basic probability jean walrand eecs – u.c. berkeley

22
Basic Probability Jean Walrand EECS – U.C. Berkeley

Post on 19-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Basic Probability Jean Walrand EECS – U.C. Berkeley

Basic Probability

Jean Walrand

EECS – U.C. Berkeley

Page 2: Basic Probability Jean Walrand EECS – U.C. Berkeley

Outline

1. Interpretation2. Probability Space3. Independence4. Bayes5. Random Variable6. Random Variables7. Expectation8. Conditional Expectation9. Notes10. References

Page 3: Basic Probability Jean Walrand EECS – U.C. Berkeley

1. Interpretation

Page 4: Basic Probability Jean Walrand EECS – U.C. Berkeley

2. Probability Space2.1. Finite Case

Page 5: Basic Probability Jean Walrand EECS – U.C. Berkeley

2. Probability Space2.2. General Case

Page 6: Basic Probability Jean Walrand EECS – U.C. Berkeley

2. Probability Space

Page 7: Basic Probability Jean Walrand EECS – U.C. Berkeley

3. Independence

Each element has p = 1/4A B

C

Page 8: Basic Probability Jean Walrand EECS – U.C. Berkeley

4. Bayes’ Rule

B1

B2

A

p1

p2

q1

q2

Page 9: Basic Probability Jean Walrand EECS – U.C. Berkeley

4. Bayes’ RuleExample:

H0

H1

A = {X > 0.8}

p0

p1

q0

q1

Page 10: Basic Probability Jean Walrand EECS – U.C. Berkeley

5. Random Variable

x

x0

1

0 1

Page 11: Basic Probability Jean Walrand EECS – U.C. Berkeley

5. Random Variable

0.5 10.30x

FX(x)

0.210.31

0.650.45

1

Page 12: Basic Probability Jean Walrand EECS – U.C. Berkeley

5. Random Variable

Slope = afX = 1

a

100

fY = 1/a

Page 13: Basic Probability Jean Walrand EECS – U.C. Berkeley

5. Random Variable

Other examples:•Bernoulli•Binomial•Geometric•Poisson•Uniform•Exponential•Gaussian

Page 14: Basic Probability Jean Walrand EECS – U.C. Berkeley

6. Random Variables

Page 15: Basic Probability Jean Walrand EECS – U.C. Berkeley

6. Random VariablesExample 1

10

Uniform in triangle

X()

Y()

1

0

Page 16: Basic Probability Jean Walrand EECS – U.C. Berkeley

6. Random VariablesExample 2

xy

g(.)x + dx y + H(x)dx

Scaling by |H(x)|

Page 17: Basic Probability Jean Walrand EECS – U.C. Berkeley

7. Expectation

0.5 10.30x

FX(x)

0.210.31

0.650.45

1

Page 18: Basic Probability Jean Walrand EECS – U.C. Berkeley

7. Expectation

Example:

Page 19: Basic Probability Jean Walrand EECS – U.C. Berkeley

8. Conditional Expectation

Page 20: Basic Probability Jean Walrand EECS – U.C. Berkeley

8. Conditional Expectation

X

Page 21: Basic Probability Jean Walrand EECS – U.C. Berkeley

9. Notes Dependence ≠ Causality Pairwise ≠ Mutual Independence Random variable = (deterministic) function Random vector = collection of RVs Joint pdf is more than marginals E[X|Y] exists even if cond. density does not Most functions are Borel-measurable Easy to find X() that is not a RV Importance of prior in Bayes’ Rule. (Are you Bayesian?) Don’t be confused by mixed RVs

Page 22: Basic Probability Jean Walrand EECS – U.C. Berkeley

10. Reference

Probability and Random Processes