher - nucleic acids

1928 F. Griffith - Transforming principle

1952

Avery, McCleod & McCarty- Transforming principle is DNA

1944

Hershey-Chase ‘blender’ experiment

http://www.dnai.org/lesson/go/2166/1994

1949 Erwin Chargaff – base ratios

Page 16: BB10006: Cell & Molecular biology

Hershey and Chase experiments

1952 – Alfred Hershey and Martha Chase provide convincing evidence that DNA is genetic material

Waring blender experiment using T2 bacteriophage and bacteria

Radioactive labels 32P for DNA and 35S for protein

Page 17: BB10006: Cell & Molecular biology

Hershey and Chase experiments

Page 18: BB10006: Cell & Molecular biology

Hershey and Chase experiments

Page 19: BB10006: Cell & Molecular biology

Timeline1800’s F Miescher - nucleic acids

1928 F. Griffith - Transforming principle

1952

Avery, McCleod & McCarty- Transforming principle is DNA

1944

Hershey-Chase ‘blender’ experiment

1952 Erwin Chargaff – base ratios

1952 R Franklin & M Wilkins–DNA diffraction pattern

1953 J Watson and F Crick – DNA structure solved

http://www.dnai.org/lesson/go/2166/1994

Page 20: BB10006: Cell & Molecular biology

X-ray diffraction patterns produced by DNA fibers – Rosalind Franklin and Maurice Wilkins

Page 21: BB10006: Cell & Molecular biology

The Watson-Crick Model: DNA is a double helix

1951 – James Watson learns about x-ray diffraction pattern projected by DNA

Knowledge of the chemical structure of nucleotides (deoxyribose sugar, phosphate, and nitrogenous base)

Erwin Chargaff’s experiments demonstrate that ratio of A and T are 1:1, and G and C are 1:1

1953 – James Watson and Francis Crick propose their double helix model of DNA structure

Page 22: BB10006: Cell & Molecular biology

Human genome project

Public consortiumHeaded by F CollinsStarted in mid 80’sWorking draft completed

in 2001Final sequence 2003Nature: Feb 2001

Celera GenomicsHeaded by C VenterStarted in mid 90’sWorking draft completed

in 2001

Science: Feb 2001

Human genome = 3.3 X 109 base pairsNumber of genes = 26 – 32,000 genes

Goal: to sequence the entire human nuclear genome

Page 23: BB10006: Cell & Molecular biology

DNA, gene, genome?DNA = nucleic acidGene = segments of DNA that encode proteinGenome = entire nucleic acid component of

any organism

Nucleic acids: made up of individual nucleotides linked together

Protein - polypeptides made up of individual amino acids linked together -

Page 24: BB10006: Cell & Molecular biology

Nucleotides

DNA RNA

Originally elucidated by Phoebus Levine and Alexander Todd in early 1950’s

2’-deoxy-D-ribose 2’-D-ribose)

Made of 3 components1) 5 carbon sugar (pentose)2) nitrogenous base3) phosphate group

1) SUGARS

Page 25: BB10006: Cell & Molecular biology

2) NITROGENOUS BASES planar, aromatic, hetercyclic derivatives of purines/pyrimidines

adenine

uracil

thymine

cytosine

guanine

pyrimidines

purines

Note:Base carbons denoted as 1 etc Sugar carbons denoted as 1’ etc

Page 26: BB10006: Cell & Molecular biology

Nucleotide monomernucleotide =

phosphate ester monomer of pentosedinucleotide - Dimer

Oligonucleotide – short polymer (<10)

Polynucleotide – long polymer (>10)

Nucleoside = monomer of sugar + base

Page 27: BB10006: Cell & Molecular biology

1) Phosphodiester bonds

5’ and 3’ links to pentose sugar

2) N-glycosidic bonds

Links nitrogenous base to C1’ pentose in beta configuration

5’ – 3’ polynucleotide linkages

Page 28: BB10006: Cell & Molecular biology

3’ end

5’ end 5’ – 3’ polarity

Page 29: BB10006: Cell & Molecular biology

Essential features of B-DNA

• Right twisting • Double stranded

helix• Anti-parallel • Bases on the

inside (Perpendicular to axis)

• Uniform diameter (~20A)

• Major and minor groove

• Complementary base pairing

Page 30: BB10006: Cell & Molecular biology

Structurally, purines (A and G pair best with pyrimidines (T and C)

Thus, A pairs with T and G pairs with C, also explaining Chargaff’s ratios

Page 31: BB10006: Cell & Molecular biology

Maybe because RNA but not DNA is prone to base-catalysed hydrolysis

Why DNA evolved as the genetic material but not RNA?

Page 32: BB10006: Cell & Molecular biology

B-DNA

Biologically dominant

Right-handed double helix

planes of base pairs are nearly perpendicular to the helix axis.

helix axis passes through the base pairs and hence B-DNA has no internal spaces B-DNA has a wide and deep major groove and a narrow and deep minor groove

Page 33: BB10006: Cell & Molecular biology

DNA conformationsB-DNA:

right-handed double helix with a wide and narrow groove.

A-DNA major groove is very deep and the minor groove is

quite shallow

Z-DNA consists of dinucleotides, each with different

conformations

4 stranded DNA Telomeric DNA

Page 34: BB10006: Cell & Molecular biology

DNA conformations

both form right-handed double helices

B-DNA helix has a larger pitch and hence a smaller width than

that of A

In B-DNA, the helix axis passes through the base pairs and hence

B-DNA has no internal spaces, whereas that of A-DNA has a 6

Angstrom diameter hole along its helical axis.

The planes of the base pairs in B-DNA are nearly perpendicular to the helix axis, whereas in A-DNA,

they are inclined from this. Therefore, B-DNA has a wide and deep major groove and a narrow and deep minor groove, whereas

A-DNA has a narrow and deep major groove, but a wide and

shallow minor groove.

A DNA B DNA

Page 35: BB10006: Cell & Molecular biology

DNA conformations

B-DNA forms a right-handed double helix in

which the repeating unit is a nucleotide,

whereas Z-DNA forms a left-handed double helix in which the repeating unit is

adinucleotide.

The Z-DNA helix has a larger pitch and is

therefore narrower than that of B-DNA.

B-DNA has a wide and deep major groove and a narrow and deep minor groove, whereas Z-DNA has a narrow and deep

minor groove but a nonexistent major groove.

B DNAZ DNA

Page 36: BB10006: Cell & Molecular biology

Types of RNAMessenger RNA (mRNA): Codes for proteinsTransfer RNA (tRNA): Adaptor between

mRNA & amino acidsRibosomal RNA (rRNA): Forms ribosome

core for translationHeterogenous nuclear RNA (hn RNA)Small nuclear RNA (sn RNA): involved in

post-transcriptional processing

Page 37: BB10006: Cell & Molecular biology

linear

human chromosomes

Double stranded DNA

Genetic material may be DNA

Single stranded DNA

circular

linear

circularProkaryotesMitochondriaChloroplastsSome viruses(pox viruses)

Parvovirus

adeno-associated viruses

Page 38: BB10006: Cell & Molecular biology

reoviruses

Double stranded RNA

Genetic material may be RNA

Single stranded RNA

Retroviruses like HIV

Page 39: BB10006: Cell & Molecular biology

RNA / DNA hybridse.g. during retroviral replication

Page 40: BB10006: Cell & Molecular biology

What is the base found in RNA but not DNA? ?

  A) CytosineB) Uracil

      C) Thymine      D) Adenine E) Guanine

Page 41: BB10006: Cell & Molecular biology

What covalent bonds link nucleic acid monomers?

  A) Carbon-Carbon double bondsB) Oxygen-Nitrogen Bonds

   C) Carbon-Nitrogen bonds   D) Hydrogen bonds

E) Phosphodiester bonds

Page 42: BB10006: Cell & Molecular biology

What sugar is used in in a DNA monomer?

A) 3'-deoxyribose

B) 5'-deoxyribose

C) 2'-deoxyribose

D) Glucose

Page 43: BB10006: Cell & Molecular biology

Each deoxyribonucleotide is composed of

  A) 2'-deoxyribose sugar, Nitrogenous base, 5'- hydroxyl

  B) 3'-deoxyribose sugar, Nitrogenous base, 5'- hydroxyl

  C) 3'-deoxyribose sugar, Nitrogenous base, 5'- Phosphate

   D) Ribose sugar, Nitrogenous base, 5'-hydroxylE) 2'-deoxyribose sugar, Nitrogenous base, 5'- phosphate