basic hydrology & hydraulics: des 601 module 16 open channel flow - ii

20
Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Upload: lizbeth-bryant

Post on 18-Jan-2018

242 views

Category:

Documents


2 download

DESCRIPTION

Steady Uniform Flow Steady uniform flow is an idealized concept of open channel flow that seldom occurs in natural channels and is difficult to obtain even in model channels. However, in many practical highway applications, the flow is assumed to be reasonably steady, and changes in width, depth, or direction (resulting in non-uniform flow) are assumed to be sufficiently small so that flow can be considered uniform. Examples: Short sections of drainage infrastructure, bridge deck drainage, etc. Module 16

TRANSCRIPT

Page 1: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Basic Hydrology & Hydraulics: DES 601

Module 16Open Channel Flow - II

Page 2: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Steady Uniform Flow• Steady flow means that the discharge at a

point does not change with time.

• Uniform flow means that there no change in

the magnitude or direction of velocity with distance, that the depth of flow does not change with distance along a channel.

• This uniform flow definition implies constant channel geometry – more importantly, geometry and flow are related.

Module 16

Page 3: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Steady Uniform Flow• Steady uniform flow is an idealized concept of open

channel flow that seldom occurs in natural channels and is difficult to obtain even in model channels.

• However, in many practical highway applications, the flow is assumed to be reasonably steady, and changes in width, depth, or direction (resulting in non-uniform flow) are assumed to be sufficiently small so that flow can be considered uniform.• Examples: Short sections of drainage

infrastructure, bridge deck drainage, etc.

Module 16

Page 4: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Steady Non-Uniform Flow• Steady non-uniform flow is flow that is steady (no

change in Q with time), but the flow geometry can (and does) change in space.

• Two kinds of non-uniform, steady flow are:• Rapidly varied flow:

• the changes take place abruptly over short distances. (Typically as flow changes between super- and sub-critical)

• Gradually varied flow:• the changes take place over long distances,

and occurs within one flow regime (sub- or super-critical)

Module 16

Page 5: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Gradually Varied Flow• Gradually varied flow (GVF) is important in drainage

engineering to account for:• Backwater effects (flow draining into a “pool”

situation) • Frontwater effects (flow accelerating over or

under a structure).• GVF conditions are characterized by relationships of

normal and critical depths, slope designations, and water surface profile “shapes”

Module 16

Page 6: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Slope Designation RelationsSlope Designation Critical to Normal Relationship RemarksSteep – S

Critical – C

Mild – M

Horizontal – H

Adverse – A

Module 16

Page 7: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Profile-Type RelationshipsProfile Type Logic

Type – 1 .AND.

Type – 2 .OR.

Type – 3 .AND.

Module 16

Page 8: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Slope/Profile Sketches• The GVF slope and profile designations convey

information on control (of flow) and are useful for:

• Selecting control sections for measurements

• Selecting geometries to produce desired flow depths near infrastructure

Module 16

Page 9: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

M1 water surface profile

• Indicative of downstream control• Flow into a “pool” or forebay, flow approaching a

weir.

Module 16

Page 10: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

M2 water surface profile

• Indicative of downstream control• Flow accelerating over a weir, waterfall, or

contraction but otherwise sub-critical

Module 16

Page 11: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

M3 water surface profile

• Indicative of upstream control • Flow under a sluice gate, a jet from a culvert

Module 16

Page 12: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

S1 water surface profile

• Indicative of downstream control

Module 16

Page 13: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

S2 water surface profile

• Indicative of upstream control• Acceleration of flow just past a submerged weir on a

steep slope

Module 16

Page 14: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

S3 water surface profile

• Indicative of upstream control• Flow under a sluice gate on an OGEE spillway

Module 16

Page 15: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Froude Number• Recall the specific energy diagram, the energy

minimum for a given discharge occurs when the dimensionless Froude number (Fr) is unity

• The Froude number is the ratio of inertial to gravitational forces in flow. In a wide channel or rectangular channel the number is well approximated by

Module 16

Page 16: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Froude Number• The Froude number also classifies the flow.

Module 16

Page 17: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Energy and Momentum• The short segment of open channel between two

sections is called a reach.

• The momentum change in a reach is related to the frictional forces of the channel on the water in the reach, the gravitational force on the water in the reach, and the difference in pressure forces at the upstream and downstream sections.

• Momentum change is important in computing forces of water on structures as well as determining the location of abrubt changes in flow regime.

Module 16

Page 18: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

• Momentum equation for steady open channel flow is (after considerable algebraic simplification)

Energy and Momentum

Module 16

Page 19: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Example – Hydraulic jump• A hydraulic jump occurs as an abrupt transition from

supercritical to subcritical flow. There are significant changes in depth and velocity in the jump and energy is dissipated.• Specific energy changes across a jump.• Momentum however is nearly conserved, hence

computations would use the momentum equation

Module 16

Page 20: Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II

Example – Hydraulic jump• The potential for a hydraulic jump to occur should

be considered in all cases where the Froude number is close to one (1.0) and/or where the slope of the channel bottom changes abruptly from steep to mild.

Module 16