basic principles of modular coordination

Upload: architombs

Post on 05-Apr-2018

230 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/2/2019 Basic Principles of Modular Coordination

    1/35

    /http://hdl.handle.net/2027/mdp.3

    901503

    1946927

    Basic principles of modular coordination,

    United States.

    Washington [1953]

    http://hdl.handle.net/2027/mdp.39015031946927

    Public Domain, Google-digitized

    h t t p : / / w w w . h a t h i t r u s t . o r g / a c c e s s _ u s e # p d - g o o g l e

  • 8/2/2019 Basic Principles of Modular Coordination

    2/35

    GeneratedforFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /ht

    tp://hdl.handle.net/2027/mdp.3

    9015031

    946927

    PublicDoma

    in,

    Google-d

    igitized

    /http://www.hathi

    trust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    3/35

    GeneratedforFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /ht

    tp://hdl.handle.net/2027/mdp.3

    9015031

    946927

    PublicDoma

    in,

    Google-d

    igitized

    /http://www.hathi

    trust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    4/35

    F O R WO RD

    Thispublicationhasbeenpreparedtoprovidesupplementallecturenotesfora

    seriesoflanternslidespreparedforuseincoursesindraftingandconstructionat architec-

    turalandengineeringcolleges.It mayserveasate tbookforstudents,aswellasaguide

    forarchitecturalandengineeringdraftsmeninapplyingtheprinciplesofmodularcoordi-

    nationtoworkingdrawings.

    Reproductionsofthelanternslidesareutilizedasillustrations.Theslidesand

    te t arebasedoncriteriaandstandardsincludedintheAmericanStandardsAssociation

    A62GuideforModularCoordination.

    ForsalebytheSuperintendent ofDocument*, U.S.GoTernment PrintingOffice,Washington25,D.C. Price25cent*

    GeneratedforFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDoma

    in,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    5/35

    u .

    Amoduleisaunit ofmeasurement.It maybeanynumberof

    inchesorfeet.Theunit ofmeasure,ormodule,withwhichweare

    ubraryconcernedis4 .It maybeappliedtowidth,depth,orheight ofany

    material.The4 cubeshownoppositeisthenonemodulewide,one

    moduledeep,andonemodulehigh.

    The4 modulewaschosenforuseintheUnitedStatesonthe basis

    ofconsiderableresearch.Studycommitteesrepresentingmany

    branchesofthebuildingindustryproposedthe4 moduleasacon-

    venient basisfor standardizationofbuildingproductsbecause:

    1.Thesizesofmanye istingbuildingmaterialsarebasedonthe

    4 mo d ul e .

    2.The4 moduleislargeenoughformanufacturerstoturnout a

    reducednumberofstocksizesandstillsatisfyconsumerdemand.

    3.It issmallenoughtoallowamplefreedomandfle ibilityin

    architecturaldesignandequipment layout.

    4.It isaunit of measurement withwhicharchitects,builders,

    masons,andcarpentersarealreadyfamiliar.

    The4 moduleselectedappro imates10 centimeters(3.937inches),

    themodularunit measurement proposedbymetricsystemcountries

    workingonthesameproblem.

    GeneratedforFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDoma

    in,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    6/35

    Generatedf

    orFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDoma

    in,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    7/35

    Fred eath,anengineerwithwidee perienceintheuseofmasonry

    products,in1925first launchedtheideaof coordinatingbuilding

    materialsthroughtheuseofthe4 grid.

    L ateron,Albert F.Bemis,amanufacturerwhomadethestudyof

    housinghishobby,wroteathree-volumeworkentitledThe volving

    House.The thirdvolume,RationalDesign,waspublishedin1936 and

    broadenedthebasisofthemodularconcept byintroductionofthe4

    cube.Accordingtohistheory,anybuildingcanbemadeupofa

    seriesofcubeswhicharemultiplesofthebasic4 cube,andnowaste

    willresult ifthematerialsfortheconstructionofthebuildingsare

    standardizedonthebasisofthe4 multipleandifarchitects plans

    aredimensionedtocorrespondwiththisstandardization.

    Theplateoppositeshowsamodularvolumemadeupofsmaller

    modularvolumesofwhichthesmallest isa4 cube. oattempt is

    madeinthisdrawingtoindicatespecificmaterials.

    TheAmericanStandardsAssociationin1939 pickedupwhere

    Mr.Bemisleft offandorganizedASAProject A62fortheCoordination

    ofDimensionsofBuildingMaterialsand quipment.Thisproject

    wassponsoredjointlybytheAmericanInstituteofArchitectsandthe

    P r o du ce r s Co u nci l , I nc. th e a ti o na l Asso ci a ti on o f o me Bui l d e rs

    hassubsequentlybecomeaco-sponsor.Secretarialandtechnical

    worknecessaryinthedevelopment ofASAModularStandardswas

    providedbytheModularServiceAssociation,anonprofit organization

    financedlargelybytheheirsofMr.Bemis.

    Theresultsofthisproject werepublishedin1946 bytheModular

    ServiceAssociationinabook,A62GuideforModularCoordination,by

    MyronA.AdamsandPrenticeBradleyoftheAssociation.This

    guide,preparedtoassist architectsand engineersinapplyingmodular

    coordinationtobuildingplansanddetails,andtoassist producersof

    buildingmaterialsandequipment intheproductionofmodular

    products,hasformedthebasisuponwhichthematerialforthispubli-

    cationwasdeveloped.

    Generatedf

    orFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDoma

    in,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    8/35Generatedf

    orFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDoma

    in,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    9/35

    Most buildingmaterials,whenjoinedtogether,requireacertain

    overlaporjoint thickness.Manufacturers,therefore,maketheir

    productslargerorsmallerthane act 4 multiplesbytheamount of

    thejoint requiredforassembly.Thiswaythecontrollingnominal

    dimensionsofabuildingwillstaywithinmultiplesof4 .

    Theactualdimensionsofamaterialmaydifferfromthedimensions

    specifiedbysmallamountsonewayortheother(plusorminus)due

    toslight imperfectionsunavoidableinthemanufacturingprocess.

    Thesedifferencesarealsocalledtolerances,andtheirma imum

    limitsarewelldefinedinstandardsestablishedbytheAmericanStand-

    ardsAssociationandothertechnicalorganizations.

    Permissiblevariationsinthedimensionsofbricksvaryaccording

    tothejoint thicknessused. ointsbetweenconcretemasonryunits

    havebeenstandardizedto%" andthepermissiblevariationinthe

    dimensionsoftheunit itselfarelimitedto% " plusorminus.

    Forallpracticalpurposes,actualdimensionsaresoclosetothe

    specifieddimensionsthat inmost casesthedifferenceisignored.The

    architect,therefore,worksonlywithnominalandspecifieddimensions

    andwillusenominaldimensionsinthepreparationofsmall-scale

    workingdrawingswhereverpossible.

    Generatedf

    orFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDoma

    in,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    10/35Generatedf

    orFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDomain,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    11/35

    Structuralbrickisproducedinseveralmodularsizes,threeofwhich

    areshownontheoppositepage.

    At the to p :T h e no mi na l 4 2 " b r i ck i sa su pp l e me n ta ry s i ze

    onlyandmaynot bereadilyavailableinallareas.It isshownhereto

    e mp h asi ze th e fl e i b i li ty o f th e un i t p r i nci p l e 2 b e i ng o n e -ha l fu n it.

    I n th e ce nte r :T he n o min a l 4 2 % " " b r i ck l ay s3 b r i ck sto 2

    modules( " )inheight.Thismodularsizeconiesclosest tothedi-

    mensionsofthecustomarynonmodularbricksize,andcantherefore

    besuccessfullyusednot onlyinnewworkbut alsoforadditionstoor

    repairofe istingstructures.

    At th e b o tto m:An o mi n a l 4 4 " b r i ck , iso n e mo du l e h ig h ,

    onemodulewide,andtwomoduleslong.Thisbrickfulfillsideal

    modularprinciplesineveryrespect andinvolvesnofractions.It is,

    therefore,easytoworkwithinthepreparationofdetailsofwalllayouts

    andopenings.Thismodularsizeisalreadywidelyusedinseveral

    States.Modularbricksarealsoproducedinanominal4 4 12

    size.

    Thedrawingat thelowerleft showshowmodularbrickcanbelaid

    fromcornertowindowjambwithaminimumofcutting.Installation

    ofmodular-sizedwindowswillpermit thelayingofbrickwithout

    cuttingalongtheentirewalle cept forahalf-brickat thewindow

    jambinalternatebrickcourses.

    Anew SCRBrick, developedbytheStructuralClayProducts

    ResearchFoundation,isalsoproducedinamodularsize.Thenom-

    i n a l s ize o f th i sbr i ck i s6 " 2 % " 1 2 . o te th a t th e 6 " w id th i s

    oneandone-halfmodules.Itsspecifiedwidthis5% " .Thisbrick

    hasbeendevelopedtoreducewallthicknessesfrom " to6" where

    codespermit.

    Fewmanufacturersproduceallthesizesshown.Architectsshould,

    therefore,checkwhichsizesareavailableintheirareas.

    GeneratedforFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDomain,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    12/35GeneratedforFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDomain,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    13/35

    Thefiveelevationsofportionsofwallsshownoppositepermit acom-

    parisonofthescaleandthevisualeffect ofvariousmodularbricks.

    Theappearanceofwallsbuilt withthenominal4 21%e "

    brickisthesameasthat ofwallsbuilt withthecustomarynonmodular

    brick.Whenlaidinhalf-bondasshown,thisbrickautomatically

    provides4 fle ibility,horizontally,sothat nocuttingorsupplementary

    lengthsarerequiredinstretchercoursese cept inalternatecoursesat

    windowjambs.Theheadercourseincommonbondstillrequires

    theuseof% stretchersat thecornersandjambs. ertically,a4

    supplementaryheight isneededtomeet dimensionsequaltoan "

    multipleplus4 ,suchasinfloorheights.Theuseof arowlockcourse

    ofbrickwillmeet thisrequirement.

    Thenominal4 4 " brick,althoughmore squarish in

    appearanceinthewallthantheabovebrick,providescomplete4

    fle ibilitybothhorizontallyandvertically.

    Wheretherearelargeplainsurfacesofbrickworkuninterrupted

    byopenings,thenominal4 4 12 brickgivessomewhat similar

    proportionaleffectsasthenominal4 21M6" " brickandrequires

    lessbricktobehandled.It isobviousthat largerbricksizesinvolve

    fewerbricksandlessjoints,andare,therefore,moreeconomical.

    Bricks12 longmaybelaidintheusualhalf-bondorinthethird-

    bondasshown.Thelatterbondismoreeconomicalsinceonlytwo

    su p p le me nta r y 4 a n d " l e n gth sa r e ne e d ed to me e t 4 f l e i b i li ty ,

    horizontally. erticalfle ibilityisthesameasthat forthebrick

    above.

    Nominal12 lengthbrickisalsobeingproducedinthethree

    co u r se sto " h e i g ht, ca l l ed N o r ma n b r i ck a n d i n th e two co u rse sto

    4 height called Roman brickshowninthedrawing.Thismodular

    sizebrickisalsopreferredbysomearchitectstothelargerbrick,

    particularlyinresidentialworkorinspecialindustrialorcommercial

    design.

    Thefinalchoiceoftheparticularbricksizeforastructuredepends

    ontheappearancedesired,economyofconstruction,distributionand

    detailingofopenings,andbricksizesavailableonthelocalmarket.

    10

    GeneratedforFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDomain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    14/35

    GeneratedforFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDomain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    15/35

    Thisplateshowsthenominal4 21%s " brickwithclaytile

    backupandheadercourseeverysi thcourse.Backuptilesarealso

    producedforothermodularbricksizes.Theyhavelongbeenavail-

    ableforsimilarconstruction.Theonlynewprincipleinthiscaseisthe

    coordinationofunitswitheachotherbyusingthe4 grid.Coordina-

    tionwithmodularwindows,grills,glassblock,andothermodularma-

    terialsislikewiseattained.

    Asinallmodularwork,dimensioningthelayout becomesamatter

    ofaddingmultiplesof4 .Fractionaldimensionsneedonlyappearon

    detaildrawings.

    Thesurfaceshowinggridlinesonaverticalplaneisusedhereasa

    convenient wayto demonstratecoordinationinheight.Themasonry

    wallshowndoesnot represent acornerorendconditionbut shouldbe

    thought ofascontinuingbeyondthisverticalplanesurface.It becomes

    apparent that,withtheuseofthisbrick,3 brickcoursescoordinate

    w i th o ne ti l e co ur se , 2 mod u l e s(i. e . " )h i g h .

    Thecircledareacallsattentiontothemortarjoint,whichisomit-

    tedintherest ofthedrawingforthesakeofclarity.

    12

    GeneratedforFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDomain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    16/35

    GeneratedforFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDomain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    17/35

    Concretemasonryunitsarenowwidelyproducedthroughout the

    countryinmodularsizes.Theunitsareproducedinsizesandshapes

    tofit different constructionneeds,suchasbackupforbrickorother

    facings,fore teriorwalls,andinteriorpartitions.Theyincludestretch-

    er,corner,doublecornerorpier,jamb,header,bullnose,andpartitition

    units.Most oftheseshapesareusuallymadeinbothfull-andhalf-

    lengthunitsandinmanyareas,nominalhalf-height unitsareavailable.

    Concretemasonryunit sizesareusuallyreferredtobytheirnom-

    inaldimensions.Thus,theblockillustratedinthelowerright andleft

    co r n er so f th e fa ci n g p ag e i sa n o min a l " " 1 6 " u ni t. T h is

    sizeblockisoneofthemost commonlyusedsizesinthecountrytoday.

    Allowing%" forthestandardmortarjoint thickness,itsspecifieddi-

    me n sio n sa re , th e re fo re , 1 % " w i d e, 1 % " h i g h, a n d 1 5 % " l o n g.

    Thehalf-height unit shownintheupperright cornerisreferredto

    a sa n o min a l " 4 1 6 " u n i t a n d h asa sp e ci fi e d h e ig h t o f3 % " .

    Thisisasupplementarysizeunit.

    Wallsmadeofconcretemasonryunitscanbebuilt without cutting

    asingleblock,ifwalllengthsandheightsarelaidout onthebasisof "

    multiples,andifmodulardoorandwindowmasonryunitsareprovided

    fortheopenings.

    Modularconcretemasonryunits,likemodularbrick,coordinate

    withallothermodularproductsonthebasisofthe4 multiple.

    14

    GeneratedforFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDomain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    18/35

    GeneratedforFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDomain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    19/35

    Thisplateillustratescoordinationofbrickandconcretemasonry

    u n i ts. I n th i se a mp le , a n o min a l 4 4 " b r ick i su se d to g e the r

    w i th th e sta n d ar d n o mi n a l " " 1 6 " b l o ck s i ze . Bon d a t h e a de r

    co u r se s i su su al l y a chi e v ed th r o ug h th e u se of4 4 " b r i ck

    backup.

    Thesurfaceshowinggridlines4 apart onaverticalplaneisused

    hereagaintodemonstratecoordinationvertically.Themasonrywall

    shownisnot intendedtoterminateat thisgrid-planebut shouldbe

    thought ofascontinuingbeyondit.

    Thisis,ofcourse,not theonlywaytocoordinatebrickwithconcrete

    masonryunits.Thereareotherunitsmadeforbackupconditions.

    An o the r b a cku p si ze u se d i n " th i ck wa l l s i s the n o mi na l 4 " 1 6 "

    block.

    Again,thecircledareacallsattentiontothemortarjoint,which

    isomittedintherest ofthedrawingforthesakeofclarity.

    GeneratedforFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    20/35

    Generated

    forFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    21/35

  • 8/2/2019 Basic Principles of Modular Coordination

    22/35

    Generated

    forFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    23/35

    Thesetwodrawingsdemonstratetheimportanceofthegridin

    joiningdissimilarmaterials.Twomodularsillsectionsareshown:

    woodframeandmasonry.

    Themasonrysectionat theright includesvariousmaterialssuch

    aspouredconcrete,concretemasonryunits,brick,andbackuptile.

    Forthebest coordinationofmaterialsverticallyinmasonrywallcon-

    struction,thepositionofthegridline%" abovethefinishfloorlineis

    recommended.Inthedrawing,allowanceismadeforanasphalt tile

    floorwhichwouldbringthetopoftheconcreteslabto %" belowthe

    gridline.Thisslabpositionalsoworksout wellwiththetilesinceit

    resultsinthestandard% " joint usedfortilebackup.

    Thewood-framesectionat theleft showscoordinationofamasonry

    foundationwithawood-framesuperstructure.Pouredfootingsdonot

    necessarilyhavetobeinmultiplesof4 (seesectionat right)e cept

    whereprecut orprefabricatedformsareused.Thee teriorstudwall

    isplacedsymmetricallybetweengridlines.Interiordimensionswill

    thusbeinmultiplesof4 .Ifdrywallfinishesareused,amultipleof

    4 isrecommendedinordertoreducewasteintheuseof4 wide

    wallboardsinstalledverticallyorhorizontally.Forthebest coordina-

    tionofmaterialsverticallyinwood-frameconstructionwithwood

    floors,thepositionofthegridlineat thetopofthesubfloorisrecom-

    mended.

    I t sh o u ld b e u n d er sto od th a t th e se a n d th e fo l l o wi n g d r a wi n g sd o

    not showrecommendedconstructiondetailsforflashing,waterproofing,

    etc.Thesevarywithindividualcases.Theymerelydemonstratethe

    assemblyofdissimilarmaterialsonthebasisofthe4 grid.

    Generated

    forFredericBellaloum(

    ArizonaStateUn

    iversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    24/35

    Generated

    forFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    25/35

    Themodulardetailsforframewallcornersdeterminethebest grid

    positionforstudsthat willmaintainauniforminterstudspaceforinsu-

    lationoraregularspacingofnailinggroundsforwallboards.

    Thisplateshowsthepreferredlocationoftheframewallplaced

    symmetricallybetweengridlines.Individualstudsarespaced16" on

    centersongridlinese cept at corners. ere,onestudhasbeenmoved

    slightlyoffcenterinordertoallowforstandard %" blocking.All

    framingmembersusedarenominal2 4 .Theirspecifiedsizeis

    I " 3 X " .

    Withthestudframewallpositionedasshown,theinsidenominal

    dimensionsofthebuildingareinmultiplesof4 .Thisfacilitatesthe

    useofstocksizemodularwallboardswithaminimumofcuttingand

    fitting.

    22

    Generated

    forFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    26/35

    M O DU A R F RA M I G

    C O R E R D E T A I

    3/

    * h

    Co r n er i e we d

    FromOutside

    Preferred ocationoftheStud

    PlacedSymmetricallyontheGrid.

    p ^ r - ^ ^ y. ^ p ^ :. l

    - jr > ^ y . ' , / // .

    Co r n er i e we d

    FromInside

    23

    Generated

    forFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    27/35

    Theframewallspicturedinthisplatedemonstratethesimplicity

    ofassemblyofsomebuildingproductssizedinmultiplesof4 .The

    basicmodulelendsitselftotheuseof largerdesignmoduleswhich

    maybeanymultipleof4 .Theupperdrawingshowsacombination

    oftwomodules,a16" module,forthestudspacing,anda 3 times16"

    module,i.e.4 " ,fortheinteriorfinish.Sincemost wallboardsare

    i n 4 w i d ths, th e u se of th e 4 mo d ul e w i l l mi n i m ize th e wa ste o f

    wallboard.

    Thelowerdrawingshowstheapplicationofplasterboardlath

    andblanket-typeinsulation.Bothmaterials,manufacturedforframe

    constructionwithstudspacingof16" or24 oncenters,aremodular.

    Thewidthoftheinsulationblanket ismadetofit betweenthestuds.

    Onbothdrawingsit canbeseenthat the4 moduleworksout

    convenientlywithwindowopenings.Framingissimplifiedanda

    singlestudisusedbetweenopenings.

    Thisisonlyoneofmanypossiblee amplesdemonstratinghow

    coordinationofstructurewithbuildingmaterialsandcomponents

    willcontributetolower-cost construction.

    Generated

    forFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    28/35

    Generated

    forFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /h

    ttp://hdl.handle.net/2027/mdp.3

    901503

    1946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    29/35

    Thisplateshowscoordinationofwindowopeningswiththeframe

    wallingreaterdetail.Framingande teriorelevationareshownat

    theleft.Sectionsat theright showhead,jamb,mullion,andsilldetails

    foramodularwindow.

    No unusualapplicationmethodsareencountered.Thewindow

    frameisinstalledintheusualmannereitherfromtheoutsideorinside.

    Windowscanberepeatedwithout interruptionofthemodularstud

    positioning.Themoduleforthewindowopening,asshowninthis

    e a mp le , i s two stud sp a ce sat 1 6 " o n ce n te r , o r 2 8 " . T h e o p en i n gs

    arespannedbytheusuallintels. owever,insteadoftheconventional

    doublingofstudsat windowjambs,thelintelise tendedtothene t

    studinitsregularposition,therebyusingaminimumnumberof

    studsforframing.

    Thesashwidthis2 4 ,allowing2 oneithersidebetweenthe

    gridlinesforinstallationofthewindowframe.Withtheframejamb

    members%" thick,thismodulardetailgivesa%t" clearanceoneach

    sidebetweenthejambmemberandthestud.Thisclearanceallows

    foreasyinstallationandlevelingoftheframeintothemodularopening.

    Thee ampleshownisforapatent balancetypeofsash.For

    weight-hungsash,thesashwidthwouldhavetobedecreasedto2

    inthisparticulardesign. otethat dimensionsat gridlinesareshown

    byarrows,dimensionsnot at gridlinesareshownbydots.Thisisthe

    acceptedconventionformodulardrawingsandshouldalwaysbeused,

    evenwhendimensioningsmall-scaleplans,elevations,andsections,

    wherethegridlinesarenot indicated.

    I

    Generated

    forFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hath

    itrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    30/35

    Generated

    forFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    31/35

    Tosummarizetheadvantagesofmodularcoordination:

    1.It providesarationalbasisforthestandardizationofbuilding

    materialssizesonanationalratherthanaregionalorlocalbasis.In

    thecoordinationofsizesofbuildingmaterials,thegridprovidesaguide

    tothemanufacturersindeterminingthesizesoftheirproducts.Man-

    ufacturersareabletoreducethenumberofstocksizesresultingfrom

    thisstandardizationandinterchangeabilityofbuildingproductsand

    stillsatisfyconsumerdemandforfle ibility.

    2.It c ontributesinsimplifyingarchitecturaldesignandconstruc-

    tion. x periencehasalreadyindicatedthat practicalapplicationsin

    theuseofthegridas aninstrument ofcorrelationinthepreparationof

    architecturaldrawingshaveresultedineconomiesandsimplificationof

    proceduresinthearchitect' soffice.Thearchitect,whenfamiliarwith

    modularcoordination,spendslesstimeondraftingandcandevote

    moretimetoimproveddesignandotherimportant services.Moreover,

    thecompletenessofhisdrawingsanddetailinot onlyresultsinbetter

    constructionbut it meanscloserbidsandlowercosts.Thecontracto

    alsogainsbyeasierandquickerestimating.

    3.It reducescuttingandfittingtimeandwasteofmaterials

    Buildingmaterialscoordinatedin4 multiplescanbeassemble

    intoabuildingwithaminimumofcuttingandwaste,providedth

    floorplansandelevationsofthebuildingarelaidout inmultipleso

    4 .

    4.It increasesproductivityoflabor.Tothecontractor,it me

    moreefficient methodsonthejobandless constructiontime,withcon

    sequent lowercosts.Addinguptheadvantagesandsavingsthu

    achieved,it becomesevident that modularcoordinationhelpstogiv

    theownerabetterbuildingat lowercost.

    Generated

    forFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    32/35

    ill

    3..

    ll

    te

    r,

    1

    1

    MO D U ARCO O RD I AT I O

    1 S TA D AR DI E S S I E S o fB UI D I G M A T R I A S

    2 S I MP L I F I S A R C I T C T U R A D E S I G a n dC O S T RU C TI O

    3 R D UC S C U TT I G a n d F IT T I G T I M a n d WA S T o f M AT R I A

    4 I C R A S S P R OD UC TI I T o f A B O R

    R D U C S B U I D I G C OS T S

    . . o n ai a m fi i it i m of f ic i i mi

    29

    Generated

    forFredericBellaloum(

    ArizonaStateUniversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    33/35

    9319

    Generated

    forFredericBellaloum(

    ArizonaStateU

    niversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    34/35

    Generated

    forFredericBellaloum(

    ArizonaStateU

    niversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    PublicDom

    ain,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google

  • 8/2/2019 Basic Principles of Modular Coordination

    35/35

    nerated

    forFredericBellaloum(

    ArizonaStateU

    niversity)on2012-0

    4-2

    421:15GMT

    /http://hdl.handle.net/2027/mdp.3

    9015031946927

    blicDom

    ain,

    Google-d

    igitized

    /http://www.hathitrust.org/access_

    use#pd-google